
Prof Matt Probert
http://www-users.york.ac.uk/~mijp1

High Performance Computing
- Profiling

Overview

n Hardware / Algorithms / Implementation

n Establishing a Baseline
n Timing vs Sampling

n Profiling with gprof

Choices

n What factors affect the speed of execution
of your code?
n Hardware – see previous lectures

n Algorithm – significant!

n Implementation – rest of this & another
lecture

Algorithm

n Once you have understood the problem you
wish to solve, you need to design your
algorithm(s)

n Many standard algorithms for common
tasks already exist
n Eg sorting, linear algebra, random numbers,

special functions, curve fitting, etc.
n Many already implemented in libraries
n DO NOT REINVENT THE WHEEL!

Choice of Algorithm

n You might think sorting a list of numbers into
ascending order is trivial:

n Step through list and compare Xi and Xi+1
n Swap if Xi>Xi+1
n Repeat until complete pass through list has no

swaps

n This is algorithm is known as
“Bubble Sort” - simple to code,
minimal storage and stable.

n BUT requires O(N2) operations
Gif from Wikipedia

Choice of Sorting Algorithm

n MANY alternatives, e.g.
n Quicksort usually O(NlogN) but can be O(N2)

n Stable if O(N2) memory version but unstable if
O(NlogN) memory version ...

n Heapsort always O(NlogN) but unstable
n New algorithms still being invented ...

Quicksort in action Heapsort in action

Algorithm Impact

n One way to make a big impact is to invent &
publish a new algorithm
n Ideally one that is more efficient than

previous, less additional storage, and stable
n E.g. Car-Parrinello paper

n showed how to solve numerical QM without
doing matrix diagonalisation – cost now
O(N2M) not O(M3) for system with N
electrons and M basis functions with M » N

n One of the most highly cited condensed
matter physics papers of all time!

Implementation

n Having chosen your algorithm, there can be
surprising performance differences
depending on how it is implemented!

n Hence need to be able to time code and
then measure speedup

n Investigate compiler flags for simple gains
n And profile code to identify ‘hot spots’ for

more work
n ‘cost-benefit’ balance – time to optimise vs

time to run code vs number of runs ...

Timing

n NOT your watch!
n ‘elapsed time’ or ‘wall time’ depends upon

machine load and has poor repeatability
n Your program will switch between user mode

(your code) and kernel mode (O/S services) :
n user time: is the total CPU time your program used
n system time: O/S tasks (e.g. writing to a file or screen)
n CPU time is user time + system time, and ideally would

want user time » system time, otherwise code is I/O
bound or in some sort of memory trouble

n wall clock or real time: is the total elapsed time to run
your code and is the time you want to reduce.

UNIX time command

n As an example of a global timing command,
consider the c-shell built-in time command (the
bash time command is less useful):

% time ./myprogram.exe

14.9u 1.42s 0:19 83% 4+1060k 27+86io 47pf+0w

Seconds
of user
time

Seconds
of
system
time

Secs of
elapsed
time

Percentage
CPU
utilisation

Average
shared
memory
in kB

Average
unshared
data space
in kB

#block
input
op’ns

#block
output
op’ns

#Page
faults

#swaps

time limitations

n Can use time as an overall assessment of
performance and to give clues as to possible
bottlenecks in code.

n Useful as a base line to measure
performance improvements BUT
n Has low timing resolution (typically 0.1

seconds) hence only useful for long
calculations

n And only gives a global summary – no
breakdown into different sections of the code

n Hence need a more fine-grained approach.

Explicit Coding

n One solution to this problem is to add timing
routines into the code yourself.
n Can be labour intensive.
n Can have problems with portability depending on

language used – easier with MPI parallel codes as MPI
contains a truly portable timer.

n Need to be careful to distinguish wall clock and CPU
timing measurements – CPU time is best as not
affected by load but elapsed time is useful too,
particularly for parallel codes.

n Can be useful – can build in timers to denote progress
of code, and high-level profiling.
n E.g. CASTEP has a compile-time option to use either

elapsed-time or CPU time clock, and a run-time switch to turn
clock output on/off (for testing – makes it easier to diff
output on different machines).

Using dtime

n Many O/S provide a dtime or etime system
function that returns the CPU time
n Timing resolution varies with system
n Pass 2-element real array, returns user and system time

real, dimension(2) :: time !default 4-byte real here
real :: UserTime, SystemTime, TotTime

TotTime = dtime(time)
UserTime = time(1): SystemTime = time(2)

< insert some highly important stuff here to be timed >

TotTime = dtime(time) - TotTime
UserTime = time(1) - UserTime
SystemTime = time(2) – SystemTime

print *,”Total time ”,TotTime,” secs”
print *,”System time”,SystemTime,” secs”
print *,”User time ”,UserTime ,” secs”

Can also
do this in
C, C++ or
any other
language.

Using F95 Intrinsics

n Fortran 95 provides an intrinsic CPU_TIME(time)
to make timing code portable and simple
n where time is a real scalar that is assigned a system-

dependent approximation to the time in seconds (or a
negative value if there is no clock) :

real :: start, end, elapsed_time

call cpu_time(start)

< important stuff to be timed >

call cpu_time(end)
elapsed_time = end - start

Subprogram Sampling
n With a large, complex code it can be very

cumbersome to do this for every individual
subprogram (might be useful if interested in
just one or two chunks)

n Many compilers can help by instrumenting
your code, so that the program counter will
be periodically sampled when the code runs.
n See where code is spending different

proportions of time – but increases actual
run-time due to sampling overhead so do not
do this with production version!

n This is known as profiling...

Enabling Sampling

n In order to get this profiling information, need to tell the
compiler to instrument your code.
n typically use –pg flag.
n Add debug symbols for line by line information (-g)
n Code optimisations may mess up profile, disable with –O0
n Newer versions of gcc/gfortran have –Og option

n Run the code as normal, and it will produce a trace file
called gmon.out for later analysis by the gprof tool.

n gprof will produce a summary of the time spent in
each subprogram and a call graph profile
n Use gcov to see line-by-line analysis
n There are also O/S or vendor dependent tools ...

gprof example
% gcc -o ctest -pg ctest.c
% ./ctest
% gprof ctest
Timing (flat) profile with 0.01 sec sampling:

(A very stupid list-
based program to read
sequence of integers
from file, sort into order
and print out result.)

% time Cumulative
seconds

Self
seconds Calls Self

s/call
Total
s/call Name

75.12 15.94 15.94 53843 0.00 0.00 insert_list [4]

15.65 19.26 3.32 328408081 0.00 0.00 make_nonempty [5]

6.79 20.70 1.44 328515774 0.00 0.00 is_empty [6]

2.31 21.19 0.49 1 0.49 21.19 sort_list [3]

0.07 21.20 0.01 2 0.01 0.01 print_list [8]

0.05 21.21 0.01 4 0.00 0.00 append_lists [10]

0.02 21.22 0.01 2 0.00 0.01 print_data [7]

etc

“%time” is contribution of this routine to total runtime. “Cumulative sec” is sum
of all preceding routines + this one. “Self secs” is this routines contribution.
“Calls” is the no. of times routine called. “Self s/call” is the average time in
this routine. “Total s/call” is average time in this routine + all its descendants.

Subprogram Profiles

0

20

40

60

80

100

[4] [5] [6] [3] [8]

%
tim
e

Subprogram

Sharp profile – dominated by
routine [4] – hence easy to see
where to target code optimisation.

0

20

40

60

80

100

[4] [5] [6] [3] [8]

%
tim
e

Subprogram

Flat profile – no routines dominate
– hence hard to optimise – need to
work on whole code optimisation.

Amdahl’s Law

n Gene Amdahl (designer of some of the early
parallel computers) came up with a “law” for
performance potential of parallel computers –
which can also be applied to profiling.

n If your code contains portions that can be
optimised (A), and some that cannot (B), then
even if you make (A) infinitely fast, the runtime will
be dominated by (B).
n E.g. in the “sharply-peaked” profile, if subprogram [4]

was optimised to go 75 times faster, the runtime would
only be improved by ~4 times. Doing the same in the
“flat profile” would result in an overall 1.25x speedup!

n Hence there is a finite return on effort – no point over-
optimising one routine if run-time contribution is small.

gprof call-graph profile
Index % time Self Children Called Name

[1] 100.0 0.00 21.22 main [1]

0.00 21.19 1/1 sort_data [2]

0.01 0.02 2/2 print_data [7]

0.00 0.01 1/1 get_data [9]
--------- --------------- ------------ ---------------- --------------------------- ---------------------------

0.00 21.19 1/1 main [1]

[2] 99.9 0.00 21.19 1 sort_data [2]

0.49 20.70 1/1 sort_list [3]
--------- --------------- ------------ ---------------- --------------------------- ---------------------------

0.49 20.70 1/1 sort_data [2]

[3] 99.9 0.49 20.70 1+53843 sort_list [3]

15.94 4.76 53843/53843 insert_list [4]

0.00 0.00 53844/328515774 is_empty [6]

etc

“Index” is a cross-reference for locating given routine in listing. “%time”
is time in routine + all its children. “Self” is time in this routine and
“Children” is time in all the called routines within. “Called” indicates
number of calls of child from this parent, with “+” indicating recursive calls.

Interpreting Profile Output

n From the timing profile can quickly identify where
your program is spending its time.
n Will often see system routines not explicitly called in your

program, e.g. memset, fpsetsticky, etc. and may also
see routines of the type mcount listed – these are part of
the profiling implementation and are also measured.

n NB gprof can produce a large amount of data –
best to limit it to the most significant routines only
(e.g. those that contribute >5% to runtime) – see
man page for relevant switches.

n NB The gprof call-graph also gives an estimate of
how much time was spent in the subroutines of each
routine. This can suggest places where you might
try to eliminate function calls that use a lot of time.

Combined Profile Output

n Another really useful property of gprof is
that you can combine the output from
several runs together
n Hence get a more accurate depiction of

where your program spends its time when
different sets of parameters are used.

n Need to rename the gmon.out files after
each run of program to unique names and
then call gprof with “-s” flag and multiple
files for an overall summary, e.g.

gprof mycode -s gmon.1 gmon.2
gmon.3 > mycode.gprof_summary

gcov example
% gcc –-coverage ctest.c
% ./a.out
% gcov ctest.c
File 'ctest.c'
Lines executed:97.06% of 68
ctest.c:creating 'ctest.c.gcov’
% more ctest.c.gcov
-: 0:Source:ctest.c
-: 0:Graph:ctest.gcno
-: 0:Data:ctest.gcda
-: 0:Runs:1
-: 0:Programs:1
-: 1:/*simple program for time profiling. */
<snip>
-: 20:List make_nonempty(int first, List rest)

50132169: 21:{
50132169: 22: List list = (List) malloc(sizeof(struct

AList));
50132169: 23: if (list == NULL) {

#####: 24: fprintf(stderr,"Couldn't allocate.\n");

Use ‘-f’ to get function level coverage

Preamble – line numbers=0

Not executable

Number of times executed

Not executed

Sampling Problems

n For a profile to be useful, the sampling must be
sufficiently frequent
n How frequent depends on clock speed – if

processor is running at 2 GHz then will have 20
million clock cycles between 0.01 ms samples

n As well as low resolution, this quantization can
also cause sampling errors due to aliasing:

So although foo takes much more time than bar, the sampling frequency
closely matches the cycling frequency of the two routines and hence we get
a quantization error – sampling would suggest all the time is spent in bar!

foo bar foo bar foo bar foo bar

time

Profile Problems

n For a profile to be useful, the code is usually
compiled without optimisation. But with a good
optimising compiler, the relative costs of certain
routines can change significantly!
n E.g. On hardware with fused multiply-add instruction

pipes, an optimising compiler will get much better
performance using these specialised instructions
(typically turned on at –O3 and above) – might be a
factor of 6 or more! This may make the results of
profiling (-O0 –g) misleading when applied to the
production code (-O3) hence new -Og option .

n There are also issues when using dynamic
libraries – is the time spent in the library visible to
the profiler?

Profile Guided Optimisation

n Nevertheless, profilers ARE very useful
n Can give a quick overall representation of hot-

spots in your code
n Or your compiler (2-pass process)

n Compile a special version to generate the data
(intel: -prof-gen or –fprofile-generate
for gnu) and then run to generate data

n Recompile using this data (intel: -prof-use
or -fprofile-use for gnu)

n This is known as profile guided optimisation or
dynamic optimisation – can produce substantial
speedups compared to static optimisation

Know Your Compiler

n The compiler is of primary importance in coding
n A good optimising compiler will know about the

underlying hardware and how best to re-write your
code for optimal efficiency – see next lecture

n Know what your compiler can do
n Typically can have very large and complex set of

flags/switches to fine-tune behaviour
n READ THE MAN PAGE! On my old Alpha ‘man f90’

gave ~4000 lines of terse description of the command,
including 93 principle switches and 493 sub-options!

n Check carefully what is the default behaviour
n Does your compiler automatically initialise all undeclared

variables to zero or not? Common practice in old compilers,
but rare today – is your code robust to this? Do you attempt to
use any variables before assigning values to them?

SUMMARY

n Choose your algorithms carefully
n And implement them carefully!
n Will cover this next week …

n Profile your code and test for hotspots
n Clue as to where to spend more effort
n Use the compiler and other tools to help

Further Reading

n Chapter 2 of “Introduction to High
Performance Computing for Scientists and
Engineers”, Georg Hager and Gerhard
Wellein, CRC Press (2011).

n gprof2dot converts gprof output at
https://github.com/jrfonseca/gprof2dot

n lcov is a wrapper to gcov at
http://ltp.sourceforge.net/coverage/lcov.php

n Google code: gperftools at
https://github.com/gperftools/gperftools/wiki

