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Overview

• Amdahl’s Law and Scaling
• Auto-Parallelising Compilers
• Dependencies
• Data Parallel
• Thread Parallel
• Message Passing



What is Parallel Computing?
• Conventional (serial)  computing has only a single 

CPU
– Hence there is a single logical sequence of operations 

within a program
– CPU executes instructions in order, only 1 operation in 

action at one time.
• Parallel computing uses many CPUs to produce 

the same result in less time, or to handle larger 
problem sizes.
– Need to be divide up problem into different tasks to be 

handled by different CPUs.
• How effective is it? What kind of speed up can we 

get? Amdahl’s Law gives some insights …



Amdahl’s Law
• Amdahl’s Law states:

– Any problem/program can be broken up into inherently 
serial (S) and potentially parallel parts (P)

– Then on a single CPU, the execution time is T(1)=S+P
– But on a parallel machine with N processors, the 

execution time is T(N)=S+P/N
• Hence by using by parallelism we can make the 

program take less time.
– The parallel speedup is given by T(1)/T(N) and so for 

ideal (S=0) scaling this should be equal to N
– The parallel efficiency is the parallel speedup/N i.e. 

parallel speedup per processor.



Amdahl’s Law Example
• Consider a simple code, which contains 20% 

sequential code (e.g. the problem set-up phase) 
and 80% parallel code (e.g. the solution phase)
– If on a given single CPU, the program takes 100 

minutes, then with a perfectly parallel implementation 
on a perfectly scaling 4-CPU system the problem 
would take 20+80/4=40 minutes, i.e. a parallel 
speedup of 2.5

• If we use more processors then we quickly find  
execution time is dominated by the serial part:
N 2 4 8 16 32 64 ¥

T(1)/T
(N)

1.666 2.5 3.333 4 4.444 4.706 5



The Bad News of Amdahl’s Law
• On the face of it, Amdahl’s Law 

suggests that there is no point trying to 
build a massively parallel computers
– When first discussed in 1967, surveys of 

typical codes suggested parallelism of 60-
95% max

– But programmers of the day were not 
thinking parallel – need different strategies 
when coding in parallel and hence can get 
this up to 99.9% or better with effort for 
some problems

– And neglected the effect of problem scaling 
– Gustafson’s Law!



Gustafson’s Law
• “If the size of most problems is scaled up 

sufficiently, then any required efficiency can be 
achieved on any number of processors” (1987)
– For example the serial part of a program (e.g. I/O) 

might scale linearly with the size of the problem 
whereas the parallel part (e.g. matrix multiplication or 
diagonalisation)  might scale as square or cube of 
problem size

• Hence by making the problem bigger, you get a 
better parallel potential
– Hence best use of parallel computers is to solve 
“bigger” problems, not “same size” problems in less 
time!



Scaling in Practice: P/S=49



Real-Life Scaling
• Amdahl’s Law is only valid in ideal world

– With P/S=49 it predicts a useful speedup with up to 50 
CPUs

– In real life get a maximum speedup with 25 and then 
gets slower! Why?

• Have neglected the cost of parallelisation –
communication between processors:
– The ideal time taken to transmit a message between 

processors is time= latency + size/bandwidth
– But size of typical message ~ 1/N 
– Hence as N increases, message size decreases until 

size<latency*bandwidth whereupon latency dominates.
– i.e. communications cost of extra processors outweighs 

computational gain.



Real-Life Amdahl’s Law
• Hence, for any given code and parallel 

computer, there will be an optimum number of 
processors to use on any particular size 
problem.

• Hence need a modified form of Amdahl’s Law:
T(N)=S+P/N+CBW+N*CL

– where CBW is the cost of sending messages between 
processors due to the finite bandwidth,

– and CL is the cost due to the latency of each 
message.

• Hence the importance of the interconnect 
technology as discussed in earlier lectures



Auto-Parallelising Compilers
• Some compilers have switches which claim to 

auto-parallelise your code – job done?
– As well as recognise instruction-level parallelism 

(pipelined and superscalar), compiler might also 
be able to recognise certain loops and do thread-
level parallelism. Limited!

– Normally only applicable to SMP paradigm.
– OK as long as explicit enough for compiler to spot 

and no dependencies, e.g.

do i=1,16000
a(i)=b(i)*two_pi

end do

No dependencies so loop can be 
computed in any order, parallelised 
and/or vectorised.



Dependencies
• If event A must be performed before event B then B

is dependent upon A
• Dependencies inhibit auto-parallelisation
– Data dependency is due to memory operations or 

calculation results
– Control dependency is due to switches and branches
– If these can be eliminated (by code-rearrangement) then 

potential for parallelism is increased.
– Compiler instruction scheduling can do a lot of this for 

you, but if you write clear code then it helps a lot!
– Most important in loops – a well-designed loop can 

expose a lot of parallelism, but one unresolvable 
dependency and it must all execute in serial! Costly …

– Hence need to understand sources of dependencies and 
eliminate as much as possible to help the compiler!



Types of Dependency

Flow dependency

a=x+y

b=a+c

d=b*2

Anti-dependency

a=2

x=a+1

a=5

Output dependency

a=2

x=a+1

a=5

• Any dependency must be one of these three kinds
• Arrow starts at source of dependency and ends at 

statement that must be delayed by the 
dependency
– Second statement cannot start until first has completed



Loop Flow Dependency
do i=2,N

a(i)=a(i-1)+b(i)
end do

Unroll 
twice

do i=2,N,3
a(i)  =a(i-1)+b(i)
a(i+1)=a(i)  +b(i+1)
a(i+2)=a(i+1)+b(i+2)

end do

• By mentally unrolling the loop see that have a 
flow dependency, where every iteration 
depends on previous one (backwards 
dependency)
– e.g. solving equations by Gaussian elimination and 

back-substitution
– Sometimes impossible to fix
– Can be a function of the way the loop is written, e.g.

do i=2,N,2
a(i)  =a(i-1)+b(i)
a(i+1)=a(i-1)+b(i)+b(i+1)

end do

a(i)

Manually rewritten to 
expose more parallelism –
slower on serial but might 
be useful on SMP?



Loop Anti-dependency
do i=1,N

a(i)=b(i)  *e
b(i)=a(i+2)*c

end do

do i=1,N,3
a(i)  =b(i)  *e
a(i+1)=b(i+1)*e
a(i+2)=b(i+2)*e

b(i)  =a(i+2)*c
b(i+1)=a(i+3)*c
b(i+2)=a(i+4)*c

end do

Unroll 
twice

Wrong! b(i) supposed 
to use “old” and not 
“new” value of a(i+2)!
– This is an example of an anti-dependency with a 

dependency distance of 2 – must make sure 
that the “later” instruction which uses a(i+2)
completes before the “earlier” one redefines it.

– If a and b arrays are small then would be better 
to either save a copy of a or store all of b in a 
temporary array until loop completes.



Loop Output Dependency
do i=1,N

a(i)=b(i)  *e
b(i)=a(i+2)*c

end do

Unroll 
twice do i=1,N,3

a(i)  =b(i)  *e
b(i)  =a(i+2)*c
a(i+1)=b(i+1)*e
b(i+1)=a(i+3)*c
a(i+2)=b(i+2)*e
b(i+2)=a(i+4)*c

end do

– This is an alternative unrolling of the same loop 
which now has an output dependency of 
distance 2.

– Instructions in red cannot be performed at the 
same time.

– Can usually eliminate output dependency by 
adding temporary variables



Ambiguous References
• What if dependency is ambiguous?

– E.g. if dependency distance is given by a variable ?
k=0Þ dependency within loop
k<0Þ loop flow dependency
k>0Þ loop anti-dependency

– If the value of k is unknown then know nothing about 
the dependencies that may be present! This is an 
example of an ambiguous reference. Hence compiler 
has to treat this loop as serial

– Also arises in array lookups, pointers, or (potential) 
memory aliasing, etc so AVOID these in HPC 
programs!

do i=1,N
a(i)=b(i)*e
b(i)=a(i+k)*c

end do

do i=1,N
A(k(i)) = a(k(i)) + B(j(i))*c

end do



Taking Control of Parallel Computing
• What if we want more control than given by an 

auto-parallelising compiler?
– E.g. If want a solution that will scale to more 

processors?
• Then need to start thinking in parallel

– Need to consider devising parallel algorithms and 
strategies, e.g. problem decomposition

• Different strategies will be appropriate for different 
problems and different machine architectures
– Want to keep all CPUs busy (load balancing) whilst 

minimising communications in order to get maximum 
parallel efficiency



Parallel Computer Architectures
Flynn’s Taxonomy:
• Single Instruction Single Data (SISD)

– i.e. a conventional serial computer. 
– The CPU executes one instruction on one piece of data at each step.

• Single Instruction Multiple Data (SIMD)
– has the same instruction operating on different chunks of data, e.g. 

image processing (might have hardware support e.g. SSE 
instructions)

– Vector architectures and multi-threaded CPUs. Can be programmed 
easily. Great with data-parallel languages e.g. HPF.

• Multiple Instruction Multiple Data (MIMD)
– has several independent CPUs each (maybe) performing 

independent instructions, (maybe) operating on independent data.
– Very flexible architecture, with most complex programming models. 
– Can be further divided according to memory model: shared or 

distributed Memory. Shared memory best programmed using threads
(e.g. OpenMP) or message passing (e.g. MPI), distributed memory 
with message passing.



Data Parallel Programming
• Originates from vector computer days

– Shared memory model
• Programming language has parallel intrinsic 

functions (e.g. HPF) that operates on data that is 
shared between all processors 

• High level abstraction
– data distribution and communication handled by 

compiler so easier to use, debug and port
– BUT less flexible, limited applicability, harder to get 

good performance, very reliant on good compilers
– Big hope of the mid-90’s but seems to have died –

brief resurgence in early 2000s when the Earth 
Simulator used HPF to shock everyone with very 
high %peak achieved …



Thread Parallel
• A popular paradigm for programming shared-

memory machines is to use a conventional 
language with additional compiler directives
– i.e. source lines that look like comments but can be 

understood by aware compilers
– e.g. OpenMP with C or F90 – started off as SGI 

proprietary and then made open standard
• Threads add to existing process not separate forks

– Share a common memory space for code & global data
– Each thread has a private area for own local variables
– Need to tell compiler which variables to share and which 

are private when starting new threads



Message Passing
• First open standard was PVM (parallel virtual 

machine) for distributed memory machines
– Designed for heterogeneous system – now obsolete

• Superseded by MPI (message passing interface)
– Designed originally for homogeneous system (but 

also heterogeneous) by many of the original authors 
of PVM – hence improved and simplified w.r.t. PVM

• Both implemented as calls in conventional 
languages (Fortran or C) to library so highly 
portable

• Very flexible, powerful and efficient
– But requires programmer to take a lot of responsibility
– See later lectures for details …



Thread Parallel with OpenMP
• Directives to specify parallel start and end

– e.g. do loops in parallel
– Can also specify critical regions (e.g. for I/O in serial)

• Need to handle loop dependencies explicitly
• Can specify which variables are shared (all threads have 

same value and same memory location) and which are 
private (each thread gets own copy)
– Can specify how data is copied to privates at start/end of parallel 

sections – firstprivate, lastprivate, reduction, etc.
• Can specify static scheduling or dynamic scheduling

– Static: fixed number of loop iterations per thread
– Dynamic: each thread assign given size chunk of data and is 

assigned new chunk upon completion of task



Starting OpenMP 
OpenMP functionality requires interfaces to library routines.

#include <omp.h> C/C++

use omp_lib

use omp_lib_kinds

Fortran – have one or two 
use statements before 
the implicit none

Compile with:

GNU:  –fopenmp for gcc/gfortran

PGI/Pathscale: –mp

Intel: –openmp



Controlling OpenMP
Behaviour of OpenMP depends on environment variables set 
on the command line, e.g.
[mijp1@will0w]$ export OMP_NUM_THREADS=2 Bash shell
OMP_NUM_THREADS sets the number of threads to use (e.g. 
set to number of CPUs or hyperthreads)

Can also specify nested parallelism using 1:4:2 syntax etc

Other useful OMP environment variables include:

OMP_DYNAMIC=TRUE/FALSE determines if the programmer is 
able to change the number of threads at run time.

OMP_NESTED=TRUE/FALSE if want to serialize inner 
parallelism

Plus some extra specialized OMP environment variables …



OpenMP Functions
integer :: ncpu, nthreads
logical :: dynamic

ncpu     = omp_get_num_procs()
dynamic  = omp_get_dynamic()
nthreads = omp_get_num_threads()

Can be set as well as get

• omp_get_num_procs returns #cores available.

• Reports 12 on a hyperthreaded hex-core i7

• omp_get_num_threads returns #threads in use

• Default values of num_threads and dynamic are taken 
from the appropriate environment variables.



Explicitly Parallel Regions
!$omp parallel private(my_thread)

my_thread = omp_get_thread_num()

print *,'Hello world from thread number',my_thread

!$omp end parallel

#pragma omp parallel private(my_thread)

{

my_thread = omp_get_thread_num();

printf(“Hello world from thread number %f”,my_thread);

}

Code within the region will be executed by all threads. Note that 
threads are numbered from zero.



OpenMP Example I (Fortran)
! vector addition
sum=0
!$OMP parallel do private(i) shared(a,b) reduction(+:sum)
do i=1,1000

sum = sum + a(i) + b(i)
end do
!$OMP end parallel do

• !$OMP is sentinel that directs compiler to OpenMP 
• parallel do defines start of parallel region where threads 

created from original master thread begin
• end parallel do defines end of parallel region where all 

threads apart from master thread suspended
• private(i) so each thread can work with its own values of 

loop index but shared(a,b) so all threads read same 
areas of memory

• reduction(+:sum)to combine the separate values at the 
end of the parallel do using ‘+’with original value



OpenMP Example I (C)
! vector addition
sum = 0;
#pragma omp parallel for private(i) shared(a,b)reduction(+:sum)
for (i=0;i<1000;i++){

sum += a[i] + b[i];
}

• #pragma omp directs compiler to OpenMP 
• parallel for defines start of parallel region where 

threads created from original master thread begin
• No ‘end for’ needed as not necessary in C style.
• private(i) so each thread can work with its own values of 

loop index but shared(a,b) so all threads read same 
areas of memory

• reduction(+:sum) to combine the separate values at the 
end of the parallel do using ‘+’with original value



OpenMP parallel loops
• Simplest way to get parallel speedup
• Restrictions on the loop:

– OpenMP must know in advance #iterations
– Hence cannot jump out of loop with break/exit 

commands but can use cycle/continue
– Loop index is automatically private and not 

allowed to be modified inside loop
– Loop index update must be a constant
– Not a ‘while’ loop!

• Can change the division of iterations to 
threads by changing the schedule ...



OpenMP Example II
! MonteCarlo update
!$OMP parallel do private(i,ranval) schedule(dynamic)
do i=1,1000

ranval=random_number(i)
call MC_update(ranval)

end do
!$OMP end parallel do

• private(i,ranval) so each thread can work 
with its own values of loop index and random 
number and nothing is shared

• schedule(dynamic)as each iteration will take 
variable amounts of time to get load balancing

Static scheduling time

thread

1 2 3 4 5 … 250
251 252 … 500
501 502 … 750

751 752 … 1000

Dynamic scheduling time

thread

1

3
4

5
2

6
7

8



OpenMP Example III (Fortran)
! vector addition
sum=0
N=25
!$OMP parallel do default(none) private(i) &
!$OMP & shared(a,b) reduction(+:sum) if(N>100)
do i=1,N

sum = sum + a(i) + b(i)
end do
!$OMP end parallel do

• default(none)requires all variables to be 
explicitly stated as private or shared etc

• !$OMP & is a F90 continuation line to split an over-
long line (essential if >132 chars)

• if(logical)parallelizes following construct only if 
logical=true else code is serialised.



OpenMP Example III (C)
! vector addition
sum=0;
N=25;
#pragma omp parallel for default(none) private(i) \

shared(a,b) reduction(+:sum) if(N>100)
{

for (i=1;i<=N;i++)
sum += a(i) + b(i);

}

• default(none)requires all variables to be 
explicitly stated as private or shared etc

• #pragma ihandled by preprocessor so just use \ to 
split line as many times as necessary

• if(logical)parallelizes following construct only if 
logical=true else code is serialised.



OpenMP Example IV
!$OMP PARALLEL default(none) private(i,me) shared(A,B)
!$ me=omp_get_thread_num()

!$OMP DO
do i=1,N

A(i)=0
B(i)=10*i

end do
!$OMP END DO

!$OMP DO
do i=1,N

A(i)=A(i)+B(i)
end do

!$OMP END DO

!$ print *,'thread ',me,'A(N)=',A(N)

!$OMP END PARALLEL

NB DO not PARALLEL DO
as we want to share work 
over the team of threads 
created by outer 
PARALLEL region

• !$ means only compile if using OMP
• !$OMP DO as workshare threads created by outer 
PARALLEL and not make a new team of threads



More OpenMP
• Warning – there can be issues with timing

– e.g. F95 CPU_TIME returns the total CPU time 
not the time per thread

• Best to use OpenMP routines
– e.g. OMP_GET_WTIME function gives time per 

thread, with a timing resolution given by 
OMP_GET_WTICK function

• Much more functionality e.g.
– Parallel sections construct, workshare 

construct, teams, tasks, accelerator support, 
GPU support, SIMD etc ...



Further Reading
• Chapter 6 of “Introduction to High 

Performance Computing for Scientists and 
Engineers”, Georg Hager and Gerhard 
Wellein, CRC Press (2011).

• Lots of tutorials and guides at 
http://openmp.org

• Nice tutorial/guide at 
https://computing.llnl.gov/tutorials/openMP 


