The cif2cell manual

Torbjorn Bjorkman

April 26, 2014

Contents
(1__Installation 3
1.1 Requirements| 3
[2 Getting started| 3
2.1 Helpl|. 3
2.2 Thefirstrunl 3
[3 Getting further| 5
[3.1 Cell generation| 6
3.2 Output] e e e 6
[4 Supercell generation| 6
4.1 Basic supercell generation| L. 8
4.2 Advanced supercell generation| L. 9
4.2.1 Cubiccell from feccecelll.o oo 9
|4.2.2 Hexagonal surface supercell 11
[4.2.3 Hexing the cube: Si(111) surface supercell| 11
A Technicalities 17
|A.1 Order in which things are done in the supercell generation|. 17

Introduction — Of CIF’s and Cells

An electronic structure program needs atomic positions and, at least in the case of
band structure programs, unit cell vectors to calculate the electronic structure of a
crystal. Experimental data on the other hand tends to be given as a space group and
a set of irreducible, or wyckoff positions, and are often distributed in the form of CIF
files. There is a wide range of sources of CIF files — it is in fact the standard means
of communicating crystallographic data for virtually everyone outside of the electronic
structure community! Yet far from all electronic structure programs can read the CIF
format, and from this circumstance a small set of convenience scripts one day turned
into the program cif2cell.

What the program does is simply to take the crystal structure information in a CIF
file, typically space group information and a set of irreducible coordinates, and then
set up a calculation cell which is then output to your favourite electronic structure
program (ESP). As you are probably aware, the choice of calculation cell for a given
crystal is arbitrary and infinitely many possibilities exist for any given crystal. Perhaps
the simplest example is when a problem requires us to set up a supercell, which is
just describing the same crystal in a different cell than the primitive one, but even the
primitive cell can often be chosen in many different ways. cif2cell contains working
solutions for choices of primitive cells for (almost) any possible crystal and will make a
choice automatically. You may choose either the primitive cell for the given structure,
such as the rhombohedral cell with one atom for fcc Cu, or the conventional cell, a
cubic cell with four atoms for fcc Cu. These cells can then be used as building blocks
for generating supercells by multiplying them up and/or inputting extra vacuum in the
structure.

This manual is intended as a document for computational physicists and materials
scientists. The problems that you solve when generating a computational cell from
crystallographic data belongs to the field of crystallography and the program is not
intended to replace a working knowledge of basic crystallography. Remember this, and
refer to your textbook in crystallography or solid state physics/chemistry when you get
confused and your life with cif2cell will be happy.

The code was published in |Computer Physics Communications 182, 11831186
(2011), please cite generously. Happy computing!

Torbjorn Bjorkman

http://dx.doi.org/10.1016/j.cpc.2011.01.013
http://dx.doi.org/10.1016/j.cpc.2011.01.013

1 Installation

1.1 Requirements

cif2cell requires Python 2.4 or higher and the PyCIFRW python package[ﬂ Note
however that the output may be slightly different (but equivalent) with Python 2.4 than
with later versions due to differences in the internal sorting routines of different Python
distributions.

To install the program in your systems standard location, type:

python setup.py install

To choose a different location, add
—--prefix=where/you/want/it

to the above line. For help and more options type

python setup.py --help

2 Getting started

This section is meant to give you a quick overview of how you generate cells to get
you started as quickly as possible. Running cif2cell is quick, so the best way to
learning to work with it is to simply run it over and over, testing different settings
and options until you have what you want. The program comes with a small set of
sample CIF files which can be found either in the source distribution or in the directory
[prefix]/1lib/cif2cell/sample_cifs, where [prefix] is the path where you installed
cif2cell. The examples below assume that you stand in a directory containing these
sample files. In the following, some arbitrary command line input will be specified within
brackets [1ike this]. You are encouraged to run the tests and play around as you read.

2.1 Help!
The quickest way to get help in cif2cell is to type

cif2cell -h

This will list all available input options along with a description.

2.2 The first run

There is only one required piece of input, and that is the CIF file itself which is given
either as an argument to the program:

cif2cell [someoptions] Si.cif [otheroptions]

! Available from http://pycifrw.berlios.de.

and if no output program is specified, the cell information is output to screen:

CIF2CELL 0.4.0

2011-03-25 16:35

Output for Si (Silicomn)

CIF file exported from Inorganic Crystal Structure Database.
Database reference code: 51688.

BIBLIOGRAPHIC INFORMATION
Toebbens, D.M. et al., Materials Science Forum 378, 288-293 (2001)

SYMMETRY INFORMATION
Cubic crystal system.
Space group number 1 227
Hall symbol : Fd4d 2 3 -1d
Hermann-Mauguin symbol : Fd-3mS

INPUT CELL INFORMATION
Lattice parameters:

a b c
5.4305300 5.4305300 5.4305300
alpha beta gamma

90.0000000 90.0000000 90.0000000
Representative sites :
Atom al a2 a3
Si 0.0000000 0.0000000 0.0000000

OUTPUT CELL INFORMATION
Bravais lattice vectors :
0.5000000 0.5000000 0.0000000
0.5000000 0.0000000 0.5000000
0.0000000 0.5000000 0.5000000
A1l sites, (lattice coordinates):

Atom al a2 a3
Si 0.0000000 0.0000000 0.0000000
Si 0.2500000 0.2500000 0.2500000

First there is some information about the program itself and a description of the
compound derived from information in the CIF file. If the file comes from a databases
known to cif2cell, information about that is also printed. Then follows any biblio-
graphic information found in the file. Then starts the actual crystal information with
data about the space group. If the -v or ——print-symmetry-operations flags are given,
all symmetry operations will also be printed here. Next comes the lattice parameters
and representative sites (occupied wyckoff positions), with the the chemical elements
and, in case of an alloy, another column with the site occupancies. Then follows the
things we actually want — the Bravais lattice vectors and all positions of the atoms. In
the case of Si in the diamond structure the result is probably familiar: the standard fcc
lattice vectors and two atoms in the basis, one at (0,0,0) and another in (%, %, %)

Having generated the basic cell we want to export that to our favourite ESP. This
is done by simply giving the option -p espname or --program=espname. The possible
choices for espname can be found in Table [I] where you also find what files will be
generated. Let’s try this out for someones favourite program VASP. Adding the option
-p vasp you will get the above output, properly formatted, to a file called POSCAR:

Generated by cif2cell 0.4.6 from [...] Species order: Si
5.430530
0.500000000000000 0.500000000000000 0.000000000000000
0.500000000000000 0.000000000000000 0.500000000000000
0.000000000000000 0.500000000000000 0.500000000000000
2

Direct
0.000000000000000 0.000000000000000 0.000000000000000
0.250000000000000 0.250000000000000 0.250000000000000

Notice that the very long first line containing a lot of information about where the data
came from is shortened here (marked by [...]). The important thing to see is that
we get a correct output file, and that cif2cell helps you keep track of where the data
came from, to the extent that this can be inferred from the CIF file. The last bit of the
line, ” Species order: Si”, is important. It tells you which the atomic species are that are
part of the file, since, in the particular case of VASP, this information is not given here,
but in a different file, POTCAR, which was not generated by cif2cell. To enable the
user to set up the POTCAR file properly, cif2cell stored the information needed here,
but other ways of handling this information are also available, study the ESP specific
output options to find out how.

3 Getting further

Here we go on discussing more cell generation options and some technical aspects of the
cell generation.

3.1 Cell generation

By default, cif2cell will reduce the cell to the primitive cell, anticipating that the user
wants to calculate something as small as possible, but we can also get the conventional
cell. The diamond structure is a cubic system, and the primitive cell has only two
atoms. Now try to also give the program the option --no-reduce. You should now
get 8 atoms and cubic lattice vectors. Note that the conventional and primitive cell are
the same in many systemsE] For the fcc lattice the choice of primitive lattice vectors
is straightforward, but in many systems of lower symmetry, in particular monoclinic
systems, the choice is not always as simple. cif2cell has default choices for the Bravais
lattice vectors that were selected to produce calculation cells similar to those listed at
the Naval Research Laboratory site http://cst-www.nrl.navy.mil/lattice/.

3.2 Output

In section output for VASP was generated to the default file POSCAR. You may
also decide the output file name yourself by giving the option -o outputfilename or
—--outputfile=outputfilename. If you wish to append the output from cif2cell at
the end of some existing file, give the option —a or ——append, but note that this requires
that you also specify the output file name. Appending to existing files is useful for
example if you have a template file with your magic settings and just wish to add the
cell with the atoms. You will notice that for nearly all ESP’s, cif2cell generates only
the geometric part of the setup, unless you specify the —--setup-all flag, which not
supported for many ESP’s right now.

Generation of cells for alloy theory calculations is possible for ESP’s that implement
such features. For other ESP’s, you may use the ——-force-alloy option to generate as
much of the geometric input as possible.

Warning! Output files generated with —-force-alloy always need further editing.
The partially occupied sites will get some placeholder string where the element should
be specified, no attempt is made by cif2cell to guess what you want to do.

The supported ESP’s can be found in Table |1 where you also find what files will be
generated and whether they support full output generation and alloy theory.

4 Supercell generation

cif2cell has a powerful supercell generator which enables you to set up virtually any
possible larger system from the original CIF file. As usual, ”"powerful” to some extent
also means "hard to understand and messy to use”, but if you don’t panic and take it
a bit at a time it is not as bad as all that. We will just go through how to generate

’In all systems which has a space group, or Hermann-Mauguin (H-M), symbol that starts with
?P” (for ”primitive”). See the example for fcc Si above, where the H-M symbol is 'F’, (from German
?Flachenzentriert”, meaning face-centered).

http://cst-www.nrl.navy.mil/lattice/

Table 1: Supported electronic structure programs (ESP) and the files output by
cif2cell. Also shown is whether the ESP implements some alloy theory and whether
cif2cell currently supports full output.

ESP Alloy support | Full setup Output file(s)
“|ABINIT no no [compoundname].in
CASTEP no no [compoundname].cell
cellgen no no cellgen.inp
CPMD no no [compoundname].inp
Crystal09 no 1no [compoundname].d12
Fleur no no inp_[compoundname]
RSPt no no symt.inp
Elk no no GEOMETRY.OUT
[spacegroupname/compoundname].dat

EMTO yes no for kstr, bmdl, shape, kgrn and kfcd

in separate directories.
Exciting no no input.xml

no no [spacegroupname/compoundname].dat
ncol
for bstr and ncol.

Siesta, no no [compoundname].fdf
Spacegroup no no spacegroup.in
SPRKKR. yes no [compoundname].sys (via XBAND)
VASP no yes POSCAR
XBAND yes no [compoundname].sys

http://www.abinit.org/
http://www.castep.org/
http://www.fplmto-rspt.org/
http://www.cpmd.org
http://www.crystal.unito.it/
http://www.flapw.de
http://www.fplmto-rspt.org/
http://elk.sourceforge.net
http://exciting-code.org
http://www.icmab.es/dmmis/leem/siesta/
http://elk.sourceforge.net
http://ebert.cup.uni-muenchen.de/sprkkr
http://www.vasp.at/
http://ebert.cup.uni-muenchen.de/sprkkr

a number of supercells of Si to show the capabilities. If you didn’t already do so, now
is a good time to locate the example CIF’s that comes with cif2cell and to do the
examples as you read.

4.1 Basic supercell generation

The simplest way of getting a supercell was already mentioned, just use the --no-reduce
flag to produce the conventional cell instead of the primitive cell. This will of course
only produce a supercell for systems where the primitive cell and conventional cell are
the same. Doing this for Si, we get an output that is similar to what was shown in
Section but the output cell is now:

OUTPUT CELL INFORMATION
Bravais lattice vectors :
1.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
A1l sites, (lattice coordinates):

Atom al a2 a3
Si 0.0000000 0.0000000 0.0000000
Si 0.5000000 0.0000000 0.5000000
Si 0.0000000 0.5000000 0.5000000
Si 0.7500000 0.2500000 0.7500000
Si 0.2500000 0.2500000 0.2500000
Si 0.2500000 0.7500000 0.7500000
Si 0.5000000 0.5000000 0.0000000
Si 0.7500000 0.7500000 0.2500000

You can see that we got a simple cubic lattice with 4 times as many atoms as in the
primitive cell. This cell is probably what you want as your starting point for generating
larger supercells for doing something like a defect calculation. It is very often easier
to work with the conventional cell as a starting point for supercells, since they tend to
better reflect the relevant symmetries at larger length scales, but there are exceptions
to this rule which is why we sometimes need more advanced options. A typical example
is generation of a (111) surface of a cubic system, which will be covered in Section

As our first supercell example, let’s double the conventional cell above along the
z-direction. This is done by typing exactly like this:

cif2cell Si.cif --no-reduce --supercell=[2,1,1]

”

The argument to the —-supercell option (the stuff in brackets after the =" sign) just
means ”take two unit cells along the first lattice vectors, one unit cell along the second
lattice vector and one unit cell along the third lattice vector”. The resulting output is
the same as before, but now we also get the supercell information at the end:

SUPERCELL INFORMATION
Bravais lattice vectors :
2.0000000 0.0000000 0.0000000
0.0000000 1.0000000 0.0000000
0.0000000 0.0000000 1.0000000
A1l sites, (lattice coordinates):

Atom al a2 a3
Si 0.0000000 0.0000000 0.0000000
Si 0.2500000 0.0000000 0.5000000
Si 0.0000000 0.5000000 0.5000000
Si 0.3750000 0.2500000 0.7500000
Si 0.1250000 0.2500000 0.2500000
Si 0.1250000 0.7500000 0.7500000
Si 0.2500000 0.5000000 0.0000000
Si 0.3750000 0.7500000 0.2500000
Si 0.5000000 0.0000000 0.0000000
Si 0.7500000 0.0000000 0.5000000
Si 0.5000000 0.5000000 0.5000000
Si 0.8750000 0.2500000 0.7500000
Si 0.6250000 0.2500000 0.2500000
Si 0.6250000 0.7500000 0.7500000
Si 0.7500000 0.5000000 0.0000000
Si 0.8750000 0.7500000 0.2500000

Here we clearly got another cell along the z-direction (actually along the direction
of the first lattice vector, which happens to be along the = axis in this case) and there
are twice as many atoms. We can put any integers we like with —-supercell, so we can
get as large a cell as we like. Such a basic supercell based on either the primitive or the
conventional cell is often all you need.

4.2 Advanced supercell generation

The previous section demonstrated how to generate supercells that are simply multiples
of the original lattice vectors, but cif2cell also allows construction of general supercells,
where a the original lattice vectors can be remapped to any other lattice vector. We
have already encountered one example of this, namely the mapping from the primitive
cell to the conventional cell, but now we will see how it is done with a supercell map for
a couple of examples.

4.2.1 Cubic cell from fcc cell

Getting the conventional, cubic unit cell for Si is of course most easily done by just giving
the ——no-reduce flag, as was shown earlier for Si, but we could have generated the same
cell by instead specifying a supercell map matrix that takes the primitive Bravais lattice

vectors of the fcc lattice to the unit matrix. For cif2cell’s choice of primitive lattice
vectors, this map is given by

1 -1 1|, (1)

and to feed this into the program, just type
cif2cell Si.cif --supercell=[[1,1,-1],[1,-1,1],[-1,1,1]]

Try this and verify that you get the same cell as you got with -—-no-reduce and which
is also illustrated in Figure

Figure 1: Cubic cell of fcc Si in standard orientation with one of the fourfold rotation
axes along the z direction.

Two technical remark is in order here. 1) What is being entered after the ”="
sign in the --supercell argument is Python syntax for a matrix. Python uses row-
major order, so it should be read as "three columns of row vectors”. When we used the
”simple” supercell mode in Section 4.1} we entered a vector, which the program converts
to a diagonal matrix. 2) The supercell map is operating from left to right onto bravais
lattice vectors represented as row vectors. This is important to get things right when
we go on to building up a more complicated map in steps.

The map here is just the inverse of the Bravais lattice vector matrix, By... The
reason for that is that we want the unit matrix in the end, in general to get the map,
M, that produces the new lattice vectors, B, from the old lattice vectors, By, we
have

MB,ig = Brew = M= BnewB;lil- (2)

10

VAVAVANGIAVAVAY,

INAVA

Figure 2: Examples of non-trivial hexagonal surface supercells. The red cell is a primitive
cell with lattice vectors as generated by cif2cell shown with arrows. The blue cell is
a (\/§ X ﬁ)R30° cell and the green cell is a (\ﬁ X ﬁ)RlQO structure. Thin red arrows
illustrate the construction of the v/3 supercell map.

4.2.2 Hexagonal surface supercell

In many cases the most straightforward way is to just figure out the new lattice vectors
directly in terms of the old vectors. If we look at Figure [2] of a hexagonal surface, the
primitive surface cell and a (v/3 x v/3)R30° cell are shown in red and blue, respectively.
Thinner red lines demonstrate that to get one of the new supercell lattice vectors (blue)
we take 2 of the first primitive lattice vector and 1 of the second. This gives the first
row of the matrix below. To get the second supercell lattice vector, we take -1 of the
first primitive vector and 1 of the second, and this gives the second row of the matrix
below. Leaving the out-of-plane axis unchanged, this gives the following supercell map:

2 10
-110 (3)
0 0 1

It is a good idea to not go on to the next section before you have understood how this
works.
4.2.3 Hexing the cube: Si(111) surface supercell

Generating a (111) surface of a cubic compound is a common problem for computational
scientists that drives you crazy the first time you work it out. When viewed from any of
the main diagonals (such as the [111] direction), a cubic system looks hexagonal, since

11

the main body diagonals of a cube have threefold rotation symmetry. If that does not
sound familiar, this is a good point to sit down with pen and paper and draw a cube
in perspective, or turn something cubic around a couple of times so that you see how it
works.

We will now produce a Si(111) surface supercell with the surface perpendicular to
the z axis, the standard way of orienting a surface. This is done in steps, gradually
building the cell from the primitive fcc cell. It is recommended that you study the
intermediate cells that are created along the way to see that everything works correctly.
This is most easily done by choosing cif as your output program. This will produce
an output file with the name [inputfilename]_allatoms.cif, which contains the cell
with all its atoms for rendering in some visualization program. As we go, we will see
different cells that represent very different cuts of the crystal, so the atoms may appear
to be organized differently. Remember that you are always looking at exactly the same
Si in the diamond structure as in Fig. [I Work out the local environment for each atom
if you need to convince yourself.

Figure 3: Cubic cell of fcc Si with the [111] direction along the z axis.

Since we want the (111) planes to lie along the z axis, we first need to rotate the fec
lattice vectors so that the main diagonal of the cube ends up along the [001] direction.
There is a command for performing rotations of the lattice vectors, -——transform-cell,
by explicitly giving a rotation matrix to be applied from the right to the lattice vector
matrix (since the lattice vectors are row vectors). For the particular case of aligning
the main diagonal of a cube to the z axis, however, there is a ready defined command,
--cubic-diagonal-z. If we apply this:

cif2cell Si.cif --cubic-diagonal-z

we produce a cell as shown in Fig.

12

Figure 4: Rhombohedral cell of fcc Si with the [111] direction along the z axis.

The corresponding output from cif2cellis the same as for the primitive cell, but
we get a new section describing the transformed cell:

TRANSFORMED CELL
Bravais lattice vectors :

0.5773503 0.0000000 0.8164966
-0.2886751 0.5000000 0.8164966
-0.2886751 -0.5000000 0.8164966

All sites, (lattice coordinates):

Atom al a2 a3
Si 0.0000000 0.0000000 0.0000000
Si 0.2500000 0.2500000 0.2500000

The next step here is to map the rhombohedral cell to its corresponding hexagonal
cell, which is done by the supercell map matrix

1 -1 0
0o 1 -1, (4)
11 1

and so we add to the input: --supercell=[[1,-1,0],[0,1,-1]1,[1,1,1]1]. This adds
a supercell section to the output:

SUPERCELL INFORMATION
Bravais lattice vectors :
0.8660254 -0.5000000 0.0000000
-0.0000000 1.0000000 0.0000000
-0.0000000 0.0000000 2.4494897

13

A1l sites, (lattice coordinates):

Atom al a2 a3
Si 0.0000000 0.0000000 0.0000000
Si 0.0000000 0.0000000 0.2500000
Si 0.6666667 0.3333333 0.3333333
Si 0.3333333 0.6666667 0.6666667
Si 0.6666667 0.3333333 0.5833333
Si 0.3333333 0.6666667 0.9166667

and we get the new unit cell as shown in Figure

B8

Ty

Figure 5: Hexagonal cell of fcc Si with the [111] direction along the z axis.

Next, we probably want to have a couple of extra layers in the cell, and this has to
be achieved by applying a new supercell map after the previous one that gave us the
hexagonal cell. We have three layers in the primitive cell, but suppose that we want to
double that, then we need to multiply the first supercell map by the map that doubles
the cell in the z direction, from the left:

1 0 0 1 -1 0 1 -1 0
010 0O 1 —-1)]=(0 1 -1}|. (5)
0 0 2 1 1 1 2 2 2

In general, when building up a map in n steps, starting at step 1, the map is given by:

M = M, M,_1 ... M. (6)

The Si(111) surface has an observed reconstruction which turns it into a 7 x 7 surface
supercell. To generate a 7 x 7 surface supercell, we need to expand the previous map in

14

the ab plane:

700\ /10 0\ /1 -1 0 7 -7 0
0o7o0]lo1oflf{o 1 —-1]=[0o 7 —7]|. (7)
001/ \ooz2/ \1 1 1 2 2 2

You can admire the result of applying this matrix in Figure [6]

Figure 6: Hexagonal supercell of fcec Si with a 7 x 7 primitive cells in the ab plane.

Now, the cell that we created is not a surface yet, we need to add vacuum along
the z direction. This is done with --supercell-vacuum=[a,b,c], where a, b and ¢
are numbers (not necessarily integers) that give the amount of vacuum in units of the
three lattice vectors. This means that to make a surface supercell in this way, the
surface must be aligned to the cell axes, which is why we need the —-transform-cell
command to align the cell correctly. The vacuum is added right at the cell boundary
along the lattice vectors and after the supercell map has been applied. In the present
case we wan to add the vacuum along the third lattice vector and we can for example
choose to make the vacuum as thick as our Si slab. This is then is done by giving the
command --supercell-vacuum=[0,0,1]. But wait! Let’s look again at Figure [6] In
the figure all atoms that fall outside of the cell has been cut out, and also the atoms in the
uppermost plane, that belong to the next cell. Adding vacuum at the upper boundary
in this figure would give us a surface that consists of a lot of single Si atoms sticking out
(Figure [6] shows this clearly). This is not what we want in this case, we would instead
like to make the cut just below the top layer of atoms (or just above the bottom layer).
This can be done using the --supercell-translation-vector command, which allows

15

you to give a vector that translates all the coordinates of the cell. The translation vector
is applied before the vacuum is added given in units of the supercell. In our case we just
need to move all atoms a little way up (or down) and so to get the surface supercell, in
our case, we can for example choose the vector as [0,0,0.084].

The complete command for generating the 7 x 7 Si(111) surface supercell is then:

cif2cell Si.cif --cubic-diagonal-z\
--supercell=[[7,-7,0],[0,7,-7],[2,2,2]]\
--supercell-translation-vector=[0,0,0.084]\
--supercell-vacuum=[0,0,1]

Note that the backslashes just indicate a newline that you should not have when giving
the command in the terminal. The finished surface cell is shown in Figure [7}

Figure 7: Si(111) surface supercell with a 7 x 7 primitive cells in the ab plane.

16

A Technicalities

A.1 Order in which things are done in the supercell generation

Note the order, and in particular the units in which the operations are done. The

1. Generation of primitive cell (or the conventional cell, if the flag —-no-reduce is
used).

2. Rotation/rescaling transformation of the lattice vectors with --transform-cell.

3. Applying supercell map with --supercell=.... The units are the previously
generated primitive or conventional cell.

4. Moving atoms in the supercell by --supercell-translation-vector or
--supercell-prevacuum-translation (in units of the supercell!).

5. Adding vacuum along the direction of one of the lattice vectors with -—supercell-vacuum
(in units of the supercell!).

6. Moving atoms in the supercell by --supercell-postvacuum-translation (in
units of the supercell including vacuum!).

17

Table 2: Various useful transformations. Spotting the system in the three last ones, we
see that you get successively larger hexagonal surface cells by just adding 1 to the two
upper left diagonal elements. The ”square root sequence” begins v/3, V7, V13, v/21,

18

V31, V43. ..

Transform this.into that. .. ‘ ... with this
Standard rhombohedral | Standard hexagonal 1 -1 0
cell with threefold axis | cell with sixfold axis 1 -1

along the z direction along the z direction 1 1 1
3 5 0 100 11 -1
3 0 3 010 1 -1 1
11
0 5 35 0 01 -1 1 1
11 1
-5 35 5 1 00 011
3 -3 3 010 101
IO 001 110
2 2 2
(v/3 x V/3)R30° 2 10
Hexagonal unit cell hexagonal cell -1 10
0 0 1
(V7 x VT)R19° 10
Hexagonal unit cell hexagonal cell -1 2 0
0 01
(V13 x V/13)R?7° 4 10
Hexagonal unit cell hexagonal cell -1 3 0
0 0 1

	Installation
	Requirements

	Getting started
	Help!
	The first run

	Getting further
	Cell generation
	Output

	Supercell generation
	Basic supercell generation
	Advanced supercell generation
	Cubic cell from fcc cell
	Hexagonal surface supercell
	Hexing the cube: Si(111) surface supercell

	Technicalities
	Order in which things are done in the supercell generation

