
High Performance Computing
- MPP Programming with MPI

Prof Matt Probert
http://www-users.york.ac.uk/~mijp1

Overview

• Basic Ideas
• Point-to-Point Communication

– blocking version
• Simple Collective Communication

Basic Idea
• MPI is a portable library

– Flexible, powerful, easy to use, very general
application

– Implementer can customise internals to
machine architecture

• SPMD paradigm
– Single Program, Multiple Data

• NB Not single instruction – code may branch so
that different processors do different jobs – task
farming – or work on different copies of the data

• Distributed memory architecture

Key Concepts I
• Messages

– Transfers data between processors:
• Which processor is sending the message?
• Where is the data on the sending processor?
• What is the “type” of the data?
• How much data is to be sent?
• Which processor(s) are to receive the data?
• Where should the data be put on the receiver?

• Communicators
– A way of dividing up the available processors into

separate groups that can then co-operate on a task
– All message passing is within a communicator so

messages in different communicators cannot clash
– Sounds complex but it greatly simplifies coding!

Key Concepts II
• Handles

– All this sounds very complicated but it is not as the details are
hidden within the library and so are up to the implementer not
the MPI programmer!

– All structures are referenced by handles – simple integers –
which reference an entry to a table inside the MPI library

• C and FORTRAN Support
– All MPI routines and constants begin with MPI_ to avoid

clashes with other libraries. FORTRAN is case insensitive but
in C (case sensitive) names are mixed case and all constants
are upper case.

– The C-versions return an int and FORTRAN have an
IERROR parameter to return error codes

• MPI_SUCCESS (zero) indicates success. Numeric codes are non-
portable so use MPI_ERROR_STRING routine to translate into text.

Key Concepts III
• Types of MPI routine:

– System query
• Who am I? Finding out about process id, etc.

– Point-to-Point
• Send/receive pairs in different variations

– Collective
• One-to-all, all-to-all, all-to-one and barriers

– Miscellaneous
• MPI derived data-types, communicator management,

error handling, start-up and shut-down.

Hello World
• The classic first program to write:

#include <mpi.h>
#include <stdio.h>

int main(int argc, char **argv)
{

/* Initialise MPI */
MPI_Init (&argc, &argv);

printf(“Hello world \n”);

/* Terminate MPI */
MPI_Finalize ();

exit (0);
}

program hello
use mpi
implicit none

integer :: ierror

call MPI_Init(ierror)

print *,“Hello World”

call MPI_Finalize(ierror)

end program hello

NB Ought to check status of
error code after each call

NB C/C++ is case-sensitive – use CamelCase – but Fortran is not!

Who am I?
One of the first tasks, once MPI has been initialised,
is to find out how many processes there are …

call MPI_comm_size(MPI_comm_world,size,ierror)

where MPI_comm_world is a handle to the default
communicator – the set of all available processes –
defined in ‘use mpi’ or ‘#include mpi.h’
and size is int num of processes in communicator.

call MPI_comm_rank(MPI_comm_world,rank,ierror)

gives rank (process id number) in range 0 £ rank
£ size-1

Who am I? (F90 version)
program hello

use mpi
implicit none
integer :: ierror, myrank, size

call MPI_Init(ierror)

call MPI_Comm_rank(MPI_comm_world,myrank,ierror)

call MPI_Comm_size(MPI_ comm_world,size,ierror)

print *,”Hello World from processor”,myrank+1,”of”,
size

call MPI_Finalize(ierror)

end program hello

Who am I? (C version)
#include <stdio.h>
#include <mpi.h>

void main (int argc, char *argv[]) {
int myrank, size;

MPI_Init(&argc, &argv); /* Initialize MPI */
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);/* get rank */
MPI_Comm_size(MPI_COMM_WORLD, &size); /* get size */

printf("Processor %d of %d: Hello World!\n", myrank,
size);

MPI_Finalize(); /* Terminate MPI */
}

What can we send?
We can send single values (or arrays) of the following types.

Long doubleMPI_LONG_DOUBLE

MPI_BYTE

MPI_PACKED

DoubleMPI_DOUBLE

FloatMPI_FLOAT

Unsigned long intMPI_UNSIGNED_LONG

Unsigned intMPI_UNSIGNED

Unsigned short
int

MPI_UNSIGNED_SHORT

Unsigned charMPI_UNSIGNED_CHAR

Signed long intMPI_LONG

Signed intMPI_INT

Signed short intMPI_SHORT

Signed charMPI_CHAR

C DatatypeMPI Datatype

MPI_BYTE

MPI_PACKED

Character(1)MPI_CHARACTER

LogicalMPI_LOGICAL

ComplexMPI_COMPLEX

Double precisionMPI_DOUBLE_PRECISION

RealMPI_REAL

IntegerMPI_INTEGER

FORTRAN DatatypeMPI Datatype

NB Fortran is F77-style, i.e.
no F90-style kind
parameters.
MPI_BYTE is for 8-bit data.
MPI_PACKED is for later …

Communication Types
• Synchronous

– Operation does not complete until message has been
received – c.f. sending a fax message

• vs. Asynchronous
– Operation completes as soon as message is on its

way – c.f. posting a letter
• Blocking

– Operation only returns from subroutine when
operation has been completed – c.f. fax machine
without memory – stays busy until message is sent
and cannot send another one in the mean-time.

• vs. Non-Blocking
– Operation returns immediately and allows program to

continue with other operations – c.f. turning on a fax
machine to receive a message

Point to Point Communication
• Consider pseudo code for point to point

communication, e.g. CPU 0 sends to CPU 1:
if myrank = 0 then

call an MPI send routine

else if myrank = 1 then

call an MPI receive routine

end if

• Other CPUs don’t do anything – may get ‘ahead’
of the first two.

• Many options for how and when the send/receive
occurs.

Sending Options
• The task which sends calls one of the following routines:

Mode Blocking Non-Blocking

Standard MPI_Send MPI_Isend

Buffered MPI_Bsend MPI_Ibsend

Synchronous MPI_Ssend MPI_Issend

• SEND uses either BSEND or SSEND – depends on MPI
implementation – simplest to use!

• BSEND buffers messages so can transmit several in one
go at some later time – completes when the message
has been buffered.

• SSEND sends the message and will not send another
until it has been received – completes when the
message has been received.

Blocking or Non-Blocking?
• Completion condition is different for each

type of send.
• Blocking versions of routines return when

the operation has satisfied the completion
condition.

• Non-blocking versions return when the
operation has begun.
– Why? So can hide comms latency with non-

blocking versions by performing computation
whilst comms in progress => more efficient

Receiving a Message
• Regardless of the sending mode, the receiving

CPU calls the same routines:
– MPI_Recv (blocking)
– MPI_Irecv (non-blocking)

• In the non-blocking case, we cannot assume the
message has been received (and hence use the
data received) until we check for completion:
– MPI_Wait stops execution until message has been

received.
There is also MPI_Test which checks if the task (send
or recv) has completed but does not wait if it has not.

Standard Blocking Send
call MPI_Send(data, count, datatype, dest, &

tag, comm, ierr)
F90

ierr = MPI_Send(&data, count, datatype, dest,
tag, comm); C

– data is the address of the data to be sent (e.g. variable
name if scalar, or first element of 1D or 2D array),

– count is the number of elements of MPI datatype
within data (e.g. n*n for a NxN array)

– dest is the destination, i.e. rank of the receiving
process which must be within the same communicator,

– tag is a marker for the programmer to distinguish
different types of message

– ierr is error code (0=success).

Standard Blocking Receive
call MPI_Recv(data, count, datatype, source, tag, &

comm, status, ierr)
F90

ierr = MPI_Recv(&data, count, datatype, source, tag,
comm, &status); C

data is the address of the data to be placed once
received (e.g. variable name if scalar, or first element of
an existing array which must be large enough!)
count is the number of elements of MPI datatype
source is the rank of the sending process which must be
within the same communicator.
tag must match that in specified in the send unless
MPI_ANY_TAG wildcard used instead
status is a special handle to be interrogated later…

ierr is the return value (0=success).

Comments
• A sender can “push” a message but a receiver

cannot “pull” – can only fetch a message already
“out there”.
– MPI is the middle-man: sender posts a message,

receiver posts a matching receive, and MPI joins up
– Tags enable receiver to choose which message to

receive before the receive begins.
– status is an integer array (of MPI_STATUS_SIZE)

which must be declared by user code and holds
information about message,

• status(MPI_SOURCE) gives rank of sender
• status(MPI_TAG) gives tag of message
• MPI_GET_COUNT(status, datatype, count) gives

number of elements of data actually received in count.
• A special datatype MPI_Status is provided in C/C++/F2008.

Simple Blocking Send/Recv
e.g. process 0 sends an array ‘a’ with 100 elements to process 1

! Process 0 sends, process 1 receives:
if (myrank == 0) then

call MPI_Send(a(1),100,MPI_DOUBLE_PRECISION,1,17,MPI_COMM_WORLD,ierr)
else if (myrank == 1) then

call MPI_Recv(a(1),100,MPI_DOUBLE_PRECISION,0,17,MPI_COMM_WORLD, &
& status,ierr)

endif

/* Process 0 sends, process 1 receives: */
if (myrank == 0) /* Send a message */

ierr = MPI_Send(&a[0], 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);
else if (myrank == 1) /* Receive a message */

ierr = MPI_Recv(&a[0], 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD,
&status);

(should compare ierr to MPI_SUCCESS after each call)

Swapping information?
/* DO NOT DO THIS */
if (myrank == 0) {
/* Receive, then send a message */

MPI_Recv(&b[0], 100, MPI_DOUBLE, 1, 19, MPI_COMM_WORLD,
&status);

MPI_Send(&a[0], 100, MPI_DOUBLE, 1, 17, MPI_COMM_WORLD);
}
else if (myrank == 1) {
/* Receive, then send a message */

MPI_Recv(&b[0], 100, MPI_DOUBLE, 0, 17, MPI_COMM_WORLD,
&status);

MPI_Send(&a[0], 100, MPI_DOUBLE, 0, 19, MPI_COMM_WORLD);
}

• Rank 1 cannot send until it receives from rank 0

• Rank 0 cannot send until it receives from rank 1

• Serious chicken and egg situation – DEADLOCK!

Deadlock
• Deadlock is the bane of parallel programs:

– A program that appears to runs fine on one
implementation of MPI fails on a different one or
may randomly “hang”.

– Usually caused by a communication mismatch,
e.g. one process is waiting for a message that
will never come, etc.

– Or chicken + egg situation as previous slide.
– Must guarantee that all messages sent will

eventually be received else will overload the
comms network.

– Blocking sends causes synchronisation and
hence potential for deadlock – non-blocking
sends can eliminate this – see next MPI lecture.

Point-to-Point Semantics
• Message order is preserved

– If A send two messages to B, and B posts two
matching receives, then they will be received in
the order they were sent.

• Progress
– It is not possible for a matching send and receive

pair to remain permanently outstanding
• Either send or receive will eventually complete:
• A third process posts a matching receive in which case

the send completes but not the receive, or
• A third process sends out a matching message which is

received instead, hence the second process receive
completes but not the first process send.

• Datatypes must match in send and receive
and with corresponding language type of
data, except for MPI_PACKED.

Basic Collective Communication
• MPI_Bcast(data, count, datatype,
root, comm, ierror)
– Broadcasts count items of data from root process

to all process in specified communicator.
– All non-root nodes receive data – no need for a

matching receive command.
• NB Collective communications are transparent

to point-to-point and v.v. – no problem with
clashing.

• NB No tags and no part-full buffers allowed.
• NB No non-blocking collectives in MPI v1 –

command completion implies data may be
reused.

Miscellaneous MPI Commands
• MPI_Wtime() – a simple function that returns a

double precision wall-time in seconds
– Hence need a pair of calls to time a chunk of code

• MPI_Wtick() gives timer resolution as double
precision (e.g 10-3 means millisecond
resolution).

• MPI_Barrier(comm, ierror)
– A synchronisation command – all processes in
communicator will wait until all reach the barrier –
hence all must call it!

MPI summary

• MPI is a large and flexible library (125
functions in MPI v1 & more in v2 and v3)

• But actually you only need to know 6
functions to write many programs:

• MPI_Init, MPI_Finalize

• MPI_Comm_size, MPI_Comm_rank
• MPI_Send, MPI_Recv

Next MPI Lecture

• Non-blocking point to point
communication.

• More advanced collective
communication.

• Advanced communicators and
topologies.

Further Reading

• Chapter 9 of “Introduction to High Performance
Computing for Scientists and Engineers”, Georg
Hager and Gerhard Wellein, CRC Press (2011).

• “Using MPI, 2nd edition”, William Gropp et al, MIT
press (1999).

• EPCC course notes at
http://www.epcc.ed.ac.uk/education-training/

• MPI forum https://www.mpi-forum.org
• MPI homepage

http://www.mcs.anl.gov/research/projects/mpi
including MPI standards, examples and more.

