THE UNIVERSITYW

High Performance Computing
- Tools

Prof Matt Probert
http://www-users.york.ac.uk/~mijp

Overview

Compilers

Libraries

Static Analysis

Debuggers

Memory Access/Leak Profiling
Coverage Analysis

Version Management

Compilers

* The compiler is of primary importance in coding

— A good optimising compiler will know about the
underlying hardware and how best to re-write your
code for optimal efficiency

* Know what your compiler can do

— Typically can have very large and complex set of
flags/switches to fine-tune behaviour

— READ THE MAN PAGE! On my old Alpha ‘man f90’
gave ~4000 lines of terse description of the command,
iIncluding 93 principal switches and 493 sub-options!

— gfortran is sneaky — only 979 lines and 291 options, but
there are many more lurking in the gcc & I[d manpages!

— Check carefully what is the default behaviour — varies
between compilers!

Compiler Flags

» Of course, not all compilers or languages support
all flags on all platforms, but some that are very
common and useful [syntax may vary] include:

f90 —g —C —std08 —O0 myprog.f90

—(-g) include extra debugging info in binary

=(-C) turn on run-time bounds checking (array limits, etc) [NOT
C/C++]

=>(-std08) turn on strict standard compliance checking
—=(-O0) disable all optimisation

f90 —c myprog.f90

—compile and do not link — useful if want to split source across
different source files and then link them at end — good with
“make” tool

f90 —o myprog —O myprof.f90

—(-0) name output file “myprog” and not default (e.g. a.out)

—=(-0) use default optimisation (typically safe code transformations
that should not change any numerical results — see later lectures)

More Compiler Flags

f90 —pg myprog.f90

=(-pg) include extra code in binary for profiling with “gprof”

f90 —check ... —show ... -warn ... myprog.f90

—(-check) enable additional runtime checking, e.g. trapping
over/underflow, bounds checking, etc.

—(-show) enable additional compiler output to separate listing file

—=(-warn) enable additional compiler checks, e.g. warn about
argument mismatch in procedure calls, about using uninitialised
variables, etc.

f90 —arch ... myprog.f90

= (-arch) specify which version of CPU to generate code for —
generic, host, or a particular generation. Use additional
instructions found only in later CPUs and hence not run (without
emulation) on older ones.

Pre-processor

Conditional compilation can be useful.

program testpp
implicit none
#ifdef debug

N.B. to invoke pre-processor
Fortran extension must be

write (*,*) ‘Code was compiled |.F90 not.f90

with -Ddebug'’
#endif
end program testpp

#include <stdio.h>
void main () {
#ifdef debug

Compile with e.qg.
£f90 -Ddebug mycode.F90

cc —-Ddebug mycode.c

printf ("This code was compiled with -debug\n") ;

#endif
}

Example of Pre-Processor Usage

#ifdef BLAS
! C = A X B using BLAS where A=MxK & B=KxN
call
dgemm('N','N' ,m,n,k,1.0 dp,A,m,B,k,0.0 dp,C,m)
#endif

#ifndef BLAS

C =A X B using F90 intrinsic MATMUL

!
C = MATMUL (A, B)

#endif

Choosing a Compiler

What if there is more than one compiler available?
How do you choose which is best?

— Benchmark standard codes

— Library support

— Adherence to language definition standards

— Bug detection proficiency?

— Cost?

See e.g. http://www.polyhedron.com for some useful
Fortran compiler comparison tables

Intel compiler generates fast code on Intel hardware
but crippled (deliberately) on AMD. AOCC?

GNU compilers produce good code everywhere but
not so hardware specific.

Portland Group good for GPU programming
NAG best for standards compliance and testing

Automating Compilation

* Use make (or gmake)

— Very common and useful utility for automating a
sequence of tasks with varying dependencies

* Very useful with multi-file projects

— Good idea to split a large, complex source file into
smaller, simpler ones, e.g. one module/file

— AMakefile is a list of targets and dependencies

* To build executable need to compile all source files in
some appropriate order

 But if edit one source file, should only need to recompile
that one and any others that depend upon it

* Hence big time saver for large projects

« Can use for other tasks too, e.g. creating documentation
from LATEX source files —make thesis — efc.

[mijpl@ludwig tmp]$ make

g95 -02 -c -o global.o global.£90 First full compilation
g95 -02 -c -o input.o input.£f90

g95 -02 -c -o set.o set.f90

g95 -02 -c -o initial.o initial.f90

g95 -02 -c -o timer.o timer.£f90

g95 -02 -c -o tridia.o tridia.f90

g95 -02 -c -o gamma.o gamma.£f90

g95 -02 -c -o output.o output.£90

ar r libdiffuse.a global.o input.o set.o initial.o timer.o tridia.o gamma.o output.o
rm global.o input.o set.o initial.o timer.o tridia.o gamma.o output.o

g95 -02 -c -o diffuse.o diffuse.£f90

g95 -o /home/mijpl/bin/diffuse.exe diffuse.o -L/home/mijpl/diffuse -ldiffuse /
-L/usr/local/lib -1lhrgf77

[mijpl@ludwig tmp]$ touch output.£90

—

[mijpl@ludwig tmp]$ make top up’ compilatior

g95 -02 -c -o output.o output.£90

ar r libdiffuse.a global.o input.o set.o initial.o timer.o tridia.o gamma.o output.o
g95 -o /home/mijpl/bin/diffuse.exe diffuse.o -L/home/mijpl/tmp -ldiffuse /

-L/usr/local/lib -1lhrgf77

Libraries

* One way of improving your code in terms of
efficiency and functionality — in a (hopefully) error-
free way — is by using libraries.

— Simple to create your own libraries using ar command

— Can link libraries to your code using compiler flags (-L
and -l)

— Can download ready-written libraries from NetLIB, etc.

— Your O/S and/or compiler may well come with its own
version of some common libraries, e.g. BLAS and
LAPACK are included within the Intel MKL (Math Kernel
Library) and within ACML (AMD Core Math Library), and

should be vendor-optimised to the underlying hardware
for maximum efficiency ...

Common Free Libraries (l)
 BLAS (Basic Linear Algebra Subprograms)

— A portable interface to various "building block" routines
for performing basic vector and matrix operations. Level
1 does vector-vector operations, Level 2 does matrix-
vector operations, and Level 3 does matrix-matrix
operations. Often vendor optimised and used as basis
for LAPACK, etc. L3 best for arithmetic intensity ...

 LAPACK (Linear Algebra Package)

— Routines for solving systems of simultaneous linear
equations, least-squares solutions of linear systems of
equations, eigenvalue problems, and singular value
problems, etc. in real and/or complex form.

— Special versions exist for dense and banded matrices
but not sparse matrices — see ScaLAPACK instead.

— Designed for efficiency on serial, shared-memory
vector and parallel processors by using block-matrix
approach based upon Level 3 BLAS wherever possible.

Common Free Libraries (ll)

ATLAS (Automatically Tuned Linear Algebra Software)

— Aversion of BLAS which attempts to self-tune itself for
maximum performance on the given hardware upon installation
(fine-tuning block-sizes for cache size, etc).

OpenBLAS

— Good all-round performance on most platforms

FFTW (Fastest Fourier Transform in the West)

— A portable FFT library that is comparable in performance to
(non-portable) vendor-tuned libraries — http://www.fftw.org

CDF (Common Data Format)

— Alibrary and toolkit for storing, manipulating, and accessing
multi-dimensional data sets in a device independent manner —
see http://cdf.gsfc.nasa.gov/ . See also NetCDF and HDF

FoX-XML (Fortran library for XML)

— Alibrary to read/write/modify XML and derivatives, e.g. CML
and KML — see http:// www1.gly.bris.ac.uk/~walker/FoX

Commercial Libraries

* NAG (Numerical Algorithms Group)

— A commercial library that is commonly available at
many HPC centres. Not cheap. Also compilers.

— “Spin-out” from academia — http://www.nag.co.uk

— Contains many high-level routines and has been
regularly updated since 1971 for latest algorithmic
developments.

— Includes roots of polynomials, sum of series,
numerical integration and differentiation, ODE and
PDE solvers, curve fitting, optimisation, linear
algebra (includes LAPACK), statistics, sorting,
special functions, random number generators, etc.

Static Analysis

* A way of detecting coding errors/standard
extensions/anomalies by detailed examination of
code without execution

— “lint” is a standard C-code static analyser that helps
remove all the fluff in your code (hence name), e.qg.
assignment of long variables to short, unreachable areas
of code, uninitialised variables & functions, etc.

— FortranLint is commercial equivalent
— Linter-gfortran has just been released under MIT licence

— “Forcheck” and “FPT” are commercial packages that
does same (and more) for FORTRAN — very useful! Can
also be useful when inheriting existing/legacy code —
generates cross-reference tables of each program unit,
the complete program and produces a call-tree.

Forcheck Output ...

—-— file: geometry.F90

— program unit: GEOM FUNCS

IERR
(file: geometry.F90, line: 97)
**[081 I] not used

ITER
(file: geometry.F90, line: 425)

**[323 I] variable unreferenced
RANDOM UNIFORM RANDOM

(file: geometry.F90, line: 420)

**[674 I] procedure, program unit, or entry not referenced
PRESSURE TOL

(file: geometry.F90, line: 668)

**[313 I] possibly no value assigned to this variable
if (gg == 0.0) return

(file: geometry.F90, line: 683)

**[342 1] eg.or ineqg. comparison of floating point data with
zero constant

Debuggers ()

 What is a debugger?
— A special tool used to help find bugs in your code!

 Typically allows you to:

— Interact with code whilst executing and see source at
the same time, so can

start program and stop it at any point in its execution by setting
breakpoints, and then

examine/modify values of variables/memory/structures, and/or
examine state of call stack, and/or

set watches on variables/conditions, and then

continue execution until next interrupt

« Can also use to extract useful information from a
“core dump” if program has crashed

— e.g. find line number of crash

Debuggers (Il)

» gdb/dbx/xdb are all very similar debuggers
— All require compiling code with ‘-g’ option
— gdb is from GNU and will understand any supported language

 e.g. C, C++, F77, Pascal, F90 etc.
« Based on C so F90 arrays and derived types can seem a bit odd ...

— Graphical Front-ends are also available (e.g. kdbg)

— gdbgui has some very nice features for spotting troublesome
data — will display current value of scalar if “hover” cursor over
text in source, or plot a 1D arrays

— Also built into some editors e.g. emacs M-x gdb

* Some compilers come with own debugger e.g. Intel
compilers come with idb debugger

« Parallel debugger (e.g. TotalView or DDT) harder!

C | ® 127.0.0.1

gdbgui in action

hide filesystem | fetch disassembly ' reload/hide disassembly | intel

Fetch source files

Expand all | Collapse all | Reveal current file

2 known files used to compile the
inferior program

Nidg say something;
.ptr say something;
.unionint H
.uniondouble

printf("i is %d aa b B

if (!strcmp(s.string,

printf(“returning %d s

say something("Goodbye");

return retval;

retval);

ad/git/gdbgui/examples/c/hello.c:32 (61 lines total)

movss
movss %
movq
movq
movl
movsd
movsd

addl

cmpl

jle <main+122>
mov - %rbp) ,%eax
mov %eax,%esi

mov $,%sedi

mov $., %eax

callg <printf@plt:

mov - (%rbp
mov $
mov %rax,%rdi

callg <strcmp@plt:

test %eax,%eax
jne <main+180>
movl $ - (%rbp)

<printf@plt:

mov $ di

callg <say someth
mov - (%rbp) , %eax
leaveq

retq

reverse O

~ m process 27744, core 1, stopped, id 1

func file addr
say_something hello.c:6
main hello.c:58

¥ local variables

argc: 4

+ argv:

retval: O

S R

value:160

letter:80

+ string:

+ substruct:{...}

- <anonymous struct>:{...}
fp:123.400002

ptr:
struct size:4195520
- <anonymous union>:{...}
unionint:0
uniondouble:1
> expressions
> Tree
V¥ memory

0x400738 0x400757 16

address hex

more
48 65 6C 6C 6T 20 57 6Ff 72 6C 64 00 70 61 73
00 69 20 69 73 20 25 64 6a 00 72 65 74 75 72

more

V' breakpoints
v

/home/chad/git/gdbgui’/examples/c/hello.c:32

v

[0 gdbgui-gdbinabr: x
C ® 127.0.01

Load Binary xamples/cpp/sin_cpp.a

fetch disassembly | reload file/hide disassembly | /home/csmith/git/gdbgui/examp /sin.cpp:13

<math.h>
sin.cpp:13

Vv local variables

RAD TO DEG: 0.017453292500000002
angle: 380

result: -7.1795860596832236e-09
V' expressions

push %rbp main()
mov %rsp,%rbp main()
sub $,%rsp main()
double angle , result - pxor %xmm@,%xmmo main()
)
)
)

+0
+1
+4
+8

movsd %xmmO, - (ssrbp) main()+12 result

pxor %xmm@,%xmmo main()+17

movsd %xmmo, - (%rbp) main()+21 result:-7.1795860596832236e-09

static const double RAD_TO DEG Lt

while (angle H jmp <main()+26> main()+90

result - sin(angle ' RAD _TO_DEG); movsd (%rip) ,%xmm@ # <_ZZ4mainE1ORAD_TO DEG>m

mulsd - (%rbp) , %xmm@ main()+49
callq <sin@plt> main()+54
movq %xmme@,%srax main()+59
mov %rax, - (%rbp) main()+64
movsd - (%rbp) , %xmml main()+68
movsd (%rip) ,%xmm@ # main()+73
addsd %xmml,%xmmO main()+81 i

)+85 o

Tree

memory

0x400642 0x400661

movsd %xmmo@, - (%rbp) main(

mov $,%eax main()+92
leaveq main()+97
retq main()+98

address hex
more
b8 60 060 00 00 c9 c3
1f 80 00 00 00 00 41 57

41 56 41 89 ff 41 55 41 AVA. .AUA
ow configuration" for configuration detal

For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.

Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.

For help, type "help".

Type "apropos word" to search for commands related to "word".

(gdb) t inferi 1

kdbg in action

H cinelerra — KDbg VoA e

File Edit View Execution Breakpoint Settings Help

HQ o DL onMHE @ X

main.C mwindow.C Locals <o @
© 20 batch_path); ~ |1 variable Value
+ 287 break;
+ 288 } - mwindow
+ 289 o h
+ 290 case DO_GUI: <Thread>
+ 291 { >~ _vptrThread 0x7a1c90 <vtable for MWindow+16>
@+ 292 MWindow mwindow;
+ 293 mwindow.create_objects(1, synchronous 1
+ 294 ! filenames. total, realtime 0
+ 295 config_path);
+ 296 autodelete 0
+ 297 // load the 1initial files on seperate tracks (hread_running 0
+ 298 if(filenames.total) .
+ 299 { tid 18446744073709551615
+ 300 mwindow. gui->lock_window("main"); tid_valid 0
+ 301 mwindow. load_f1ilenames(&filenames, LOAD_REPLACE); | bled
+ 302 if(filenames.total == 1) cancesenavie 0
+ 303 mwindow. gui->mainmenu->add_load(filenames.val > - playback__3d 0xf4e330
+ 304 mwindow. gui->unlock_window() ;
+ 385 } >« remove_thread 0xf41bb0
+ 366 >« splash_window 0x0
+ 307 // run the program . . N
B+ 308 mwindow.start();
@ + 309 mwindow.save_defaults(); Watches & 9
+ 310 break;
+ 301 } (*argv)@2 Add Del
+ 312 })
+ 313 Expression Value
+ 314 filenames.remove_all_objects(); - (%
+ 315 delete EDL::id_lock; l Cargvi@2
+ 316 EDL::id_lock = 0; [0] 0x7fffffffeSb4 "/usr/local/bin/cinelerra”
+ 317 delete Garbage::garbage; , N 5w [1] 0x0
.
Breakpoints < Q Threads <o @
Add Breakpoint Thread ID Location
P> Thread Ox... main (argc=1, argv=0x7fffffffe148) at ../../../git/cine...
Location Address Hit Igr Condition Add Watchpoint Thread 0x... poll () from /lib64/libc.s0.6
@ in main(int, char**) at .././../g... Ox61a7fe 1 . Thread Ox... pthread_cond_wait@@GLIBC_2.3.2 () from /lib64/li...
. . emove
@ in main(int, char**) at ./../../g... 0x61b096 1 Thread Ox... poll () from /lib64/libc.s0.6
@ in main(int, char**) at/../g... 0x61b16f Disable Thread Ox... poll () from /lib64/libc.s0.6
@ in Mwindow::~MWindow() at 0x646564 Thread Ox... pthread_cond_wait@@GLIBC_2.3.2 () from /lib64/li...
View Code Thread Ox... pthread_cond_wait@@GLIBC_2.3.2 () from /lib64/Ii...
. Thread 0x... poll () from /lib64/libc.s0.6
Conditional...)
Thread 0x... poll () from /lib64/libc.s0.6
Stack Memory | Registers | Breakpoints Output Thread 0x... pthread_cond_wait@@GLIBC_2.3.2 () from /lib64/Ii...

active

Backwards Debuggers

* |f your code runs and then crashes it may
produce a core dump

— If it came from a ‘-g° compiled binary then can
oad the core file in a debugger to find out what
iIne/function triggered the crash

« ‘backwards debugger’ does more

— lets you run your code backwards in time from
crash, inspecting variables, etc.

— Slow but can be invaluable!

Memory Access/Leak Profiling

* What if your code is syntactically correct but
produces random crashes?

— One possibility is improper use of memory

« either trying to access an area of memory that is not under your
control (e.g. array bounds error)

« or which has not been properly initialised (e.g. reading an element
of an array that has never been written)

Or runs for a while and then crashes?

— One possibility is running out of memory due to a memory
leak

 E.g. alocal routine requires some temporary storage, so allocates
some memory but fails to deallocate it afterwards, so second call
creates another copy, etc.

» Easy to diagnose and fix using a memory

access/leak profiling tool, such as “valgrind” or
“google-perftools”.

Valgrind Usage

* Works with programs written in any language

— Uses dynamic binary translation so no need to modify,
recompile or relink code — even works with binaries for
which you do not have the source!

— Targeted at programs written in C and C++, because
programs written in these languages tend to have the
most memory bugs! But can also be used with Java,
Perl, Python, Fortran, etc — alone or in any
combination.

« Can combine valgrind with gdb
— attach it to program at the point(s) where errors are
detected, so that you can examine code & variables
» Slows down program — valgrind uses a “synthetic

software CPU” so slowdown might be 5 — 100
times.

Valgrind Features

Memcheck detects memory-management problems
by monitoring all reads/writes of memory & uses of

malloc

— Catches use of uninitialised memory, using inappropriate
areas of memory, memory leaks, etc. giving code line number
at which error occurred. Reqmres a lot of memory and slows
down code by 10-30x.

Cachegrind profiles cache usage to pinpoint source of

cache misses etc giving line numbers, etc.
— Slows down code by 20-100x.

Massif is a heap profiler

— Takes regular snapshots of the heap to produce graph of
heap usage over time, and identifies which parts of the code
are responsible for the most memory allocations. Slowdown ~
20x

Used by coders working on developing new
versions of Firefox, OpenOffice, KDE, GNOME ...

] % Valkyrie - [o]x]
Va I g rl n d File Tools Options # Run W Stop @ﬂdp K?

(; U I S HH—EL Wz A =] Log File % Save Log M Supp'n Editor

#-UNV [1]: Use of uninitialised value of size 4 ;'

EEUNV [1]: Use of uninitialised value of size 4

Valkyrie

—l-at strcmp in mac_replace_strmem.c:330

: }
° Valg rlnd IS a A STRCMP(m_libc_so_6, stremp)
. STRCMP(m_1d_linux_x86_64_so_2, strcmp)
command line
. . ~Address 0x11AD87B4
appllcatlon . ~by _dl_catch_error in /lib/1d-2.3.3.so0

_dl_open in /lib/tls/1libc-2.3.3.s0

Varlous ~by do_dlopen in /lib/tls/libc-2.3.3.s0
graphical ~by _dl_catch_error in /lib/1d-2.3.3.s0

by __libc_dlopen_mode in /lib/tls/libc-2.3.3.s0

frOntendS eXiSt ~by __nss_lookup in /lib/tls/libc-2.3.3.s0 =

by __nss_passwd_lookup in /lib/tls/libc-2.3.3.s0

eg Valkyne Or by getpwuid_r@@GLIBC_2.1.2 in /lib/tls/libc-2.3.3.s0

~by getpwuid in /lib/tls/libc-2.3.3.s0

KcaCheg rind - Address O0x1000DA58 in /bin/ls

#-UNV [1]: Use of uninitialised value of size 4

+-UNV [1]: Use of uninitialised value of size 4 LI

valgrind output | client stdout | client stderr

Memcheck: Parsing complete

Memcheck Cachegrind Massif Fbl

OProfile and Statistical Profiling

 gprof can slow down code by 20% by
constantly interrupting flow of execution

— Valgrind is x15 slower
* OProfile uses the hardware counters in
modern CPUs to do statistical profiling
— No recompilation required
— Needs Linux kernel support
— No runtime overhead
— Can combine with KCachegrind for GUI
— See https://www.mjr19.org.uk/sw/op2kcg/ for more

Coverage Analysis

* S0, your code appears to be free of bugs. Is it
then safe to use?
— Depends on how well tested it is!

— Do you know how much of the functionality of the
code was exercised in each test? All of it?

— In a complex project, it is very easy for certain
branches of the code to escape testing!
« Need a “coverage analysis” tool

« To identify any “cold-spots” — lines of code that were
not executed. Might indicate a bug in conditional logic
or the need for tests with different inputs, etc.

— Might also identify “hot-spots” — lines of code that
have been executed many times — hence useful for
profiling — see “profiling” lecture for more details.

— Can use gcov with GNU or icov with Intel
— Also GUI such as 1cov or icov with HTML o/p

lcov

@ build.softeng-support.ac.uk X
CCPForge. Bitbucket interesting |... geomopt |... https://buil... \textbf{Tem... Longbow MMM Hub GitHub - c... Molecular O... +
Back to default-branch--GCC-5.4-MPI-coverage | index Zip
LCOV - code coverage report
Current view: top level Hit Total Coverage
Test: castep.info Lines: 94624 164231 57.6 %
Date: 2017-11-01 Functions: 2008 3168 634 %
Directory Line Coverage Functions
Source 551 % 1322/2401 743 % 26/ 35
. 48140/
Source/Functional 573 % 84049 69.8 % 1024 / 1466
Source/Fundamental 62.8 % 40840/ 703 % 748 / 1064
64992
Source/Utility 339 % 4322 /12759 348 % 210/ 603
obj/linux_x86_64 gfortran5.0--coverage-mpi 0.0 % 0/30 - 0/0

Generated by: LCOV version 1.10

[Intel® Compilers code-c X

e

. O

(& 0 ‘(DfiIe:///C:/Users/mijp1/DownIoads/Coverage_Report_(InteI)/Coverage_Report_(Intel)/_HOME_JENKINS_WORKSPACE_CASTEP_DEFAULT-BRANCH--INTEL17.4-SER|AL-COVERA... px g

A @D

uncovered functions

blocks function

21 castep IP calc ionic polarisation
431 castep 1P castep calc aporox wwfn
184 castep 1P castep calc polarisation
12 castep IP efficiency description

31 castep IP initialise oep

321 castep IP numeric forces

100 castep IP numeric stress

173 castep IP write atomic density diff
66 castep IP write eigenvalues xml
87 castep IP write orbitals

covered functions

coverage function

59.62 (372/624) MAIN

42.25 (148/350) castep 1P calculate dipole
58.12 (161/277) castep IP calculate finite basis corr
72,72 (24/33) castep IP castep bib

100.00 (18/18) casteo IP castep calc storage
84.17 (117/139) casten IP castep elf

71.15 (27/52) castep IP castep finalise

$6.72 (59/61) castep IP castep report storage
6.16 (17/276) castep 1P castep trace outout
6.10 (5/82) castep 1P check blas works
£3.45 (116/139) castep IP check bond lengths
51.64 (63/122) castep IP check elec ground state
64,32 (128/139) castep IP check forces stresses
83.82 (114/136) castep IP check memory

€9.42 (109/157) castep IP check print help

100.00 (22/32) castep IP estimated nplwv
§7.50 (21/24) castep 1P get peak memory
65.31 (22/43) castep IP global kpoint index
41.46 (17/41) castep IP output kpoints

44,35 (51/205) castep IP regenerate wvfn

€O AC (BN2/TEAN rarémm TN riim hand ~eecmbies

zoy

264)
265)
266)
267)
268)
269)
270)
271)
272)
273)
274)
275)
276)
277)
278)
279)
280)
281)
282)
283)
284)
285)
286)
287)
288)
289)
290)
291)
292)
293)
294)
295)
296)
297)
298)
299)
300)
301)
302)
303)
304)
305)
306)
307)
308)
309)
310)
311)
312)
313)
314)
315)
316)
317)
318)
319)
320)
321)
322)

TOVOMT CW UL oo U xony

! We have now read the .param file so can check whether profiling has been requested;
! set default profiling back to false, then check for specific conditions to switch it on
call trace_set_profile(.false.)

if(io_code_present('PROFCLASS',current_params¥devel_code)) then
tag_pos = index(current_params¥%devel_code, ' :ENDPROFCLASS")

if(tag_pos<=@) call io_abort('Error in current_params%devel_code -- PROFCLASS: has no corresponding

! Copy string before PROFCLASS:
if(tag_pos>1) trace_string = current_params¥%devel_ code(1l:tag_pos-1)

! Insert comms classes

if(.not.io_code_present('COMMS *,current_params¥devel_ code, 'PROFCLASS')) &
& trace_string = trim(adjustl(trace_string))//' COMMS'

if(.not.io_code_present('COMMS_GV',current_params¥%devel_code, 'PROFCLASS')) &
& trace_string = trim(adjustl(trace_string))//' COMMS_GV'

if(.not.io_code_present('COMMS_BND',current_params¥devel_code, 'PROFCLASS')) &
& trace_string = trim(adjustl(trace_string))//' COMMS_BND'

if(.not.io_code_present('COMMS_KP',current_params¥%devel_code, 'PROFCLASS')) &
& trace_string = trim(adjustl(trace_string))//' COMMS_KP'

if(.not.io_code_present('COMMS_FARM',current_params%devel_code, '"PROFCLASS")) &
& trace_string = trim(adjustl(trace_string))//' COMMS_FARM'

! Copy string after :ENDPROFCLASS
trace_string = trim(adjustl(trace_string))//' '//current_params¥%devel_code(tag_pos:)
else
trace_string = trim(adjustl(current_params¥devel_code))// &
& ' PROFCLASS: COMMS COMMS_GV COMMS_KP COMMS_BND COMMS_FARM :ENDPROFCLASS'
end if

call trace_set_profile_condition(trace_string)
! call trace_set_profile(.true.)
! call trace_set_debug(.true.)

!check devel code for pair potential testing (case insensitive)

if (index(current_params¥devel_code, 'PP=T")/=@) ab_initio=.false.

if (.not.ab_initio) then
current_params¥%nelectrons=2.0_dp
current_params¥%nup=1.@_dp
current_params¥%ndown=1.0_dp

end if

!save time & memory!

! Check for explicit specification of parallel strategy in devel_code
1

desired_num_in_bnd_group =1

desired_num_in_kp_group -1

desired_num_in_gv_group = -1

parallel_strategy_spec = io_code_block(current_params¥devel_code, 'PARALLEL")
if(parallel_strategy_spec /= ' ') then

! Test for singlular or plural versions, relying on io_code_integer returning -huge for not present.

! Default for desired_num_in_bnd_group is 1; -1 for the others.
desired_num_in_bnd_group = max(io_code_integer(parallel_strategy_spec,'band'),&
io_code_integer(parallel_strategy_spec, 'bands’),1)

desired_num_in_kp_group = max(io_code_integer(parallel_strategy_spec, 'kpoint'),&
io_code_integer(parallel_strategy_spec, 'kpoints'))
desired_num_in_gv_group = max(io_code_integer(parallel_strategy_spec, 'gvector’),&

:ENDPROFCLASS ')

Version Management

* S0, code appears to be free from bugs and
has been thoroughly tested. What then?

— Archive it to CD? Put it on the Web?

— What if you want to add more features at a later
date? What if you want other people to help
with the coding?

* Need a version management tool!

— Git is a powerful (unfriendly) command-line tool
— developed for managing the Linux kernel

— Github is an easier (!) way to use git

— Other popular VCS include mercurial (used by
mozilla) and subversion (used by apache)

— Also BitBucket as web client for mercurial, etc.

Version Management Features

* Record the history of your source files.

— The first version of each file is stored completely and then for
subsequent revisions only the differences are stored. Saves
a lot of disk space!

— Can easily retrieve any stored version of each file at any
later time, e.g. if a modification introduces a bug which is not
spotted immediately, can backtrack through different
versions, repeating the tests to see when the bug appeared,
and hence find the offending code & fix the bug.

« Eases group working — multiple people on one project

— What if you find and fix a bug, but someone else also finds
and fixes the same bug but in a different way? Which version
of the code should be used? What if two people want to
modify the same file at the same time? Need to have access
control and/or locks — say who is allowed to make changes —
and a mechanism for merging differences.

Mercurial Features

* hg does all of the above and more

— Can use as a simple way of archiving project as it
develops: create a repository, add files, make
changes, commit changes (or revert), browse old
versions, etc.

— Allows multiple users to work with a central
repository and clone a local copy to work from, and
decide when to pull/push changes to main repository

— Built in facilities for merging changes and managing
conflicting modifications

— Works with change sets not individual files so better
at keeping things in sync

— Can tag any version to make it easy to get a release

— Can have multiple branches with different
developments

— Command-line tool with many GUIs e.g. tortoiseHg

Example Mercurial

Create a repository (hidden directory called .hg) in
current dir: hg init

Add all files in current directory to repository:hg add
Save current state of all files to repository: hg commit
Show current state of all files in repository: hg log

Revert changes (previous state of all files) to repository:
hg revert

Check out any particular state of repository. hg update

This is for a local repository. Can also use a remote
repository.
See man hg’ for more details and other options

& CASTEP-develop.hg - TortoiseHg Workbench

ObLFe» A LsSERBQvyOEIR B °F o os
Graph Rev Branch ' Description Author Age Tags Pk
6542+ default 3 Working Directory % Matt Probert now
6542 default default tip Relaxed some testcode tolerances for Si2-spectral and MD. Dominik Jochym 3 days tip
6541 default Updated benchmarks to reflect the new default spin unit in population analysis. Dominik Jochym 5 days
6540 default Changed integrated spin density output to use spin_unit. ... Phil Hasnip 6 days
6539 default changed default spin_unit to hbar/2 and name from 'es’ to 'hbar/2' Matt Probert 6 days
6538 default adding missing 'modified' status to devel_code for parameters_reread Matt Probert 13 days
6537 default Added public subroutines model_copy and hubbard_copy. Phil Hasnip 2 weeks
6536 default Generalised (S-)normalisation of Fourier-filtered wave function for USPP. Peter Brommer 2 weeks
6535 default Updated gfortran/icov rules to work around problem with MPI coverage run Keith Refson 3 weeks
6534 default Fix for degenerate mode-handling in Raman calculation [#1006] ... Keith Refson 3 weeks
6533 default moved XL_BOMD parameters from devel_code to current_params within md.f90 Matt Probert 3 weeks
6532 default Remade benchmarks for constrained geom opt; ... Keith Refson 4 weeks
6531 default Added CASTEPconv to list of files bundled into distribution tarball Keith Refson 4 weeks

-

Show All |### filter text ###

] i+ Changeset: 6533 (ebclec2ce53f) changed default spin_unit to hbar/2 and name from 'es' to 'hbar/2'

Source/Fundamental/parameters.f90 changed default spin_unit to hbar/2 and name from ‘es’ to “hbar/2’
Source/Utility/io.F90

» -’

.+‘ H # 4 . Source/Fundamental/parameters.f90

89 -1174,7 +1174,7 @9
current_params¥charge_unit=io_uppercase(current_params¥charge_unit,"' ')
end if

current_params¥spin_unit = "HBAR'
current_params¥spin_unit = "HBAR/2'
if (kevword nresentCikev snin unit)) then

+ 1

Generic Resources

GNU for gcc/gfortran/gmake/emacs/gdb etc at
http://www.gnu.org

NETLIB for many excellent libraries (e.g. BLAS,
LAPACK, ATLAS, etc) at http://www.netlib.org

Valgrind — a free debugger/profiler/leak detector for x86
_inux at http://valgrind.org

ntel free software (Fortran, C++, MKL, Vtune, etc) at
nttps://software.intel.com/en-us/qualify-for-free-software

AMD compiler suite (including Clang & Flang) at
https://developer.amd.com/amd-aocc/

Mercurial homepage is at https://mercurial-scm.org
EPSRC-supported initiatives include
https.//www.software.ac.uk

http://society-rse.org

FORTRAN Specific Resources

See PGl for CUDA and OpenACC support at
nttps://developer.nvidia.com/openacc-toolkit

_inux Fortran Information page at
nttp://www.nikhef.nl/~templon/fortran.ntml

~PT is at http://www.simconglobal.com

-ORCHECK is at https://codework.com/solutions/
developer-tools/forcheck-fortran-analysis/

Commercial Fortran products and support at
http://www.polyhedron.com

Fortran compiler list — lot more than just gfortran —
at https://fortran-lang.org/en/compilers/

https://codework.com/solutions

