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Overview

• Performance potential
• Compiler optimizations
• Manual optimizations
• Case study – matrix multiplication



Roofline Model
• A simple model to provide performance 

estimates
– What determines the maximum FP available?
– Is a code compute-bound or memory-bound?

• Constraints are:
– Peak performance π (GFLOP/s)
– Memory bandwidth β (GB/s)

• Inputs are:
– Arithmetic intensity I (FLOPS/B)

• Performance P=min(π,β*I)



Visualization

Picture from https://en.wikipedia.org/wiki/Roofline_model



Comments on Roofline

• Ridge is where π=β*I 
• An important hardware metric is the 

machine balance: B=π/β
• The algorithmic intensity I is also known as 

the “memory-code balance” : Bc

• If Bc<B then have memory-bound algorithm



Simple Roofline Example
double s, a[];
for (i=0, i<N, i++){

s = s+a[i]*a[i]}

• Peak CPU performance π = 4 GF/s
• Memory bandwidth         β = 10 GB/s

• I = 2F/8B = 0.25

• Memory bound!
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Extended Roofline Models (I)

Bandwidth ceilings



Extended Roofline Models (II)

In-core ceilings



Extended Roofline Models (III)

Locality walls due to 
cache inefficiency



Optimizing Compilers
• Most modern compilers are good at basic code 

optimisations (but not memory opts) 
• Usually best to let the compiler do the optimisation

– Avoid machine-specific coding – a tweak that improves 
performance on one machine may degrade performance 
on a different architecture

– Compilers break code less often than people!
• Not all optimisations are beneficial!

– Might break code – more so if not strictly standards 
compliant

– Might reduce accuracy of answers – floating-point 
reordering ...



Aliasing
• The compiler has to make assumptions about 

aliasing
– Can one or more variables occupy same space in 

memory?
– Common blocks/equivalence in F77
– Pointers in C, C++, F90

• Aliasing prevents many optimisations
– A fundamental reason why Fortran often optimises 

better than C as Fortran codes typically have much less 
reliance on pointers

– Can sometimes set a compiler flag (e.g. –no_alias in 
ifort/icc) to tell compiler that there is no aliasing present

–fstrict-aliasing in gcc/gfortran is not the same.



Helping the Compiler
• Write clear and simple code

– Easier for compiler to spot optimisation 
potential

– Use flags and directives to give compiler hints
• But what if that is not enough?

– Need to resort to code modification
– Need some idea as to what code modification 

the compiler would like to do but cannot
– Get compiler to produce an optimisation report

• Intel has –opt-report and GNU has –fopt-
info-note



Local vs Global variables
• Compiler analysis is more effective with local 

variables
– Has to make worst-case assumptions about global 

variables – they might be modified by any called 
procedure

– Hence always use local variables where possible
• NB Automatic variables are allocated on the stack – low 

cost but limited amount of space
• Dynamic allocation (F90 allocate, C malloc, C++ new) 

goes on heap – usually much larger 
– In C, use file scope globals in preference to externals



Key Optimizations
• MEMORY is most often the bottleneck in modern 

computers
– Very obvious in roofline models
– Both bandwidth (MB/sec) and latency (time to read a 

single value)
– Need to optimise memory access patterns

• memory structures
– Need to optimise cache usage

• loop structures
– Need for good code design by programmer – not 

something the compiler can do!



Spatial Locality
• An important factor in cache success: the 

assumption that nearby addresses tend 
to be accessed close together in time
– If y(i) is read now then it is very likely that 
y(i+1) will be read soon

– Hence cache controllers read whole lines of 
memory not single bytes

– Hence best if move through memory in 
sequential order – implications for array 
indices – Fortran stores arrays in column 
order, C/C++ in row order



Multi-Dimensional Arrays

• In FORTRAN, A(m,n) is stored as

• But in C, A[m][n] is stored as

• And want stride-1 access through arrays 
for spatial locality, hence THIS IS AWFUL:

A(1,1) A(2,1) A(3,1) A(m,1) A(1,2)

A[0][0] A[0][1] A[0][2] A[0][n] A[1][0]

do i=1,n
do j=1,m
A(i,j)=B(i,j)+C(i,j)

end do
end do

This is accessing memory with stride-m, 
hence unless entire A,B,C fit into cache this 
will run very slowly.

Worse still, can get cache thrashing if each 
line read into cache replaces the existing 
one – hence beware 2n array sizes.

MUST reorder these loops in Fortran!



Enhancing Spatial Locality
• Place items which are accessed in the same 

block of code close to each other
– E.g. careful use of structures
– Don’t include infrequently used variables in 

structures – avoid clutter – and aim for alignment 
with cache block boundaries

– Avoid gaps in structures
• Compiler will add gaps to ensure address of variable 

is aligned with its size for maximum efficiency in 
address translation

• Hence place items of same size next to each other –
best if put all doubles first, then integers, etc.



Temporal Locality
• Another important factor in cache success: if a data 

item has been recently accessed, then it is likely to be 
read again, or written, soon.
– Once the cost has been paid of getting an item into cache, 

use it as much as possible before returning it to main 
memory

– E.g. Loop fusing – classic example: 

do i = 1,N
av = av + A(i)

end do
av = av/real(N,kind=dp)
do i = 1,N

var = var + (av-A(i))**2
end do
var = var/real(N,kind=dp)

do i = 1,N
av = av + A(i)
sum_sq = sum_sq + A(i)**2

end do
av = av/real(N,kind=dp)
var = sum_sq/real(N,kind=dp) &      
- av*av

2 x faster with A ~ 450 Mb



Cache Blocking
• Do as much as possible with data in cache 

before returning it to main memory
– Can be useful with non-unit stride too: 

!simple non-blocked code
do j=1,n

do i=1,n
s=s+a(j,i)+b(i,j)

end do
end do

a is accessed with stride n – bad!

!blocked-style code
do ii=1,n,nb

do j=1,n
do i=ii,ii+nb-1

s=s+a(j,i)+b(i,j)
end do

end do
end do

a still accessed with stride n but only 
within blocks of size nb x n. Fast if 
block fits in cache. 



Reducing Memory Accesses
• Many old codes were written in pre-cache 

days when memory access was cheap
– Not true today!

• Watch out for and reduce as much as 
possible:
– Array temporaries
– Long trip-count loops with little work in the body
– Look-up tables of values that are now cheap to 

recalculate – the balance of calculation cost to 
lookup cost has now changed



Pointer Problems
• Pointers are useful but can seriously inhibit code 

performance on modern machines
• Compilers try very hard to reduce memory accesses

– Only load data from memory once
– Keep variables in registers for as long as possible and only update 

memory copy when necessary
• But pointers can point anywhere, so to be safe must:

– Reload all values after write through pointer
– Synchronize all variables with memory before read through pointer

• F77 has no pointers, F90+ has restricted pointers
– Can only point to a pre-declared “target” – more info for compiler

• C/C++ has unrestricted pointers and very hard to do without 
them – can use explicit scalar temporaries to help



Simple Optimisations
do i=1,n

x(i)=2*pi*i/k1
y(i)=2*pi*i/k2

end do

1 do i=1,n
t1=2*pi*i
x(i)=t1/k1
y(i)=t1/k2

end do

2

t2=2*pi
do i=1,n

t1=t2*i
x(i)=t1/k1
y(i)=t1/k2

end do

3
t1=2*pi/k1
t2=2*pi/k2
do i=1,n

x(i)=t1*i
y(i)=t2*i

end do

1. Common sub-expression elimination – compiler OK
2. Invariant removal – compiler OK
3. Division to multiplication – may need to force it! Multiplication 

much faster than division and many times faster than exp or log. 
Conversion of x**2 to x*x should be automatic. 

NB NEVER do x**2.0!



Common Sub-Expression Elimination

• Whilst compilers are good at spotting 
the simple example above, might not 
be so good if:
– Changed order of operands

d=a+c
e=a+b+c

– Or function calls
d=a+func(c)
e=b+func(c)

– Hence might need to help compiler by 
introducing explicit scalar temporaries



Loop Optimizations
• Loop unrolling

– Useful for reducing dependencies
• Loop elimination

– Useful for short loops – if know trip count
• Loop fusing

– As before - increases work done in loop, better cache 
usage, less overhead

• Loop blocking
– Can help optimize memory patterns
– Particularly useful with 2D arrays
– Similar idea to domain decomposition in parallel codes



Stopping Loop Optimizations
n Conditionals

n Especially transfer out of loop
n Eliminate wherever possible, e.g.

!original form
do i=1,k

if (n==0) then
a(i)=b(i)+c

else
a(i)=0

end if
end do

!manual rewrite
if (n==0) then

do i=1,k
a(i)=b(i)+c

end do
else
do i=1,k

a(i)=0
end do

end ifn Function calls
n Except if can inline

n Pointer/array aliasing as discussed above



More Impediments …
• Non-obvious data dependencies, e.g. 

!original form
do i=1,m

a(i)=a(i)+b(i)*a(n)
end do

n Compiler may not know if a(i) and a(n) overlap 
or not – hence reduced choice of optimisations

n May be unrolled but only limited benefit as cannot 
interleave instructions from different iterations

n Hence, if you know it is safe, better to re-write as:
!manual rewrite
t1=a(n)
do i=1,m

a(i)=a(i)+b(i)*t1
end do



Case Study



Matrix Multiplication kjikij bac =

• F77 version
– Number of FLOPS is 2n3 yet 

performance is appalling:
– Timings on my 2.26 GHz 

Macbook (9.04 GFLOP peak, 
stream = 16400 MB/s):

gfortran –O0, n=100 results in 
241 MFLOPS – only 2.7% of 
peak!

!Std F77 version

do j=1,n
do i=1,n

t=0.0
do k=1,n

t=t+a(i,k)*b(k,j)
end do
c(i,j)=t

end do
end do

Why? The inner loop contains 1 FP-add, 1 FP-multiply, 1 FP-load with unit 
stride (b) and 1 FP-load with stride-n (a).

Each array is 100*100*8 bytes = 78kB. Core 2 Duo has a 3 MB L2 cache 
so all arrays should fit in L2 cache. Why is the code so slow then?



Matrix Multiplication Roofline
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Roofline: π=9.04, β=16.4, I=(2n3)/(3*8*n2)=n/12=8.3 with n=100

=> code ought to be compute-bound, should be able to get near to 9 GFLOPs



Fast Matrix Multiplication
• Reorder operations so all 

memory access now unit 
stride
– Timings on my 2.26 GHz 

Macbook (9.04 GFLOP peak) :
– gfortran –O0, n=100, results in 

200 MFLOPS?!

!Fast F77 version

c=0
do j=1,n

do k=1,n
t=b(k,j)
do i=1,n

c(i,j)=c(i,j)+a(i,k)*t
end do

end do
end do

Why? This new routine now has unit stride for all arrays – good – but one 
extra store. As all the arrays fit into cache there is no speedup due to the 
stride, no saving in FLOPS and one extra store => small extra cost. 

BUT this approach should be better as N increases and go out of cache …



F90 matmul?
!F90 form
c=matmul(a,b)

• Would seem to be the no-brainer solution
n=100, 1302 MFLOPS! 

• Now up to 15% of peak
– Better but still pretty poor, particularly as 

everything is in cache
• What are we missing?
• Compiler flags ...





BLAS version
!BLAS form
call dgemm(’N’,’N’,m,n,k,alpha,A,m,B,k,beta,C,m)

ijkjikij cbac ×+×= ba
• dgemm is part of BLAS and can evaluate

where A is of size MxK, B is KxN and C is MxN , and
A,B,C, alpha & beta are all declared as double precision
• Now have gfortran90 –O0, n=100 resulting in 4194 

MFLOPS ~ 46% peak
• And pretty insensitive to compiler optimisation – as it 

should be! 
NB This is with generic BLAS – using a more optimized 

BLAS e.g. ATLAS or OpenBLAS should be better.
NB an Mrows x Ncolumns array is declared in Fortran as 

A(1:M,1:N) but consecutive memory locations are rows
NB Can use BLAS from C/C++ as well …





Effect of Problem Size
• The n=100 matrix multiplication is not a good 

test of different algorithms (although it shows 
the superiority of BLAS) as on most modern 
computers the arrays fit in cache.
– Was used as the basis for the original LINPACK 

100x100 test but is now obsolete
– LINPACK based upon LAPACK and used as 

basis of Top500 supercomputer league!
• What then happens as increase problem size 

and start to go out of cache?



Matrix Multiplication with N
Runs with 
N=100, 200, 
500 & 1000

NB n=500 
has 1.9 MB 
per matrix 
and Core 2 
Duo has 3MB 
of L2 cache

Can now 
clearly see 
the effects of 
non-unit 
stride on 
performance.



As before 
but now 
including 
n=128, 
256, 512 
and 1024

What is 
going on?



Further Reading
• https://en.wikipedia.org/wiki/Roofline_model
• Chapter 3 of “Introduction to High 

Performance Computing for Scientists and 
Engineers”, Georg Hager and Gerhard 
Wellein, CRC Press (2011).

• Intel optimization manual at 
https://www.intel.co.uk/content/www/uk/en/ar
chitecture-and-technology/64-ia-32-
architectures-optimization-manual.html

• http://www.openblas.net
• http://www.netlib.org/lapack/



Cache Thrashing
• Problems with powers-of-2 array sizes are 

particularly prone to cache thrashing, where 
successive memory accesses actually go to 
same line in cache.

• Core 2 Duo has a 8-way set associative L1 and 
L2 cache made up of 64 byte lines – so there 
are 8 possible locations in cache for each 
memory address which reduces thrashing.

• But can still see the (weaker) effects of cache 
thrashing in previous figure! BLAS probably 
uses blocking to boost performance for large N.



Libraries
• Not all implementations of a library are 

equal – better if know about caches etc
• LINPACK 5000x5000 test on a quad-core 

3.4 GHz Intel i7 (Haswell)
Implementation Speed (GFLOPs)

MKL (serial) 43.0 

OpenBLAS (serial) 39.0

NAG Mk 24 4.9

Netlib 3.3

Fortran, original source 2.4


