
High Performance Computing
- Parallel Programming Designs

Prof Matt Probert
http://www-users.york.ac.uk/~mijp1



Overview

• Types of Problem Decomposition
– Trivial decomposition
– Functional decomposition
– Data decomposition

• Performance Analysis



Parallel Problem Decomposition
• Discussed basics of parallelism at the code 

level, machine architectures, etc previously.
• Now focus on how to think in parallel

– Need to consider devising parallel algorithms 
and strategies, e.g. problem decomposition

• Three basic approaches:
– Trivial parallelism
– Functional decomposition
– Data decomposition



Trivial (Task) Parallelism
• For some problems, need to do systematic scan of 

parameter space, or repeat several times to get an 
average, etc.

• Hence do not need to parallelise code at all!
– Run separate instances of serial code on different CPUs, each 

having different set of input parameters
– No communication between CPUs (except by user at end to 

gather final results)
– Perfect scaling, no need to rewrite code, no problems with load 

balancing, etc. Trivial but still useful

• BUT not very flexible – presumes each simulation is 
independent of all others and does not allow bigger 
problems to be tackled – each instance has to fit onto a 
single CPU.



Functional (Pipeline) Decomposition
• Divide overall task into separate sub-tasks and 

assign each sub-task to different CPUs
– E.g image processing:

– As each CPU finishes its task it passes data to next 
CPU and receives data from previous CPU

– A.k.a. pipelining – as used in CPU/GPU 
– Very problem dependent – amount of parallelism 

depends on nature of task not size of dataset



Functional Decomposition Drawbacks
• Startup cost

– As with any pipeline, there is a startup cost. The 2nd
CPU cannot do anything until 1st has finished its first 
task. Ditto 3rd, 4th, etc.

– Similarly at end when shutdown process
• Load balancing

– Need to take care to ensure each sub-task completes 
in approx. same amount of time otherwise one slow 
sub-task will cause all “downstream” sub-tasks to stall.

• Scalability
– Once task has been divided up into N sub-tasks then 

will only benefit from a maximum of N CPUs
– Also limit to maximum size of problem that can handle



Data Decomposition
• The most flexible approach to parallelism
• Data divided up between CPUs

– Each CPU has its own chunk of the dataset to 
operate upon and then results collated

– Need to ensure load balancing 
• Implies equal size tasks not equal size datasets
• Can do static load balancing, e.g. if geometry of 

datagrid is not changing and can partition effectively
• Can do dynamic load balancing if assign large tasks 

first, and then back-fill with smaller tasks until all done

• Common approaches incl task farming and 
regular grid (geometric) decompositions …



Task Farming
• Classify CPUs as

– Source (a.k.a. root): assigns initial tasks to slaves 
and then allocates remaining tasks as requested

– Slave (a.k.a. worker): receives task/data from 
source, processes it and passes result to sink

– Sink: receives completed tasks from slaves and 
assembles into overall result. Notifies source to 
assign next task to slave. Often same physical 
CPU as source.

Useful with dynamic 
load balancing to 
assign large tasks 
first and then back-fill



Load Balancing and Back-Fill

Tasks assigned by source 
sequentially or at random to 
slave nodes can give poor 
load balancing unless all 
tasks of comparable size.

Tasks assigned by source 
according to size of task. By 
assigning the largest ones first 
get dynamic load balancing. Once 
task completed, next largest 
available is dispatched to back-fill 
empty queue.



Task Farm Drawbacks
• One of the oldest models of parallelism

– Easiest with independent tasks as then similar to 
functional decomposition

• Slaves may be idle whilst waiting assignment of 
next task
– Can overcome this if each slave has a task buffer to 

store next task before it is needed
• Can involve a large amount of communications 

for a limited amount of calculation (if tasks are 
small)
– And difficult to handle comms if do not know in 

advance which slave will be working on which chunk
• Hence grid decomposition is more common …



Grid Decomposition
• Many HPC problems involve operating on 

a very large dataset, arrays, etc.
– By dividing data into smaller grids can then 

assign each to a separate set of processes
– May need special treatment to handle 
“edges” of grids where different processes 
overlap

– Enables very large problems to be tackled as 
no single process has to contain everything

– Very flexible and powerful approach



Regular Grid Decomposition

• Global data grid is 
divided into regular 
sub-grids

• Each sub-grid is then 
assigned to different 
processes as its 
local data block

• Best if can match 
network topology to 
decomposition



Data Blocks and Overlaps
• Each process is responsible for operating on 

its own local data block
– May need data from neighbouring data blocks to 

complete calculation
– Hence have effectively overlapping data blocks

Each process needs a 
halo of data belonging 
to other processes.

Width of halo depends 
on the extent of data in 
each direction needed



Halos and Updates
• To complete an update, each process may 

have to interchange data with its neighbours 
in order to keep all halos up-to-date.

• This is known as halo- or boundary-swapping
Thickness of overlap region 
depends on granularity of 
decomposition.

As the number of processes 
increases, the granularity 
becomes finer and so the 
overlap increases which 
limits gains of parallelism. 



Boundary Swapping
• If the only data elements modified are purely 

internal to a data block, then there is no need to 
update neighbouring blocks.

• Otherwise, must:
1. Send off copies of any data elements to neighbours that 

they might require, e.g. halo data
2. Receive copies of data from neighbours and put into 

appropriate locations in data block
3. Update every element of local data
4. And then repeat 1-3 for next iteration
• But what about the outside edge of the global data 

grid? Need some boundary conditions!



Boundary Conditions
• How do we treat the edges of the global data grid?
• Depending on the physics of the  problem, can 

choose static or periodic boundary conditions:

Static: the edges of the 
global grid do not 
correspond to a halo of 
another element. Must 
initialise these edges before 
any update iterations and 
treat as special cases.

Periodic: no edges, so 1D 
becomes a ring, 2D 
becomes a torus, etc. No 
elements are special 
cases.



Unbalanced Grids
• If the problem naturally maps onto a regular 

data grid, and the amount of work required 
is similar per process then all is well.

• But what if the amount of work per 
processor varies?
– Execution time will then be dominated by 

process with most work
– Spoils load balancing and hence is inefficient
– Hence better to ensure work is evenly 

distributed rather than data



Ocean Modelling I
• Classic case study – divide spherical surface 

into 3D-grid of latitude, longitude and depth
• Even distribution of data would be inefficient 

as differing amounts of land (no work) and  
depths of ocean (lots of work)

But we know in advance 
where the land and deep 
ocean parts are, and they 
do not change during 
simulation.

Hence can adjust 
decomposition until similar 
amount of work per process.



Ocean Modelling II
• Irregular data distribution: 

– 0 represents land, other numbers show which 
CPU holds the data

Example is for CPU #4: central area is local to #4 and is 
not involved in any comms; inner halo shows data owned 
by #4 and shared with others; outer halo shows data 
owned by others



Performance Issues
• Clearly the irregular data distribution involves 

more comms than the regular version
– Hence only worthwhile if saving in calculation 

offsets the comms costs
• More difficult if distribution is not known in 

advance or changes with time
• Might try a cyclic distribution to even out load 

imbalance
– E.g. divide data geometrically into many more 

areas than CPUs, so likely that each CPU 
gets similar amounts of work. But this 
destroys spatial locality of data and can be 
inefficient. Hence need to be careful!



Model System
• Consider a model iterative problem with:

– Ngrid grid points
– c FLOPs per iteration for each grid point.

– P processors 
– Each processor performs S FLOPs per second

– Interconnect: latency L, bandwidth B

– One comms operation per iteration 
– S grid points on boundaries between partitions

– Size of each message is s bytes per grid point
– No overlap between comms and computation



Cost of Parallelism
• First approximation – assume comms are latency 

dominated and neglect message size.
• Number of FLOPs wasted in latency is LS per iter
• Total number of FLOPs/CPU = cNgrid /P
• Equal number of flops used and wasted when 

cNgrid /P = LS
• Critical value of P is hence Pmax = cNgrid /(LS)  
• Speed  increases with P only while P<Pmax
• Only use large number of CPUs for large problems

• Need large Ngrid and/or large c



Cost of Communications Analysis
• Enhance the model to include information on message 

size.
• Assume a halo of width one grid point and no global 

communication (halo swaps only)
• Total time spent in comms for Nm messages 

tcomms = sS/B + NmL
– Hence best to pack all data (sS) into one long message for 

each swap. Minimises latency effects.
– Now number of FLOPs wasted in comms is S*tcomms

• Global comms can cause global synchronisation which 
is bad – cost depends on underlying network topology
– Best case is tsync = 2*L*log2(P) but even so, global 

synchronisation will always kill parallelisation eventually



Simple Cost of Decomposition
• Number and size of messages (and hence 

cost) depends on parallel decomposition 
strategy
– E.g. ocean modelling example – irregular data 

layout had larger halo area and hence more 
comms

– Even for regular data there are important choices 
to be made, e.g. 1D, 2D or 3D decomposition?



Simple Cost of Decomposition (II)
• Most efficient layout will minimise “surface area” 

to “volume” ratio as data flows across surfaces
• Let l be “length” of data-grid in single 3D partition, 

then total number of grid points is Ngrid = Pl 3 and 
so in 3D:
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Simple Cost of Decomposition (III)
• 2D:
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Simple Cost of Decomposition Cont’d
• 1D:
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Performance

• 1D wins for small P, 3D wins for large P.
• NB this analysis is for 1D, 2D or 3D decomposition of 3D 

problem. Need to redo analysis for a 1D or 2D problem!



Further Reading
• Chapter 5 of “Introduction to High 

Performance Computing for Scientists 
and Engineers”, Georg Hager and 
Gerhard Wellein, CRC Press (2011).

• Edinburgh Parallel Computer Centre 
tutorials at http://www.epcc.ac.uk


