THE UNIVERSITYW

High Performance Computing
- Optimizing a Serial Code

Prof Matt Probert
http://www-users.york.ac.uk/~mijp

Overview

* Performance potential

« Compiler optimizations

 Manual optimizations

» Case study — matrix multiplication

Roofline Model

A simple model to provide performance
estimates

— What determines the maximum FP available?
— |s a code compute-bound or memory-bound?
Constraints are:

— Peak performance 11 (GFLOP/s)

— Memory bandwidth 3 (GB/s)

Inputs are:

— Arithmetic intensity | (FLOPS/B)

Performance P=min(1,3*|)

Visualization

Performance [GFLOPS]

1/2 -

1/4 -

Bound based on bandwidth ,-

_______________________________ 7 Bound based on peak performance
[]
: App,
App,
[]
App,
| | | | 1 1 1 1 | | | | | | | | | 1 1 1 1 1)
1/4 1/2 1 2 4 8 16 32 64 128 256 512 Operational Intensity [FLOPS/byte]

Picture from https://en.wikipedia.org/wiki/Roofline_model

Comments on Roofline

Ridge is where =[3"1
An important hardware metric is the
machine balance: B=11/[3

The algorithmic intensity | is also known as
the "memory-code balance” : B,

If B.<B then have memory-bound algorithm

Simple Roofline Example

double s, al[];
for (i=0, i<N, i++){
s = s+af[i]l*a[1i]}

Peak CPU performance 1 =4 GF/s
Memory bandwidth B=10 GB/s

| = 2F/8B = 0.25

Memory bound!

Performance [GFLOPS]

Extended Roofline Models ()
A

2 - // T[

. S S SR SR SR R R R e e . -

-
]

1/2 Bandwidth ceilings
S
o
)
\xx\
1/4
| | I | | | |] |
1/4 1/2 1 2 4 8 16

Operational Intensity [FLOPS/byte]

Performance [GFLOPS]

Extended Roofline Models (II)
A

2 — //, j-[

I S S R SRR SR SRR R R e e .

without Instruction Level Parallelism (ILP)

-
]

without Task Level Parallelism (TLP)
1/2 =

-

~

5
|

In-core ceilings

1/4 1)2 1 2 4 8 16
Operational Intensity [FLOPS/byte]

Performance [GFLOPS]

Extended Roofline Models (ll)
A

—_

1/2

-
~
5

e - e e e e e . -

/ JU

v

Q

@

E

-

2 Locality walls due to
won a cache inefficiency
L U 5
(a8 N v

S

3
I I I I | |] I I

1/4 1/2 1 2 4 8 16

Operational Intensity [FLOPS/byte]

Optimizing Compilers

* Most modern compilers are good at basic code
optimisations (but not memory opts)

« Usually best to let the compiler do the optimisation

— Avoid machine-specific coding — a tweak that improves
performance on one machine may degrade performance
on a different architecture

— Compilers break code less often than people!

* Not all optimisations are beneficial!

— Might break code — more so if not strictly standards
compliant

— Might reduce accuracy of answers — floating-point
reordering ...

Aliasing

* The compiler has to make assumptions about
aliasing
— Can one or more variables occupy same space in
memory?
— Common blocks/equivalence in F77

— Pointers in C, C++, F90

 Aliasing prevents many optimisations

— A fundamental reason why Fortran often optimises
better than C as Fortran codes typically have much less
reliance on pointers

— Can sometimes set a compiler flag (e.g. -no aliasin
ifort/icc) to tell compiler that there is no aliasing present

—-fstrict-aliasing in gcc/gfortran is not the same.

Helping the Compiler

» \Write clear and simple code

— Easier for compiler to spot optimisation
potential

— Use flags and directives to give compiler hints

» But what if that is not enough?
— Need to resort to code modification

— Need some idea as to what code modification
the compiler would like to do but cannot
— Get compiler to produce an optimisation report

* Intel has —opt-report and GNU has —fopt-
info-note

Local vs Global variables

 Compiler analysis is more effective with local
variables
— Has to make worst-case assumptions about global
variables — they might be modified by any called
procedure
— Hence always use local variables where possible

« NB Automatic variables are allocated on the stack — low
cost but limited amount of space

« Dynamic allocation (F90 allocate, C malloc, C++ new)
goes on heap — usually much larger

— In C, use file scope globals in preference to externals

Key Optimizations

MEMORY is most often the bottleneck in modern
computers
— Very obvious in roofline models

— Both bandwidth (MB/sec) and latency (time to read a
single value)

— Need to optimise memory access patterns
* memory structures

— Need to optimise cache usage
 loop structures

— Need for good code design by programmer — not
something the compiler can do!

Spatial Locality

* An important factor in cache success: the
assumption that nearby addresses tend
to be accessed close together in time

—If v (1) is read now then it is very likely that
v (1+1) will be read soon

— Hence cache controllers read whole lines of
memory not single bytes

— Hence best if move through memory in
sequential order — implications for array
indices — Fortran stores arrays in column
order, C/C++ In row order

Multi-Dimensional Arrays

* In FORTRAN, A(m,n) is stored as

 Butin C, Aim][n] is stored as

* And want stride-1 access through arrays
for spatial locality, hence THIS IS AWFUL.:

do i=1,n

do j=1,m
A(i,j)=B(i,3j)+C(4,3)
end do

end do

This is accessing memory with stride-m,
hence unless entire A,B,C fit into cache this
will run very slowly.

Worse still, can get cache thrashing if each
line read into cache replaces the existing
one — hence beware 2" array sizes.

MUST reorder these loops in Fortran!

Enhancing Spatial Locality

 Place items which are accessed in the same
block of code close to each other

— E.g. careful use of structures

— Don’t include infrequently used variables in
structures — avoid clutter — and aim for alignment
with cache block boundaries

— Avoid gaps in structures

« Compiler will add gaps to ensure address of variable
Is aligned with its size for maximum efficiency in
address translation

* Hence place items of same size next to each other —
best if put all doubles first, then integers, etc.

Temporal Locality

* Another important factor in cache success: if a data
item has been recently accessed, then it is likely to be
read again, or written, soon.

— Once the cost has been paid of getting an item into cache,

use it as much as possible before returning it to main
memory

— E.g. Loop fusing — classic example:

do i =1,N do i = 1,N

av = av + A(1i) av = av + A (i)
end do sum sq = sum _sq + A(i)**2
av = av/real (N, kind=dp) end do
do i = 1,N av = av/real (N,kind=dp)

var = var + (av-A(i))**2 var = sum sq/real (N,kind=dp) &
end do - av¥av
var = var/real (N,kind=dp) 2 x faster with A ~ 450 Mb

Cache Blocking

Do as much as possible with data in cache
before returning it to main memory

— Can be useful with non-unit stride too:

!simple non-blocked code 'blocked-style code
do j=1,n do ii=1l,n,nb

do i=1,n do j=1,n

s=s+a(j,i)+b (i, j) do i=ii,ii+nb-1

end do s=s+a(j,1)+b(1i,])

end do end do
end do

a is accessed with stride n — bad! end do

a still accessed with stride n but only

within blocks of size nb x n. Fast if
block fits in cache.

Reducing Memory Accesses

* Many old codes were written in pre-cache
days when memory access was cheap

— Not true today!

» Watch out for and reduce as much as
possible:
— Array temporaries
— Long trip-count loops with little work in the body

— Look-up tables of values that are now cheap to
recalculate — the balance of calculation cost to

lookup cost has now changed

Pointer Problems

Pointers are useful but can seriously inhibit code
performance on modern machines
Compilers try very hard to reduce memory accesses

— Only load data from memory once

— Keep variables in registers for as long as possible and only update
memory copy when necessary

But pointers can point anywhere, so to be safe must:
— Reload all values after write through pointer
— Synchronize all variables with memory before read through pointer

F77 has no pointers, F90+ has restricted pointers
— Can only point to a pre-declared “target” — more info for compiler

C/C++ has unrestricted pointers and very hard to do without
them — can use explicit scalar temporaries to help

DN =

Simple Optimisations

do i=1l,n 1 do i=1,n
x(i)=2*pi*i/kl ‘ tl=2*pi*i
y(i)=2*pi*i/k2] x(i)=tl/kl
end do y(i)=tl/k2
end do
2
tl=2*pi/kl t2=2*pi
t2=2*pi/k2 3 do i=1l,n
do i=1l,n) tl=t2*1i
x(i)=tl*i x(i)=tl/kl
y(i)=t2*1 y(i)=tl/k2
end do end do

Common sub-expression elimination — compiler OK
Invariant removal — compiler OK

Division to multiplication — may need to force it! Multiplication
much faster than division and many times faster than exp or log.
Conversion of x**2 to x*x should be automatic.

NB NEVER do x**2.0!

Common Sub-Expression Elimination

* Whilst compilers are good at spotting
the simple example above, might not
be so good if:

— Changed order of operands
d=a+c
e=a+b+c

— Or function calls
d=a+func (c)
e=b+func (c)
—Hence might need to help compiler by
introducing explicit scalar temporaries

Loop Optimizations

Loop unrolling

— Useful for reducing dependencies

Loop elimination

— Useful for short loops — if know trip count
Loop fusing

— As before - increases work done in loop, better cache
usage, less overhead

Loop blocking

— Can help optimize memory patterns

— Particularly useful with 2D arrays

— Similar idea to domain decomposition in parallel codes

Stopping Loop Optimizations

m Conditionals
m Especially transfer out of loop
m Eliminate wherever possible, e.q.

'original form 'manual rewrite
do 1=1,k 1f (n==0) then
if (n==0) then do 1=1,k
a(i)=b(1)+c R a(i)=b(1i)+c
else end do
a(i)=0 else
end 1f do 1=1,k
end do a(i)=0
end do
= Function calls end if

m Exceptif can inline
» Pointer/array aliasing as discussed above

More Impediments ...

* Non-obvious data dependencies, e.g.

loriginal form

do 1=1,m
a(i)=a(i)+b (1) *a (n)

end do

s Compiler may not know if a (1) and a (n) overlap
or not — hence reduced choice of optimisations

= May be unrolled but only limited benefit as cannot
interleave instructions from different iterations

= Hence, if you know it is safe, better to re-write as:

!manual rewrite

tl=a (n)

do 1=1,m
a(i)=a(i)+b (1) *tl

end do

Case Study

Matrix Multiplication ¢, =q,5,

F77 VerSion IStd F/77 version
— Number of FLOPS is 2n3yet |do j=1,n
performance is appalling: do i=1,n
— Timings on my 2.26 GHz SR
Macbook (9.04 GFLOP peak, t=t+a (i, k) *b(k,7)
stream = 16400 MB/s): end do
gfortran —00, n=100 results in AL
241 MFLOPS —only 2.7% of | ooy s

peak!
Why? The inner loop contains 1 FP-add, 1 FP-multiply, 1 FP-load with unit
stride (b) and 1 FP-load with stride-n (a).

Each array is 100*100*8 bytes = 78kB. Core 2 Duo has a 3 MB L2 cache
so all arrays should fit in L2 cache. Why is the code so slow then?

Matrix Multiplication Roofline

10

[EY
I G G G G G G G G é G G G G G G @G éd @& &g &g &

0.1 . .
0.1 1 10

Roofline: 1=9.04, f=16.4, I=(2n3)/(3*8*n?)=n/12=8.3 with n=100

=> code ought to be compute-bound, should be able to get near to 9 GFLOPs

Fast Matrix Multiplication

« Reorder operations so all Fast F// version
memory access now unit c=0
stride dodjziff
— Timings on my 2.26 GHz e (]
Macbook (9.04 GFLOP peak) : do i=1,n
— gfortran —00, n=100, results in eng(iéj):”i'j”a(i'k) "t
200 MFLOPS?! e
end do

Why? This new routine now has unit stride for all arrays — good — but one
extra store. As all the arrays fit into cache there is no speedup due to the
stride, no saving in FLOPS and one extra store => small extra cost.

BUT this approach should be better as N increases and go out of cache ...

FO0 matmul?

'F90 form
c=matmul (a, b)

\Would seem to be the no-brainer solution
n=100, 1302 MFLOPS!

Now up to 15% of peak

— Better but still pretty poor, particularly as
everything is in cache

What are we missing?
Compiler flags ...

Matrix Multiplication Test

100x 100 random matrices. MacBook 2.26GHz Core 2 Duo

2000 |

1500

wn
3
1000
o
p=
— std {77
— fast {77
500 —— matmul

Optimization Level

BLAS version

'BLAS form
call dgemm(’'N",’'N’,m,n, k,alpha,A,m,B, k,beta,C,m)

 dgemm is part of BLAS and can evaluate
C; :a-aikbkj —I—,B-cl.j
where A is of size MxK, B is KxN and C is MxN , and

A,B,C, alpha & beta are all declared as double precision

 Now have gfortran90 —O0, n=100 resulting in 4194
MFLOPS ~ 46% peak

* And pretty insensitive to compiler optimisation — as it
should be!

NB This is with generic BLAS — using a more optimized
BLAS e.g. ATLAS or OpenBLAS should be better.

NB an Mrows x Ncolumns array is declared in Fortran as
A(1:M,1:N) but consecutive memory locations are rows

NB Can use BLAS from C/C++ as well ...

MFLOPS

5000

4000

3000

2000

1000

Matrix Multiplication Test

100x 100 random matrices. MacBook 2.26GHz Core 2 Duo

std £77
fast {77

matmul
BLAS

Optimization Level

Effect of Problem Size

* The n=100 matrix multiplication is not a good
test of different algorithms (although it shows
the superiority of BLAS) as on most modern
computers the arrays fit in cache.

— Was used as the basis for the original LINPACK
100x100 test but is now obsolete

— LINPACK based upon LAPACK and used as
basis of Topd00 supercomputer league!

* What then happens as increase problem size
and start to go out of cache?

MFELOPS

8000

6000

2000

Matrix Multiplication Test

NxN random matrices, -Ofast, MacBook 2.26GHz Core 2 Duo

— std {77
— fast {77

matmul
— BLAS

Runs with
N=100, 200,
500 & 1000

NB n=500
has 1.9 MB
per matrix
and Core 2
Duo has 3MB
of L2 cache

Can now
clearly see
the effects of
non-unit
stride on
performance.

MFLOPS

8000

6000

2000

Matrix Multiplication Test

NxN random matrices, -Ofast, MacBook 2.26GHz Core 2 Duo

I

std {77
tast £77

matmul
BLAS

1000

As before
but now
including
n=128,
256, 512
and 1024

What is
going on?

Further Reading

https://en.wikipedia.org/wiki/Roofline _model

Chapter 3 of “Introduction to High
Performance Computing for Scientists and
Engineers”, Georg Hager and Gerhard
Wellein, CRC Press (2011).

Intel optimization manual at
https://www.intel.co.uk/content/www/uk/en/ar
chitecture-and-technology/64-ia-32-
architectures-optimization-manual.html

http://www.openblas.net
http://www.netlib.org/lapack/

Cache Thrashing

* Problems with powers-of-2 array sizes are
particularly prone to cache thrashing, where
successive memory accesses actually go to
same line in cache.

* Core 2 Duo has a 8-way set associative L1 and
L2 cache made up of 64 byte lines — so there
are 8 possible locations in cache for each
memory address which reduces thrashing.

» But can still see the (weaker) effects of cache
thrashing in previous figure! BLAS probably
uses blocking to boost performance for large N.

Libraries

* Not all immplementations of a library are
equal — better if know about caches etc

* LINPACK 5000x5000 test on a quad-core
3.4 GHz Intel i7 (Haswell)

MKL (serial) 43.0
OpenBLAS (serial) 39.0
NAG Mk 24 4.9
Netlib 3.3

Fortran, original source 2.4

