THE UNIVERSITYW

High Performance Computing
- Introduction to Parallel
Programming & OpenMP

Prof Matt Probert
http://www-users.york.ac.uk/~mijp1

Overview

Amdahl’ s Law and Scaling
Auto-Parallelising Compilers
Dependencies

Data Paralle
Thread Parallel
Message Passing

What is Parallel Computing?

» Conventional (serial) computing has only a single
CPU

— Hence there is a single logical sequence of operations
within a program

— CPU executes instructions in order, only 1 operation in
action at one time.

» Parallel computing uses many CPUs to produce
the same result in less time, or to handle larger
problem sizes.

— Need to be divide up problem into different tasks to be
handled by different CPUs.

* How effective is it? What kind of speed up can we
get? Amdahl’ s Law gives some insights ...

Amdahl’ s Law

« Amdahl’ s Law states:

— Any problem/program can be broken up into inherently
serial (S) and potentially parallel parts (P)

— Then on a single CPU, the execution time is T(1)=S+P

— But on a parallel machine with N processors, the
execution time is T(N)=S+P/N
* Hence by using by parallelism we can make the
program take less time.

— The parallel speedup is given by T(1)/T(N) and so for
iIdeal (S=0) scaling this should be equal to N

— The parallel efficiency is the parallel speedup/N i.e.
parallel speedup per processor.

» Consider a simple code, which contains 20%

Amdahl’ s Law Example

sequential code (e.g. the problem set-up phase)
and 80% parallel code (e.g. the solution phase)

— If on a given single CPU, the program takes 100

minutes, then with a perfectly parallel implementation

on a perfectly scaling 4-CPU system the problem

would take 20+80/4=40 minutes, i.e. a parallel
speedup of 2.5
* |If we use more processors then we quickly find

execution time is dominated by the serial part:

N

2

4

8

16

32

64

o0

T(1)/T
(N)

1.666

2.5

3.333

4

4.444

4.706

5

The Bad News of Amdahl’ s Law

» On the face of it, Amdahl’ s Law
suggests that there is no point trying to
build a massively parallel computers
— When first discussed in 1967, surveys of

typical codes suggested parallelism of 60-
95% max

— But programmers of the day were not
thinking parallel — need different strategies
when coding in parallel and hence can get
this up to 99.9% or better with effort for
some problems

— And neglected the effect of problem scaling
— Gustafson’ s Law!

Gustafson’ s Law

 “If the size of most problems is scaled up
sufficiently, then any required efficiency can be
achieved on any number of processors” (1987)

— For example the serial part of a program (e.g. 1/O)
might scale linearly with the size of the problem
whereas the parallel part (e.g. matrix multiplication or

diagonalisation) might scale as square or cube of
problem size

* Hence by making the problem bigger, you get a
better parallel potential

— Hence best use of parallel computers is to solve

“bigger” problems, not “same size” problems in less
time!

speedup

Scallng N Practlce P/S 49

50
— Ideal(n)
45 _
............ Real(n)
40 _
35 -
30 _
25 -
20 _
15 _
10
51 A~ |
O . l : : L 1 1 1 1 1
5 10 15 20 25 30 35 40 45 30

number of processors (n)

Real-Life Scaling

« Amdahl’ s Law is only valid in ideal world

— With P/S=49 it predicts a useful speedup with up to 50
CPUs

— In real life get a maximum speedup with 25 and then
gets slower! Why?

* Have neglected the cost of parallelisation —
communication between processors:

— The ideal time taken to transmit a message between
processors is time= latency + size/bandwidth

— But size of typical message ~ 1/N

— Hence as N increases, message size decreases until
size<latency*bandwidth whereupon latency dominates.

— l.e. communications cost of extra processors outweighs
computational gain.

Real-Life Amdahl’ s Law

* Hence, for any given code and parallel
computer, there will be an optimum number of
processors to use on any particular size
problem.

 Hence need a modified form of Amdahl’ s Law:
T(N)=S+P/N+CBw+N*CL

— where Cgy is the cost of sending messages between
processors due to the finite bandwidth,

— and C, is the cost due to the latency of each
message.

* Hence the importance of the interconnect
technology as discussed in earlier lectures

Auto-Parallelising Compilers

 Some compilers have switches which claim to

auto-parallelise your code — job done?
— As well as recognise instruction-level parallelism
(pipelined and superscalar), compiler might also

be able to recognise certain loops and do thread-
level parallelism. Limited!

— Normally only applicable to SMP paradigm.

— OK as long as explicit enough for compiler to spot
and no dependencies, e.q.

do i=1,16000 No depend_enmes so loop can t_)e
a(i)=b (i) *two pi computed in any order, parallelised
end do and/or vectorised.

Dependencies

 |If event A must be performed before event B then B
Is dependent upon A

» Dependencies inhibit auto-parallelisation

— Data dependency is due to memory operations or
calculation results

— Control dependency is due to switches and branches

— If these can be eliminated (by code-rearrangement) then
potential for parallelism is increased.

— Compiler instruction scheduling can do a lot of this for
you, but if you write clear code then it helps a lot!

— Most important in loops — a well-designed loop can
expose a lot of parallelism, but one unresolvable
dependency and it must all execute in serial! Costly ...

— Hence need to understand sources of dependencies and
eliminate as much as possible to help the compiler!

Types of Dependency

a=x+y a=2 a=2
b=a+c x=a+1 #=a+1
d=b*2 éﬁ; a=5

Flow dependency Anti-dependency Output dependency

* Any dependency must be one of these three kinds

* Arrow starts at source of dependency and ends at
statement that must be delayed by the
dependency

— Second statement cannot start until first has completed

Loop Flow Dependency

do i=2,N
a(i)=a(i-1)+b (i)

Unroll
twice

end do

do i=2,N,3
a(i) =a(i-1)+b (1)
a(i+l)=a(i) +b(1i+1)
a(i+2)=a(i+l)+b (1+2)
end do

* By mentally unrolling the loop see that have a
flow dependency, where every iteration
depends on previous one (backwards

dependency)

— e.g. solving equations by Gaussian elimination and
back-substitution

— Sometimes impossible to fix
— Can be a function of the way the loop is written, e.g.

do i=2,N,?2
a(i) =a(i-1)+b (i)

a(i+l)=a(i-1)+b(i)+b(i+1)

N Y,
end do <

a(1i)

Manually rewritten to
expose more parallelism —
slower on serial but might
be useful on SMP?

Loop Anti-dependency

do i=1,N gﬁgél do i=1,N,3
a(i)=b (i) *e | a(i) =b(i) *e
b(i)=a(i+2) *c " a(i+l)=b(i+l) *e
end do a(i+2)=b(1i+2) *e
] - b(1i) =a (i+2) *c
Wrong‘-‘ b (”1) supposed// b (1+1)oa (113 *e
to use "old” and not b (i+2)=a (i+4) *c

“new” value of a (1+2) ! end do

— This is an example of an anti-dependency with a

dependency distance of 2 — must make sure
that the “later” instruction which uses a (i+2)

completes before the “earlier” one redefines it.

— If a and b arrays are small then would be better
to either save a copy of a or store all of b in a

temporary array until loop completes.

Loop Output Dependency

do i=1,N
a(i)=b (i) *e
b(i)=a(i+2) *c
end do

Unroll
twice

— This is an alternative unro

do i=1,N,3
a(i) =b(i) *e
b(i) =a(i+2)*c

a(i+l)=b(i+1l) *e

b(i+l)=a(i+3) *c

a(i+2)=b (i+2) *e

b(i+2)=a(i+4) *c
end do

ling of the same loop

which now has an output dependency of

distance 2.

— Instructions in red cannot be performed at the

same time.

— Can usually eliminate output dependency by
adding temporary variables

Ambiguous References

« What if dependency is ambiguous?
— E.g. if dependency distance is given by a variable ?

do i=1 N k=0 = dependency within loop
g&;igﬁ;‘f*c k<0 = loop flow dependency
end do k>0 = loop anti-dependency

— If the value of k is unknown then know nothing about

the dependencies that may be present! This is an
example of an ambiguous reference. Hence compiler

has to treat this loop as serial

— Also arises in array lookups, pointers, or (potential)
memory aliasing, etc so AVOID these in HPC

programs! do i=1,N
A(k(i)) = a(k(i)) + B(j(i))*c
end do

Taking Control of Parallel Computing

* What if we want more control than given by an
auto-parallelising compiler?

— E.g. If want a solution that will scale to more
processors?

* Then need to start thinking in parallel

— Need to consider devising parallel algorithms and
strategies, e.g. problem decomposition
 Different strategies will be appropriate for different
problems and different machine architectures

— Want to keep all CPUs busy (load balancing) whilst

minimising communications in order to get maximum
parallel efficiency

Parallel Computer Architectures

Flynn’ s Taxonomy:
« Single Instruction Single Data (SISD)

— l.e. a conventional serial computer.
— The CPU executes one instruction on one piece of data at each step.

« Single Instruction Multiple Data (SIMD)

— has the same instruction operating on different chunks of data, e.qg.
image processing (might have hardware support e.g. SSE
instructions)

— Vector architectures and multi-threaded CPUs. Can be programmed
easily. Great with data-parallel languages e.g. HPF.

* Multiple Instruction Multiple Data (MIMD)

— has several independent CPUs each (maybe) performing
independent instructions, (maybe) operating on independent data.

— Very flexible architecture, with most complex programming models.

— Can be further divided according to memory model: shared or
distributed Memory. Shared memory best programmed using threads
(e.g. OpenMP) or message passing (e.g. MPI), distributed memory
with message passing.

Data Parallel Programming

 Originates from vector computer days
— Shared memory model

* Programming language has parallel intrinsic
functions (e.g. HPF) that operates on data that is
shared between all processors

* High level abstraction

— data distribution and communication handled by
compiler so easier to use, debug and port

— BUT less flexible, limited applicability, harder to get
good performance, very reliant on good compilers

— Big hope of the mid-90" s but seems to have died —
brief resurgence in early 2000s when the Earth
Simulator used HPF to shock everyone with very
high %peak achieved ...

Thread Parallel

* A popular paradigm for programming shared-
memory machines is to use a conventional

language with additional compiler directives

— |.e. source lines that look like comments but can be
understood by aware compilers

— e.g. OpenMP with C or F90 — started off as SGl
proprietary and then made open standard

* Threads add to existing process not separate forks
— Share a common memory space for code & global data
— Each thread has a private area for own local variables

— Need to tell compiler which variables to share and which
are private when starting new threads

Message Passing

First open standard was PVM (parallel virtual
machine) for distributed memory machines

— Designed for heterogeneous system — now obsolete

Superseded by MPI (message passing interface)

— Designed originally for homogeneous system (but
also heterogeneous) by many of the original authors
of PVM — hence improved and simplified w.r.t. PVM

Both implemented as calls in conventional
languages (Fortran or C) to library so highly
portable

Very flexible, powerful and efficient

— But requires programmer to take a lot of responsibility
— See later lectures for details ...

Thread Parallel with OpenMP

Directives to specify parallel start and end
— e.g. do loops in parallel
— Can also specify critical regions (e.g. for 1/O in serial)

Need to handle loop dependencies explicitly

Can specify which variables are shared (all threads have

same value and same memory location) and which are

private (each thread gets own copy)

— Can specify how data is copied to privates at start/end of parallel
sections — firstprivate, lastprivate, reduction, etc.

Can specify static scheduling or dynamic scheduling

— Static: fixed number of loop iterations per thread

— Dynamic: each thread assign given size chunk of data and is
assigned new chunk upon completion of task

Starting OpenMP

OpenMP functionality requires interfaces to library routines.

#include <omp.h> C/C++

Fortran — have one or two
use statements before

the implicit none

use omp lib

use omp lib kinds

Compile with:
GNU: -fopenmp for gcc/gfortran
PGIl/Pathscale: —-mp

Intel: —openmp

Controlling OpenMP

Behaviour of OpenMP depends on environment variables set
on the command line, e.g.

[mijpl@willOw]$ export OMP NUM THREADS=2 Bash shell

OMP NUM THREADS sets the number of threads to use (e.g.
set to number of CPUs or hyperthreads)

Can also specify nested parallelism using 1:4:2 syntax etc

Other useful OMP environment variables include:

OMP DYNAMIC=TRUE/FALSE determines if the programmer is
able to change the number of threads at run time.

OMP NESTED=TRUE/FALSE if want to serialize inner
parallelism

Plus some extra specialized OMP environment variables ...

OpenMP Functions

integer :: ncpu, nthreads
logical :: dynamic
ncpu omp get num procs()

dynamic
nthreads

omp get dynamic()
omp get num threads ()

> Can be set as well as get

_

 omp get num procs returns #cores available.

* Reports 12 on a hyperthreaded hex-core i/

« omp get num threads returns #threads in use

 Default values of num threads and dynamic are taken
from the appropriate environment variables.

Explicitly Parallel Regions

'Somp parallel private (my thread)

my thread = omp get thread num()

print *, 'Hello world from thread number' my thread
!Somp end parallel

#pragma omp parallel private (my thread)
{

my thread = omp get thread num() ;

printf (“Hello world from thread number %f ,my thread);

Code within the region will be executed by all threads. Note that
threads are numbered from zero.

OpenMP Example | (Fortran)

! vector addition
sum=0
1SOMP parallel do private(i) shared(a,b) reduction (+:sum)
do i=1,1000
sum = sum + a(i) + b (i)
end do
ISOMP end parallel do

« !'SOMP is sentinel that directs compiler to OpenMP

« parallel do defines start of parallel region where threads
created from original master thread begin

« end parallel do defines end of parallel region where all
threads apart from master thread suspended
« private (1) so each thread can work with its own values of

loop index but shared (a,b) so all threads read same
areas of memory

« reduction (+:sum)to combine the separate values at the
end of the parallel do using ‘+ with original value

OpenMP Example | (C)

! vector addition
sum = 0;
#pragma omp parallel for private (i) shared(a,b)reduction (+:sum)
for (i=0;i<1000;i++) {
sum += a[i] + b[i];
}

 #pragma omp directs compiler to OpenMP

« parallel for defines start of parallel region where
threads created from original master thread begin
 No ‘end for needed as not necessary in C style.

« private (1) so each thread can work with its own values of
loop index but shared (a,b) so all threads read same

areas of memory

« reduction (+:sum) to combine the separate values at the
end of the parallel do using ‘+ with original value

OpenMP parallel loops

« Simplest way to get parallel speedup

* Restrictions on the loop:
— OpenMP must know in advance #iterations

— Hence cannot jump out of loop with break/exit
commands but can use cycle/continue

— Loop index Iis automatically private and not
allowed to be modified inside loop

— Loop index update must be a constant
— Not a ‘while’ loop!

» Can change the division of iterations to
threads by changing the schedule ...

OpenMP Example |

! MonteCarlo update
1SOMP parallel do private(i,ranval) schedule (dynamic)
do i=1,1000
ranval=random number (i)
call MC update (ranval)
end do
1SOMP end parallel do

« private (i, ranval) so each thread can work

with its own values of loop index and random
number and nothing is shared

 schedule (dynamic) as each iteration will take
variable amounts of time to get load balancing

thread thread

Static scheduling time Dynamic scheduﬁng time

OpenMP Example Il (Fortran)

! vector addition
sum=0
N=25
ISOMP parallel do default(none) private(i) &
ISOMP & shared(a,b) reduction(+:sum) if (N>100)
do i=1,N
sum = sum + a(i) + b (i)
end do
ISOMP end parallel do

« default (none)requires all variables to be
explicitly stated as private or shared etc

« !SOMP & Is a F90 continuation line to split an over-
long line (essential if >132 chars)

« 1f (logical) parallelizes following construct only if
logical=true else code is serialised.

OpenMP Example |l (C)

! vector addition

sum=0;

N=25;

#pragma omp parallel for default (none) private(i) \
shared(a,b) reduction(+:sum) if (N>100)

{

for (i=1l;i<=N;i++)
sum += a(i) + b(i);
}

« default (none)requires all variables to be
explicitly stated as private or shared etc

« #pragma Ihandled by preprocessor so just use \ to
split line as many times as necessary

« 1f (logical) parallelizes following construct only if
logical=true else code is serialised.

OpenMP Example |V

!SOMP PARALLEL default (none) private(i,me) shared(A,B)
'$ me=omp get thread num()

!$OMP_DO
R NB DO not PARALLEL DO
o) T as we want to share work
| ¥OME END DO over the team of threads
!$3§P12(1),N created by outer

A(i)=A(1i)+B (1 .
P LBEREIIBIE) pARA| | EL region
1SOMP END DO

!$ print *, 'thread ',me,'A(N)=',6A(N)

'SOMP END PARALLEL

« 'S means only compile if using OMP

« !SOMP DO as workshare threads created by outer
PARALLEL and not make a new team of threads

More OpenMP

* Warning — there can be issues with timing

—e.g. F95 CPU TIME returns the total CPU time
not the time per thread

* Best to use OpenMP routines

—e.g. OMP GET WTIME function gives time per

thread, with a timing resolution given by
OMP GET WTICK function

* Much more functionality e.qg.

— Parallel sections construct, workshare

construct, teams, tasks, accelerator support,
GPU support, SIMD etc ...

Further Reading

» Chapter 6 of “Introduction to High
Performance Computing for Scientists and

Engineers”, Georg Hager and Gerhard
Wellein, CRC Press (2011).

 Lots of tutorials and guides at
http://openmp.org

* Nice tutorial/guide at
https://computing.linl.gov/tutorials/openMP

