
High Performance Computing
- Evolution of Computer Languages

and Programming Paradigms

Prof Matt Probert
http://www-users.york.ac.uk/~mijp1

Overview

• History of some early languages
• Structured Programming
• More recent languages
• Object Orientated Programming
• Current status and relevance to HPC

Why study history?

• There are by some estimates over 2500
computer languages in existence
– Most never used outside of the authors group
– Why were they all created?
– What do they have in common?
– Why do we need any more than 1 language?

Pre-History
• Analogue computers were “programmed” by

changing gears, etc.
• Earliest digital computers followed a similar

paradigm, with manual setting of switches etc
• 1945: John Von Neumann developed two key

concepts:
– “Shared-program” technique – use complex

instructions to control simple hardware rather than
use complex hardware so can re-program

– “conditional control transfer” – i.e. no longer just
sequential operation
• can branch or loop or use subroutines etc

Assembly
• Human readable notation for binary

instructions understood by the CPU.
• Translated into machine code by an

program called an assembler.
• Need to know the instruction set for the

specific CPU in question.
• Imagine a world with no compilers……

Assembly (P4)
pushl %ebp

movl %esp, %ebp

subl $16, %esp

movl $0, -4(%ebp)

flds a.449

flds b.448

fmulp %st, %st(1)

fstps a.449

movl -4(%ebp), %eax

leave

ret

Sets up
space for a
and b

ßLoad a into register st

ßLoad b into register st(1)

ßMultiply st by st(1) and store in st

ßStore contents of st into memory

This is roughly 50% of the
code needed for a := a*b !

See https://godbolt.org/ for compiler output …

In the Beginning …
• 1949: first computer language – “Short Code” –

created. Did not have a compiler – the
programmer had to convert statements into
binary by hand

• 1951: first compiler written by Grace Hopper –
“A-0” – but still everything was very “low level”

• Computers were starting to become more
popular but take-up hampered by difficulty of
programming, and so …

… was the Granddad of them all …
• FORTRAN was created by IBM for scientific

programming (John Backus was team leader)
– First manual in 1956, first compiler in 1958
– 18 man-years to write the first ever high-level compiler

• Why was it needed?
– Programs were getting more complex and more error-

prone as the uptake of computers increased
– Programmers needed to focus on the problem they

were trying to solve and not the tool they were using
– Efficiency matters! One of the design goals was that

the language should have at least 90% performance of
hand-crafted machine code – often better!

… FORTRAN features …
• A very simple language by modern standards – but

revolutionary at the time – machine independent code!
– IF, DO and GOTO statements (key von Neumann concepts)
– Assignments looked like normal maths
– Also introduced the idea of data types – logical, integer, real

and double-precision numbers
– FORTRAN I (1957), II (1958), IV (1961)
– 66 (first ever language to be standardised)
– 77 (significant changes)
– 90 (major development), 95 (minor tweaks), 2003 (major

tweaks), 2008 (minor tweaks), 2018 (major tweaks), etc.

FORTRAN I

FORTRAN IV/66

FORTRAN 77

Fortran 90

… rapidly followed by…

• COBOL in 1959
– Common Business Oriented Language
– Grace Hopper as team leader in creation (DoD)
– FORTRAN was good at handling numbers but

not at I/O which mattered for business
– Only data types were numbers and strings

• but these could be grouped into arrays and records
for better data handling

– Elegant, English-like syntax (long-winded!)
– Still a major language in use today, but

primarily for legacy code – Y2k bug

COBOL

… and then there was …
• ALGOL

– Created by a European-American committee in 1958
• need perceived for standardisation and company

independence
– First language to have a formal grammar

• First “syntax-directed” compiler
– First actual ALGOL compiler in 1960
– Designed for publication (journals) as well as

programming – self-documenting code
– Introduced block-structured programming, variable-

length arrays, if-then-else, while-loops, and recursion!

… ALGOL in action …

… but ALGOL dies …
• So what happened to ALGOL?

– Originally, IBM were involved, but as their business (and
hence FORTRAN) grew, they sidelined ALGOL

– FORTRAN was simpler and hence easier to compile and
hence produced faster code and hence attracted more users

– Nicklaus Wirth & others revised the language in 1966 –
added case structures, records, pointers, complex and
bitwise data types – resulting in ALGOL-W

– Major language revision in 1968 but new version generally
viewed as bloated and difficult to use – hence dies

– ALGOL now seen as the root of many modern languages,
including Pascal and C (and hence C++, Java, etc)

… PL/I …

• Created by IBM in 1960
• A merger of ALGOL, FORTRAN and

COBOL with some ideas from LISP!
• Designed as a general purpose language,

to bring together business and science
• IBM wanted to drop FORTRAN and

COBOL support and switch to PL/I but
users protested and PL/I died.

PL/1

… and the end of the beginning
• 1968: Edsger Dijkstra wrote a article called "GOTO

Statement Considered Harmful"
– https://doi.org/10.1145/362929.362947
– Controversial at the time – still argued in some circles!
– Either way it created a debate
– Started the move to “structured programming” as a means

to develop reliable software
• Wirth creates Pascal in 1970 (based on ALGOL-W)

as a teaching language
– Smaller and more compact than ALGOL 68
– Most popular language in University teaching in mid-80s
– Very strict rules designed to teach good (structured)

programming practice

PASCAL

Structured Programming I
• “A study of program structure has revealed that

programs can differ tremendously in their
intellectual manageability. A number of rules
have been discovered, violations of which will
either seriously impair or totally destroy the
intellectual manageability of the program....I
now suggest that we confine ourselves to the
design and implementation of intellectually
manageable programs”.-----E. Dijkstra (1972)

• First serious attempt to improve the standard of
code construction – more than just “no GOTOs”

Structured Programming II
• Emphasis on “readability”
• Top-down design and construction

– Break code into manageable subprograms
– Create a hierarchy of modules/subroutines with each

having a single point of entry and exit
• Limited scope of data and control structures

– Use sensible data names and limit scope
– No jumping in/out of control-structure/ module/

subroutine at anything other than single entry/exit
point

Structured Programming III

Goal is to enable programs that are:
• Easy to write

– Modular design, multiple programmers,
subroutine reuse

• Easy to debug
– Single process per procedure and no spaghetti!

• Easy to understand
– Modular design and meaningful variable names

• Easy to change
– Should be self-documenting if well written!

Middle-Ages

• Pascal was designed for teaching
– Good combination of features, I/O and maths
– Improved pointers
– Added ‘case’ statements and dynamic

variables via NEW and DISPOSE commands
– But no dynamic arrays or structures

• And so the stage was set for C …

Birth of C
• Developed in 1972 by Dennis Ritchie at Bell

Labs in order to create the UNIX operating
system (O/S)
– Hence “lower level” language than FORTRAN, etc
– Access to hardware and internal structures
– Close links to UNIX – hence dynamic variables,

multitasking, interrupt handling, forking, low-level I/O
– Popular with system programmers and commercial

software manufacturers
– Many variants – not ANSI standardised until 1990

C Features
• Concept of O/S developed alongside hardware

and computer languages – particularly to
remove the need to write machine-specific I/O

• C + O/S enabled portability and hence C’s
success
– most O/S now written in C or variants

• A small language (unlike Algol-68 etc) but with
many libraries
– Libraries contain machine-specific code to perform

low-level tasks – hence only the library needs to be
ported to a new machine – not the rest of the code

– Enabled source code reuse and portability

C Problems

• Optimisation
–Pointers make it very hard for compiler

writers to generate efficient numerical code
• Lack of support for large projects

–Everything is either globally visible or
private to just one procedure

–Similarly, data is either static or automatic –
programmer has to manage memory and
no automatic garbage collection

… software engineering fails …

• Even though C was developed with support
for structured programming it is easy to
create unintelligible code
– see http://www.ioccc.org for examples!

• Many large software projects were suffering
from lack of code re-use and very high
maintenance/ bug-fixing costs

• So a new programming paradigm was
created …

Any Guesses?
1988 Winner by Ian Phillipps …

main(t,_,a) char * a; { return! 0<t? t<3? main(-79,-13,a+
main(-87,1-_, main(-86, 0, a+1) +a)): 1, t<_? main(t+1, _, a
) :3, main (-94, -27+t, a) &&t == 2 ?_ <13 ? main (2, _+1,
"%s %d %d\n") :9:16: t<0? t<-72? main(_, t,
"@n'+,#'/*{}w+/w#cdnr/+,{}r/*de}+,/*{*+,/w{%+,/w#q#n+,/#{l,+,/n
{n+,/+#n+,/#;#q#n+,/+k#;*+,/'r :'d*'3,}{w+K w'K:'+}e#';dq#'l
q#'+d'K#!/+k#;q#'r}eKK#}w'r}eKK{nl]'/#;#q#n'){)#}w'){){nl]'/+#n
';d}rw' i;#){nl]!/n{n#'; r{#w'r nc{nl]'/#{l,+'K {rw'
iK{;[{nl]'/w#q#n'wk nw' iwk{KK{nl]!/w{%'l##w#' i;
:{nl]'/*{q#'ld;r'}{nlwb!/*de}'c ;;{nl'-
{}rw]'/+,}##'*}#nc,',#nw]'/+kd'+e}+;#'rdq#w! nr'/ ')
}+}{rl#'{n' ')# }'+}##(!!/") : t<-50? _==*a ? putchar(31[a]):
main(-65,_,a+1) : main((*a == '/') + t, _, a + 1) : 0<t? main
(2, 2 , "%s") :*a=='/'|| main(0, main(-61,*a, "!ek;dc
i@bK'(q)-[w]*%n+r3#l,{}:\nuwloca-O;m .vpbks,fxntdCeghiry")
,a+1);}

Object Oriented Programming (OOP)
• A class encapsulates both the data types of a data structure

and also the types of operations (methods) that can be
performed with it: class Point {

int _x, _y;

public:

void setX(const int val);

void setY(const int val);

int getX() { return _x; }

int getY() { return _y; }

};

data

methods

• We can now create and manipulate objects which are
instances of this class:

Point :: my_point;
my_point::setX(1.0);
my_point::setY(2.3);

OOP II
• OOP designed to enable code re-use

– Once a class has been carefully created, it can be reused in
many different projects – hence class libraries

– If a new type of object is required, it can be descended from
a parent class via inheritance

class Rectangle inherits from Point {
attributes:
int _width, // Width of rectangle

_height; // Height of rectangle
methods:
setWidth(int newWidth)
getWidth()
setHeight(int newHeight)
getHeight()

}

OOP III
• Data within a class can only be manipulated

through a controlled interface – safe with
predictable results.

• Some languages also support polymorphism
where one piece of code works with many
different classes of objects.
– E.g. could extend point to circle class and have

common interface to calculate area of circle and
rectangle.

• OOP comes into its own in big projects with
many developers. Not so useful for small codes
we will write in this course!

OOP IV
• Many modern languages support OOP

– Original language was Smalltalk (1979) but C begat
C++ (1983), Basic begat Visual Basic (1991),
Pascal begat Delphi (1995), etc. Even FORTRAN!

• Re-usability is not the same as portability,
hence Sun begat Java (1995) for “write once,
run anywhere” portability across the Net
– MS begat C# (2000) for ??? reasons

• Fortran 90 has some OOP-like features, F2003
has more, F2018 even more …

• OOP is a “bottom-up” not “top-down” style

Implementation
• Compiled

– Most languages are compiled
– Best for speed of resulting code
– Time for compilation can be excessive

• Interpreted
– No compilation time but slower running time
– Interactive environments

• Blurred boundaries
– Java is compiled into machine-independent

byte code, which is then interpreted
– PERL is compiled into a syntax tree, which is

then interpreted

Language Generations

• 1st = Machine code
• 2nd = Assembler
• 3rd = Traditional languages (e.g. Fortran, C,

Java, etc)
– Language contains simple instructions
– Can be very flexible but time consuming to code

• 4th = “Higher level” languages (e.g. application
generators such as IDL, or Maple etc)
– Highly complex & powerful instructions
– Loss of flexibility and steep learning curve

Relevance to HPC?
• Hardware

– Traditionally, optimal performance came from direct
access to hardware, requiring proprietary language
extensions and/or compiler directives, i.e. non-portable

• Modern approach = Standard languages + libraries
– Use a familiar programming language (typically Fortran

or C) with an open standard library
– Standard API with custom implementations on different

platforms i.e. a portable solution with small learning
curve

– This is the approach we use in this course

Requirements for HPC

• Speed – need compiled language.
• Portability – need standardised language.
• Libraries – need interfaces to MPI, BLAS

LAPACK etc.
• Maturity – need a knowledge base (think –

why did PL/1 fail?) and well developed
optimising compilers.

Boils down to C/C++ or Fortran!

Fortran vs C / C++
Fortran

• Specifically designed for
number crunching!
– Useful intrinsic functions

• Limited object oriented
• Ignored outside HPC

community
– Uncommon outside

academia.
• Restrictive

– This is a good thing!

C / C++
• General purpose

– Need libraries for nearly
all maths.

• Object oriented
• Widely used

– Transferable skill
– Many free tools available

• Unrestrictive
– Bad for HPC!

Why restrictive can be good
Fortran

integer,parameter :: N = 3
integer :: i

do i = 1,N
<Insert some highly important

maths>
end do

This loop will always execute
exactly 3 times regardless of
its contents – this
information helps the
compiler – see optimisation
lectures.

C / C++

int const N = 3;
int i;

for (i = 1; i<4 ; i++) {
<Insert some highly important

maths>
}

The variable i can be
modified within the loop.
Compiler may not be able to
figure out how many times
loop executes – cannot
optimise!

Further Reading

• “Computer Languages History” at
http://www.levenez.com/lang

• Leslie B. Wilson and Robert G. Clark,
“Comparative Programming Languages”,
Addison-Wesley, 3rd ed. 2001

• “The History of Computing”
http://www.thocp.net/software/languages/la
nguages_index.htm

• The compiler explorer at https://godbolt.org/

