
High Performance Computing
- Tools

Prof Matt Probert
http://www-users.york.ac.uk/~mijp1

Overview
• Compilers
• Libraries
• Static Analysis
• Debuggers
• Memory Access/Leak Profiling
• Coverage Analysis
• Version Management

Compilers
• The compiler is of primary importance in coding

– A good optimising compiler will know about the
underlying hardware and how best to re-write your
code for optimal efficiency

• Know what your compiler can do
– Typically can have very large and complex set of

flags/switches to fine-tune behaviour
– READ THE MAN PAGE! On my old Alpha ‘man f90’

gave ~4000 lines of terse description of the command,
including 93 principal switches and 493 sub-options!

– gfortran is sneaky – only 979 lines and 291 options, but
there are many more lurking in the gcc & ld manpages!

– Check carefully what is the default behaviour – varies
between compilers!

Compiler Flags
• Of course, not all compilers or languages support

all flags on all platforms, but some that are very
common and useful [syntax may vary] include:
f90 –g –C –std08 –O0 myprog.f90

Þ(-g) include extra debugging info in binary
Þ(-C) turn on run-time bounds checking (array limits, etc) [NOT

C/C++]
Þ(-std08) turn on strict standard compliance checking
Þ(-O0) disable all optimisation

f90 –c myprog.f90
Þcompile and do not link – useful if want to split source across

different source files and then link them at end – good with
“make” tool

f90 –o myprog –O myprof.f90
Þ(-o) name output file “myprog” and not default (e.g. a.out)
Þ(-O) use default optimisation (typically safe code transformations

that should not change any numerical results – see later lectures)

More Compiler Flags
f90 –pg myprog.f90

Þ(-pg) include extra code in binary for profiling with “gprof”

f90 –check … –show … -warn … myprog.f90
Þ(-check) enable additional runtime checking, e.g. trapping

over/underflow, bounds checking, etc.
Þ(-show) enable additional compiler output to separate listing file
Þ(-warn) enable additional compiler checks, e.g. warn about

argument mismatch in procedure calls, about using uninitialised
variables, etc.

f90 –arch … myprog.f90
Þ(-arch) specify which version of CPU to generate code for –

generic, host, or a particular generation. Use additional
instructions found only in later CPUs and hence not run (without
emulation) on older ones.

Pre-processor
Conditional compilation can be useful.

program testpp
implicit none

#ifdef debug
write(*,*)‘Code was compiled

with -Ddebug'
#endif
end program testpp

N.B. to invoke pre-processor
Fortran extension must be
.F90 not .f90

#include <stdio.h>
void main() {
#ifdef debug

printf("This code was compiled with -debug\n");
#endif
}

Compile with e.g.

f90 –Ddebug mycode.F90

cc –Ddebug mycode.c

Example of Pre-Processor Usage
#ifdef BLAS

! C = A X B using BLAS where A=MxK & B=KxN
call

dgemm('N','N',m,n,k,1.0_dp,A,m,B,k,0.0_dp,C,m)

#endif

#ifndef BLAS

! C = A X B using F90 intrinsic MATMUL
C = MATMUL(A,B)

#endif

Choosing a Compiler
• What if there is more than one compiler available?

How do you choose which is best?
– Benchmark standard codes
– Library support
– Adherence to language definition standards
– Bug detection proficiency?
– Cost?

• See e.g. http://www.polyhedron.com for some useful
Fortran compiler comparison tables

• Intel compiler generates fast code on Intel hardware
but crippled (deliberately) on AMD. AOCC?

• GNU compilers produce good code everywhere but
not so hardware specific.

• Portland Group good for GPU programming
• NAG best for standards compliance and testing

Automating Compilation
• Use make (or gmake)

– Very common and useful utility for automating a
sequence of tasks with varying dependencies

• Very useful with multi-file projects
– Good idea to split a large, complex source file into

smaller, simpler ones, e.g. one module/file
– A Makefile is a list of targets and dependencies

• To build executable need to compile all source files in
some appropriate order

• But if edit one source file, should only need to recompile
that one and any others that depend upon it

• Hence big time saver for large projects
• Can use for other tasks too, e.g. creating documentation

from LATEX source files – make thesis – etc.

[mijp1@ludwig tmp]$ make

g95 -O2 -c -o global.o global.f90

g95 -O2 -c -o input.o input.f90

g95 -O2 -c -o set.o set.f90

g95 -O2 -c -o initial.o initial.f90

g95 -O2 -c -o timer.o timer.f90

g95 -O2 -c -o tridia.o tridia.f90

g95 -O2 -c -o gamma.o gamma.f90

g95 -O2 -c -o output.o output.f90

ar r libdiffuse.a global.o input.o set.o initial.o timer.o tridia.o gamma.o output.o

rm global.o input.o set.o initial.o timer.o tridia.o gamma.o output.o

g95 -O2 -c -o diffuse.o diffuse.f90

g95 -o /home/mijp1/bin/diffuse.exe diffuse.o -L/home/mijp1/diffuse -ldiffuse /

-L/usr/local/lib -lhrgf77

[mijp1@ludwig tmp]$ touch output.f90

[mijp1@ludwig tmp]$ make

g95 -O2 -c -o output.o output.f90

ar r libdiffuse.a global.o input.o set.o initial.o timer.o tridia.o gamma.o output.o
g95 -o /home/mijp1/bin/diffuse.exe diffuse.o -L/home/mijp1/tmp -ldiffuse /

-L/usr/local/lib -lhrgf77

First full compilation

‘top up’ compilation

Libraries
• One way of improving your code in terms of

efficiency and functionality – in a (hopefully) error-
free way – is by using libraries.
– Simple to create your own libraries using ar command
– Can link libraries to your code using compiler flags (-L

and -l)
– Can download ready-written libraries from NetLIB, etc.
– Your O/S and/or compiler may well come with its own

version of some common libraries, e.g. BLAS and
LAPACK are included within the Intel MKL (Math Kernel
Library) and within ACML (AMD Core Math Library), and
should be vendor-optimised to the underlying hardware
for maximum efficiency …

Common Free Libraries (I)
• BLAS (Basic Linear Algebra Subprograms)

– A portable interface to various "building block" routines
for performing basic vector and matrix operations. Level
1 does vector-vector operations, Level 2 does matrix-
vector operations, and Level 3 does matrix-matrix
operations. Often vendor optimised and used as basis
for LAPACK, etc. L3 best for arithmetic intensity ...

• LAPACK (Linear Algebra Package)
– Routines for solving systems of simultaneous linear

equations, least-squares solutions of linear systems of
equations, eigenvalue problems, and singular value
problems, etc. in real and/or complex form.

– Special versions exist for dense and banded matrices
but not sparse matrices – see ScaLAPACK instead.

– Designed for efficiency on serial, shared-memory
vector and parallel processors by using block-matrix
approach based upon Level 3 BLAS wherever possible.

Common Free Libraries (II)
• ATLAS (Automatically Tuned Linear Algebra Software)

– A version of BLAS which attempts to self-tune itself for
maximum performance on the given hardware upon installation
(fine-tuning block-sizes for cache size, etc).

• OpenBLAS
– Good all-round performance on most platforms

• FFTW (Fastest Fourier Transform in the West)
– A portable FFT library that is comparable in performance to

(non-portable) vendor-tuned libraries – http://www.fftw.org
• CDF (Common Data Format)

– A library and toolkit for storing, manipulating, and accessing
multi-dimensional data sets in a device independent manner –
see http://cdf.gsfc.nasa.gov/ . See also NetCDF and HDF

• FoX-XML (Fortran library for XML)
– A library to read/write/modify XML and derivatives, e.g. CML

and KML – see http://www1.gly.bris.ac.uk/~walker/FoX

Commercial Libraries
• NAG (Numerical Algorithms Group)

– A commercial library that is commonly available at
many HPC centres. Not cheap. Also compilers.

– “Spin-out” from academia – http://www.nag.co.uk
– Contains many high-level routines and has been

regularly updated since 1971 for latest algorithmic
developments.

– Includes roots of polynomials, sum of series,
numerical integration and differentiation, ODE and
PDE solvers, curve fitting, optimisation, linear
algebra (includes LAPACK), statistics, sorting,
special functions, random number generators, etc.

Static Analysis
• A way of detecting coding errors/standard

extensions/anomalies by detailed examination of
code without execution
– “lint” is a standard C-code static analyser that helps

remove all the fluff in your code (hence name), e.g.
assignment of long variables to short, unreachable areas
of code, uninitialised variables & functions, etc.

– FortranLint is commercial equivalent
– Linter-gfortran has just been released under MIT licence
– “Forcheck” and “FPT” are commercial packages that

does same (and more) for FORTRAN – very useful! Can
also be useful when inheriting existing/legacy code –
generates cross-reference tables of each program unit,
the complete program and produces a call-tree.

Forcheck Output …
-- file: geometry.F90

- program unit: GEOM_FUNCS

IERR
(file: geometry.F90, line: 97)
**[681 I] not used

ITER
(file: geometry.F90, line: 425)
**[323 I] variable unreferenced

RANDOM_UNIFORM_RANDOM
(file: geometry.F90, line: 420)
**[674 I] procedure, program unit, or entry not referenced

PRESSURE_TOL
(file: geometry.F90, line: 668)
**[313 I] possibly no value assigned to this variable
if (gg == 0.0) return
(file: geometry.F90, line: 683)
**[342 I] eq.or ineq. comparison of floating point data with
zero constant

Debuggers (I)
• What is a debugger?

– A special tool used to help find bugs in your code!
• Typically allows you to:

– Interact with code whilst executing and see source at
the same time, so can

• start program and stop it at any point in its execution by setting
breakpoints, and then

• examine/modify values of variables/memory/structures, and/or
• examine state of call stack, and/or
• set watches on variables/conditions, and then
• continue execution until next interrupt

• Can also use to extract useful information from a
“core dump” if program has crashed
– e.g. find line number of crash

Debuggers (II)
• gdb/dbx/xdb are all very similar debuggers

– All require compiling code with ‘-g’ option
– gdb is from GNU and will understand any supported language

• e.g. C, C++, F77, Pascal, F90 etc.
• Based on C so F90 arrays and derived types can seem a bit odd …

– Graphical Front-ends are also available (e.g. kdbg)
– gdbgui has some very nice features for spotting troublesome

data – will display current value of scalar if “hover” cursor over
text in source, or plot a 1D arrays

– Also built into some editors e.g. emacs M-x gdb

• Some compilers come with own debugger e.g. Intel
compilers come with idb debugger

• Parallel debugger (e.g. TotalView or DDT) harder!

gdbgui in action

kdbg in action

Backwards Debuggers
• If your code runs and then crashes it may

produce a core dump
– If it came from a ‘-g’ compiled binary then can

load the core file in a debugger to find out what
line/function triggered the crash

• ‘backwards debugger’ does more
– lets you run your code backwards in time from

crash, inspecting variables, etc.
– Slow but can be invaluable!

Memory Access/Leak Profiling
• What if your code is syntactically correct but

produces random crashes?
– One possibility is improper use of memory

• either trying to access an area of memory that is not under your
control (e.g. array bounds error)

• or which has not been properly initialised (e.g. reading an element
of an array that has never been written)

• Or runs for a while and then crashes?
– One possibility is running out of memory due to a memory

leak
• E.g. a local routine requires some temporary storage, so allocates

some memory but fails to deallocate it afterwards, so second call
creates another copy, etc.

• Easy to diagnose and fix using a memory
access/leak profiling tool, such as “valgrind” or
“google-perftools”.

Valgrind Usage
• Works with programs written in any language

– Uses dynamic binary translation so no need to modify,
recompile or relink code – even works with binaries for
which you do not have the source!

– Targeted at programs written in C and C++, because
programs written in these languages tend to have the
most memory bugs! But can also be used with Java,
Perl, Python, Fortran, etc – alone or in any
combination.

• Can combine valgrind with gdb
– attach it to program at the point(s) where errors are

detected, so that you can examine code & variables.
• Slows down program – valgrind uses a “synthetic

software CPU” so slowdown might be 5 – 100
times.

Valgrind Features
• Memcheck detects memory-management problems

by monitoring all reads/writes of memory & uses of
malloc
– Catches use of uninitialised memory, using inappropriate

areas of memory, memory leaks, etc. giving code line number
at which error occurred. Requires a lot of memory and slows
down code by 10-30x.

• Cachegrind profiles cache usage to pinpoint source of
cache misses etc giving line numbers, etc.
– Slows down code by 20-100x.

• Massif is a heap profiler
– Takes regular snapshots of the heap to produce graph of

heap usage over time, and identifies which parts of the code
are responsible for the most memory allocations. Slowdown ~
20x

• Used by coders working on developing new
versions of Firefox, OpenOffice, KDE, GNOME …

Valgrind
GUI =

Valkyrie
• Valgrind is a

command line
application.
Various
graphical
frontends exist
e.g. valkyrie or
KCachegrind

OProfile and Statistical Profiling
• gprof can slow down code by 20% by

constantly interrupting flow of execution
– Valgrind is x15 slower

• OProfile uses the hardware counters in
modern CPUs to do statistical profiling
– No recompilation required
– Needs Linux kernel support
– No runtime overhead
– Can combine with KCachegrind for GUI
– See https://www.mjr19.org.uk/sw/op2kcg/ for more

Coverage Analysis
• So, your code appears to be free of bugs. Is it

then safe to use?
– Depends on how well tested it is!
– Do you know how much of the functionality of the

code was exercised in each test? All of it?
– In a complex project, it is very easy for certain

branches of the code to escape testing!
• Need a “coverage analysis” tool
• To identify any “cold-spots” – lines of code that were

not executed. Might indicate a bug in conditional logic
or the need for tests with different inputs, etc.
– Might also identify “hot-spots” – lines of code that

have been executed many times – hence useful for
profiling – see “profiling” lecture for more details.

– Can use gcov with GNU or icov with Intel
– Also GUI such as lcov or icov with HTML o/p

lcov

icov

Version Management
• So, code appears to be free from bugs and

has been thoroughly tested. What then?
– Archive it to CD? Put it on the Web?
– What if you want to add more features at a later

date? What if you want other people to help
with the coding?

• Need a version management tool!
– Git is a powerful (unfriendly) command-line tool

– developed for managing the Linux kernel
– Github is an easier (!) way to use git
– Other popular VCS include mercurial (used by

mozilla) and subversion (used by apache)
– Also BitBucket as web client for mercurial, etc.

Version Management Features
• Record the history of your source files.

– The first version of each file is stored completely and then for
subsequent revisions only the differences are stored. Saves
a lot of disk space!

– Can easily retrieve any stored version of each file at any
later time, e.g. if a modification introduces a bug which is not
spotted immediately, can backtrack through different
versions, repeating the tests to see when the bug appeared,
and hence find the offending code & fix the bug.

• Eases group working – multiple people on one project
– What if you find and fix a bug, but someone else also finds

and fixes the same bug but in a different way? Which version
of the code should be used? What if two people want to
modify the same file at the same time? Need to have access
control and/or locks – say who is allowed to make changes –
and a mechanism for merging differences.

Mercurial Features
• hg does all of the above and more

– Can use as a simple way of archiving project as it
develops: create a repository, add files, make
changes, commit changes (or revert), browse old
versions, etc.

– Allows multiple users to work with a central
repository and clone a local copy to work from, and
decide when to pull/push changes to main repository

– Built in facilities for merging changes and managing
conflicting modifications

– Works with change sets not individual files so better
at keeping things in sync

– Can tag any version to make it easy to get a release
– Can have multiple branches with different

developments
– Command-line tool with many GUIs e.g. tortoiseHg

Example Mercurial
• Create a repository (hidden directory called .hg) in

current dir: hg init
• Add all files in current directory to repository:hg add
• Save current state of all files to repository: hg commit
• Show current state of all files in repository: hg log
• Revert changes (previous state of all files) to repository:

hg revert
• Check out any particular state of repository: hg update

• This is for a local repository. Can also use a remote
repository.

• See ‘man hg’ for more details and other options

Generic Resources
• GNU for gcc/gfortran/gmake/emacs/gdb etc at

http://www.gnu.org
• NETLIB for many excellent libraries (e.g. BLAS,

LAPACK, ATLAS, etc) at http://www.netlib.org
• Valgrind – a free debugger/profiler/leak detector for x86

Linux at http://valgrind.org
• Intel free software (Fortran, C++, MKL, Vtune, etc) at

https://software.intel.com/en-us/qualify-for-free-software
• AMD compiler suite (including Clang & Flang) at

https://developer.amd.com/amd-aocc/
• Mercurial homepage is at https://mercurial-scm.org
• EPSRC-supported initiatives include

https://www.software.ac.uk
http://society-rse.org

FORTRAN Specific Resources
• See PGI for CUDA and OpenACC support at

https://developer.nvidia.com/openacc-toolkit
• Linux Fortran Information page at

http://www.nikhef.nl/~templon/fortran.html
• FPT is at http://www.simconglobal.com
• FORCHECK is at https://codework.com/solutions/

developer-tools/forcheck-fortran-analysis/
• Commercial Fortran products and support at

http://www.polyhedron.com
• Fortran compiler list – lot more than just gfortran –

at https://fortran-lang.org/en/compilers/

https://codework.com/solutions

