
High Performance Computing
- Parallel Programming Designs

Prof Matt Probert
http://www-users.york.ac.uk/~mijp1

Overview

• Types of Problem Decomposition
– Trivial decomposition
– Functional decomposition
– Data decomposition

• Performance Analysis

Parallel Problem Decomposition
• Discussed basics of parallelism at the code

level, machine architectures, etc previously.
• Now focus on how to think in parallel

– Need to consider devising parallel algorithms
and strategies, e.g. problem decomposition

• Three basic approaches:
– Trivial parallelism
– Functional decomposition
– Data decomposition

Trivial (Task) Parallelism
• For some problems, need to do systematic scan of

parameter space, or repeat several times to get an
average, etc.

• Hence do not need to parallelise code at all!
– Run separate instances of serial code on different CPUs, each

having different set of input parameters
– No communication between CPUs (except by user at end to

gather final results)
– Perfect scaling, no need to rewrite code, no problems with load

balancing, etc. Trivial but still useful

• BUT not very flexible – presumes each simulation is
independent of all others and does not allow bigger
problems to be tackled – each instance has to fit onto a
single CPU.

Functional (Pipeline) Decomposition
• Divide overall task into separate sub-tasks and

assign each sub-task to different CPUs
– E.g image processing:

– As each CPU finishes its task it passes data to next
CPU and receives data from previous CPU

– A.k.a. pipelining – as used in CPU/GPU
– Very problem dependent – amount of parallelism

depends on nature of task not size of dataset

Functional Decomposition Drawbacks
• Startup cost

– As with any pipeline, there is a startup cost. The 2nd
CPU cannot do anything until 1st has finished its first
task. Ditto 3rd, 4th, etc.

– Similarly at end when shutdown process
• Load balancing

– Need to take care to ensure each sub-task completes
in approx. same amount of time otherwise one slow
sub-task will cause all “downstream” sub-tasks to stall.

• Scalability
– Once task has been divided up into N sub-tasks then

will only benefit from a maximum of N CPUs
– Also limit to maximum size of problem that can handle

Data Decomposition
• The most flexible approach to parallelism
• Data divided up between CPUs

– Each CPU has its own chunk of the dataset to
operate upon and then results collated

– Need to ensure load balancing
• Implies equal size tasks not equal size datasets
• Can do static load balancing, e.g. if geometry of

datagrid is not changing and can partition effectively
• Can do dynamic load balancing if assign large tasks

first, and then back-fill with smaller tasks until all done

• Common approaches incl task farming and
regular grid (geometric) decompositions …

Task Farming
• Classify CPUs as

– Source (a.k.a. root): assigns initial tasks to slaves
and then allocates remaining tasks as requested

– Slave (a.k.a. worker): receives task/data from
source, processes it and passes result to sink

– Sink: receives completed tasks from slaves and
assembles into overall result. Notifies source to
assign next task to slave. Often same physical
CPU as source.

Useful with dynamic
load balancing to
assign large tasks
first and then back-fill

Load Balancing and Back-Fill

Tasks assigned by source
sequentially or at random to
slave nodes can give poor
load balancing unless all
tasks of comparable size.

Tasks assigned by source
according to size of task. By
assigning the largest ones first
get dynamic load balancing. Once
task completed, next largest
available is dispatched to back-fill
empty queue.

Task Farm Drawbacks
• One of the oldest models of parallelism

– Easiest with independent tasks as then similar to
functional decomposition

• Slaves may be idle whilst waiting assignment of
next task
– Can overcome this if each slave has a task buffer to

store next task before it is needed
• Can involve a large amount of communications

for a limited amount of calculation (if tasks are
small)
– And difficult to handle comms if do not know in

advance which slave will be working on which chunk
• Hence grid decomposition is more common …

Grid Decomposition
• Many HPC problems involve operating on

a very large dataset, arrays, etc.
– By dividing data into smaller grids can then

assign each to a separate set of processes
– May need special treatment to handle
“edges” of grids where different processes
overlap

– Enables very large problems to be tackled as
no single process has to contain everything

– Very flexible and powerful approach

Regular Grid Decomposition

• Global data grid is
divided into regular
sub-grids

• Each sub-grid is then
assigned to different
processes as its
local data block

• Best if can match
network topology to
decomposition

Data Blocks and Overlaps
• Each process is responsible for operating on

its own local data block
– May need data from neighbouring data blocks to

complete calculation
– Hence have effectively overlapping data blocks

Each process needs a
halo of data belonging
to other processes.

Width of halo depends
on the extent of data in
each direction needed

Halos and Updates
• To complete an update, each process may

have to interchange data with its neighbours
in order to keep all halos up-to-date.

• This is known as halo- or boundary-swapping
Thickness of overlap region
depends on granularity of
decomposition.

As the number of processes
increases, the granularity
becomes finer and so the
overlap increases which
limits gains of parallelism.

Boundary Swapping
• If the only data elements modified are purely

internal to a data block, then there is no need to
update neighbouring blocks.

• Otherwise, must:
1. Send off copies of any data elements to neighbours that

they might require, e.g. halo data
2. Receive copies of data from neighbours and put into

appropriate locations in data block
3. Update every element of local data
4. And then repeat 1-3 for next iteration
• But what about the outside edge of the global data

grid? Need some boundary conditions!

Boundary Conditions
• How do we treat the edges of the global data grid?
• Depending on the physics of the problem, can

choose static or periodic boundary conditions:

Static: the edges of the
global grid do not
correspond to a halo of
another element. Must
initialise these edges before
any update iterations and
treat as special cases.

Periodic: no edges, so 1D
becomes a ring, 2D
becomes a torus, etc. No
elements are special
cases.

Unbalanced Grids
• If the problem naturally maps onto a regular

data grid, and the amount of work required
is similar per process then all is well.

• But what if the amount of work per
processor varies?
– Execution time will then be dominated by

process with most work
– Spoils load balancing and hence is inefficient
– Hence better to ensure work is evenly

distributed rather than data

Ocean Modelling I
• Classic case study – divide spherical surface

into 3D-grid of latitude, longitude and depth
• Even distribution of data would be inefficient

as differing amounts of land (no work) and
depths of ocean (lots of work)

But we know in advance
where the land and deep
ocean parts are, and they
do not change during
simulation.

Hence can adjust
decomposition until similar
amount of work per process.

Ocean Modelling II
• Irregular data distribution:

– 0 represents land, other numbers show which
CPU holds the data

Example is for CPU #4: central area is local to #4 and is
not involved in any comms; inner halo shows data owned
by #4 and shared with others; outer halo shows data
owned by others

Performance Issues
• Clearly the irregular data distribution involves

more comms than the regular version
– Hence only worthwhile if saving in calculation

offsets the comms costs
• More difficult if distribution is not known in

advance or changes with time
• Might try a cyclic distribution to even out load

imbalance
– E.g. divide data geometrically into many more

areas than CPUs, so likely that each CPU
gets similar amounts of work. But this
destroys spatial locality of data and can be
inefficient. Hence need to be careful!

Model System
• Consider a model iterative problem with:

– Ngrid grid points
– c FLOPs per iteration for each grid point.

– P processors
– Each processor performs S FLOPs per second

– Interconnect: latency L, bandwidth B

– One comms operation per iteration
– S grid points on boundaries between partitions

– Size of each message is s bytes per grid point
– No overlap between comms and computation

Cost of Parallelism
• First approximation – assume comms are latency

dominated and neglect message size.
• Number of FLOPs wasted in latency is LS per iter
• Total number of FLOPs/CPU = cNgrid /P
• Equal number of flops used and wasted when

cNgrid /P = LS
• Critical value of P is hence Pmax = cNgrid /(LS)
• Speed increases with P only while P<Pmax
• Only use large number of CPUs for large problems

• Need large Ngrid and/or large c

Cost of Communications Analysis
• Enhance the model to include information on message

size.
• Assume a halo of width one grid point and no global

communication (halo swaps only)
• Total time spent in comms for Nm messages

tcomms = sS/B + NmL
– Hence best to pack all data (sS) into one long message for

each swap. Minimises latency effects.
– Now number of FLOPs wasted in comms is S*tcomms

• Global comms can cause global synchronisation which
is bad – cost depends on underlying network topology
– Best case is tsync = 2*L*log2(P) but even so, global

synchronisation will always kill parallelisation eventually

Simple Cost of Decomposition
• Number and size of messages (and hence

cost) depends on parallel decomposition
strategy
– E.g. ocean modelling example – irregular data

layout had larger halo area and hence more
comms

– Even for regular data there are important choices
to be made, e.g. 1D, 2D or 3D decomposition?

Simple Cost of Decomposition (II)
• Most efficient layout will minimise “surface area”

to “volume” ratio as data flows across surfaces
• Let l be “length” of data-grid in single 3D partition,

then total number of grid points is Ngrid = Pl 3 and
so in 3D:

Σ = 6l 2

Pmax =
χNgrid

τS
=

χNgridB

S 6l 2σ +BNmL()
PΣ
Ngrid

=
6
l
= 6Ngrid

−1
3P

1
3

6 square faces per
partition

Max number of
CPUs

ÞFigure of Merit

ÞFraction of grid points
involved in comms ~ P1/3

Simple Cost of Decomposition (III)
• 2D:
Ngrid = Pl

2Ngrid

1
3

Σ = 4lNgrid

1
3

Pmax =
χNgridB

S 4lNgrid

1
3σ +BNmL

"

#
$

%

&
'

PΣ
Ngrid

=
4
l
= 4Ngrid

−1
3P

1
2

4 rectangular faces involved in comms

=> FoM = fraction of grid
points involved in
comms ~ P1/2

Simple Cost of Decomposition Cont’d
• 1D:

Ngrid = PlNgrid

2
3

Σ = 2Ngrid

2
3

Pmax =
χNgridB

S 2Ngrid

2
3σ +BNmL

"

#
$

%

&
'

PΣ
Ngrid

=
2
l
= 2Ngrid

−1
3P

2 square faces involved in comms

=> FoM = fraction of grid
points involved in
comms ~ P

Performance

• 1D wins for small P, 3D wins for large P.
• NB this analysis is for 1D, 2D or 3D decomposition of 3D

problem. Need to redo analysis for a 1D or 2D problem!

Further Reading
• Chapter 5 of “Introduction to High

Performance Computing for Scientists
and Engineers”, Georg Hager and
Gerhard Wellein, CRC Press (2011).

• Edinburgh Parallel Computer Centre
tutorials at http://www.epcc.ac.uk

