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The story so far…

n CASTEP solves the Kohn-Sham equations for 
a periodic system (potential), i.e.

where particle b has the bth solution (band) at 
Brillouin zone sampling point k, and
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What does CASTEP do?

CASTEP solves the Kohn-Sham equations for electrons in a
periodic array of nuclei:

Ĥ[⇢] b = Eb b

where particle b has the bth solution (“band”), and

Ĥ[⇢] = � ~2

2m
r2 + V̂HXC [⇢] + V̂ext .
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Bloch’s Theorem

n Recall that Bloch’s theorem lets us write:

n Where                             is periodic and        is 
an arbitrary phase factor. We express           as 
a Fourier series:

n Where         are complex Fourier coefficients.

Electronic
Structure

Introduction

DFT

Bloch’s
Theorem

Plane-waves

An eigenvalue
problem

Polar oxides

Summary

Bloch’s Theorem

If the nuclei are arranged in a periodically repeating pattern,
their potential acting on the electrons must also be periodic.

V (r + L) = V (r)

Bloch’s theorem: in a periodic potential, the density has the
same periodicity. The possible wavefunctions are all
‘quasi-periodic’:

 k (r) = e
ik.r

uk (r),

where uk (r + L) = uk (r), and eik.r is an arbitrary phase
factor.
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Plane-waves

Since ubk (r) is periodic, we express it as a 3D Fourier series

ubk (r) =
X

G

cGbke
iG.r

where cGbk are complex Fourier coefficients, and the sum is
over all the reciprocal lattice vectors, or G-vectors.

Putting all this together we have:

 bk (r) = e
ik.r

X

G

cGbke
iG.r

=
X

G

cGbke
i(G+k).r
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The wavefunction

n The complex coefficients         are what 
CASTEP computes, and take up a lot of the 
computer’s memory (RAM).

n G: a reciprocal lattice vector (“G-vector”)
n b: a band index
n k: a Brillouin zone sampling point (“k-point”)
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Where does CASTEP spend its time?
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Solving the Kohn-Sham equations



n Applying H 
n Kinetic energy applied in reciprocal-space
n Local potential applied in real-space so need to 

(fast) Fourier transform between the two spaces. 
n Orthogonalising wavefunctions

n Need to make trial bands orthogonal to each other
n Compute the band-overlap matrix, and transform to 

an orthonormal set.

Where does CASTEP spend its time?



CASTEP and FFTs

n To apply H we need to 3D FFT from real to 
reciprocal space & vice versa.

n Time to transform 1 band at 1 k-point with NG 
G-vectors (plane-waves) is ~O(NG lnNG ) 

n Therefore to transform each of the Nb bands at 
each of the Nk k-points takes a total FFT time 
~O(NGNbNk lnNG ) 
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Fourier transforms

A 3D Fourier transform can be performed as 3 separate
1D transformations – one in each direction (x, y and z).
Time to transform  bk (G) !  bk (r) scales as
NG log(NG).
Every band at every k-point has to be transformed, so
total time is ⇠ NGNbNk log(NG).



Orthogonalisation

n We construct the band overlap matrix at each 
k-point:
n Time to construct ~O(NG Nb

2Nk ) 
n Then we decompose this S matrix at each k to 

construct orthogonalising transformation
n Time to decompose ~O(Nb

3Nk ) 
n Then apply transformation to get orthogonal 

bands
n Time to apply ~O(NGNb

2Nk )
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Orthogonalisation

We construct the band-overlap matrix for each k-point
Snmk = h nk |  mk i. Total time scales as NGN2

b
Nk .

Invert Sk to find an orthogonalising transformation at
each k-point. Total time scales as N3

b
Nk .

Apply transformation to get orthogonal bands. Total
time scales as NGN2

b
Nk .



Scaling of quantities with system size

n For small systems:
n NG small
n NB small
n Nk big
Time usually dominated by the Fourier transform.
Both the Fourier transform and orthonormalisation 
scale as ~ Nk so parallelise over k



K-point parallelism



k-point parallelism

n The bands at each k-point are almost 
independent of each other:

n Can give each core a subset of k-points and 
solve a subset of the equations

n Why “almost” independent? They are coupled 
via the density

n where       is the band occupancy.
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k-point sampling

The bands for different k-points are independent of each
other, so we get a different set of Kohn-Sham equations at
each:

Ĥk [⇢] bk = Ebk nk

where
⇢(r) =

X

bk

| bk (r)|2

So to find  bk we need Ĥk , which depends on ⇢, which
depends on  bk ...

We have to solve the equations iteratively.
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Example – small benchmark

n TiN is a standard small benchmark:
n 33 atoms
n 8 k-points
n 164 bands
n 10962 Gv
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k-point parallelism in action



k-parallel and big systems

n k-parallelism is almost perfect
n Puts very little demand on communication 

infrastructure so scales well over ethernet
n Use --dryrun flag to see how many k-points

n BUT as go to bigger system sizes, have bigger 
unit cell -> smaller BZ -> need fewer k-points 
-> less scope for parallelism!
n The bigger the system the fewer cores we can 

use!
n In limit of very big systems Nk = 1



Scaling of quantities with system size

n For big systems:
n NG big
n Nb big
n Nk small
Time dominated by orthogonalisation 
~NG Nb

2 Nk

Need to parallelise over something else…



G-vector parallelism



G-vector parallelism

n Large systems dominated by cost of band 
orthogonalisation with S matrix:

n Distribute G-vectors over cores
n Contributions to S summed over cores
n NG increases with system size 
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G-vector parallelism

Snmk = h nk |  mk i
=

X

G

c
?
Gnk

cGmk

�! give each core a subset of G-vectors.
Contributions to S are summed over cores.
NG is large so can use lots of cores.
As simulation size increases, NG also increases.
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G-vector parallelism in actionG-vector parallelism in action

n TiN again
n 1 core 

faster due 
to non-
parallel FFT

n Effect of 
comms



Analysis of G-vector parallelism

n G-vector parallelism requires much more finely-
grained communications than k-point
n More sensitive to interconnect
n Need low-latency network (ethernet is bad!)

n But working on different part of data structures 
to k-point parallelism so can combine them …



k+G parallelism

n Independent parallelisation schemes
n E.g. if Nk=2, NG=9000 and Ncore=6:

n For any k-point the G-vector data is split across 
3 cores, i.e. 3-way G-vector parallel

n For any subset of G-vectors the data is split 
across 2 cores, i.e. 2-way k-point parallel

Data k-point 1 k-point 2
G-vecs 1-3000 Core 1 Core 4
G-vecs 3001-6000 Core 2 Core 5
G-vecs 6001-9000 Core 3 Core 6
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k+G parallelism in actionk+G parallelism in action

n TiN again
n Scaling 

limited by 
comms at 
high core 
counts



CASTEP optimal performance

n Always use k-point parallelism if it is there
n Hence run on Ncore = Nk

n Or if that is not practical/feasible choose a high 
common factor for k-point and then use G-vector

n E.g. Nk=35

Optimal performance

CASTEP always defaults to using as much k-point parallelism as it can,
and then uses G-vector parallelism across any other cores.

E.g. if Nk = 35

Cores Parallel distribution
70 Each pair of cores gets one k-point

G-vectors are distributed within each pair
36 One core left idle; CASTEP uses 35 cores
35 Each core gets one k-point
21 Cores split into 7 triplets

Each triplet of cores gets 5 k-points
G-vectors are distributed within each triplet

5 Each core gets 7 k-points



Parallel Fourier Transforms

n Why does G-vector parallelism have poorer 
performance?
n  In G-vector parallel, do 3D FFT as three 1D FFTs
n Each core has all G-vectors in a z-column
n Do 1D FFT along z
n All cores swap data so each has y-column data
n Do 1D FFT along y
n Now swap to get x-column data and do final FFT
n Each core has real-space data along x.



Parallel Fourier Transforms

n The actual 1D FFTs are distributed well
n When the cores swap data, all cores communicate with all 

other cores
n For P cores this “data transposition” requires P2 

Communications of 1/ P2 data each
n As P increases we end up with huge numbers of tiny 

messages – strongly latency-bound!
n On a cluster with multicore nodes, cores often share 

interconnect with others on same node: contention
n Time scales as P2  and Fourier transform dominates

computational time for large core counts.



Parallel Fourier Transforms

n Contention can be reduced by aggregating messages
n Cores on same node designate a “master” core
n Cores give data to master
n All masters communicate
n Masters pass data back to cores on their node
n Leads to fewer, longer messages between nodes, so less 

latency-bound
n Reduces contention
n Activate via .param file e.g.:

num_proc_in_smp : 2



Parallel FFTs with SMP optimisation



Band-parallelism

n Is there anything else we can parallelise over?

n Done G and k so what about b?
n Nb grows with system size
n Same H for different bands at same k
n Fourier transforms of different bands 

independent –> perfect scaling here?
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band parallelism



Band-parallel orthogonalisation

n Need to construct S matrix at each k-point

n Inner product is between all pairs of bands
n Need all-to-all communication
n Need high-bandwidth interconnect
n Will limit scaling at high core counts
n Distribute rows of S matrix over cores
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Orthogonalisation

Need to construct overlap matrix S at each k-point
Snm = h n |  mi
Inner product is between all pairs of bands
Need all-to-all communications
�! as band-parallelism increases, communication
dominates



Band-parallel functionality

n Band-parallelism is the newest form of parallelism 
and is not turned on automatically

n Not all functionality supports band parallism – 
depends on CASTEP version

n Can control exact parallel distribution via a 
devel_code setting in .param e.g.:
%block devel_code

PARALLEL: kpoint=2 gvector=2 band=2 :END_PARALLEL

%endblock devel_code



Mixing k, G and b parallelism

n k-point, G-vector and band-parallelism are all 
independent -> can combine all 3
n k-point scales perfectly, OK on poor 

interconnect
n G-vector dominated by comms in FFT: needs 

low-latency interconnect
n Band-parallel dominated by comms in 

orthogonalisation: needs high-bandwidth 
interconnect



Putting it all together …



A bigger benchmark

n Al2O3-3x3 surface slab:
n 270 atoms
n 2 k-points
n 778 bands
n 88184 G-vectors



Al2O3 time
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Al2O3-3x3 time



Al2O3 parallel speedup
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Al2O3-3x3 time

Use 16 core reference as too big to run on anything smaller!



Al2O3 parallel speedup

Use 16 core reference as too big to run on anything smaller!
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Al2O3-3x3 time



Threading

n So far we’ve mostly considered distributed-memory 
parallelism

n Can also use shared-memory (OpenMP) parallelism
n Initial implementation released in CASTEP 16.1
n Activate by setting an environment variable 
CASTEP_NUM_THREADS to a value greater than 1

n Reduces memory usage per node
n Modest speed-ups for some systems
n Can be combined with usual MPI parallelism
n Expect further optimisations in the future



Al2O3 with threading



Latest developments …



Process grid

n FFT limits scaling for large calculations as it 
requires all-to-all comms

n With P processors comms time scales ~ P2

n V24 put into a process grid
n Now only need comms in a
row or a column of the grid
n Less comms & better scaling!

𝑂(𝑃!)

𝑂(𝑃)



Al2O3 with process grid



GPU port in progress …



Summary



Summary

n Plane-wave DFT in CASTEP has lots of 
parallelism potential
n Can parallelise over k-points, G-vectors and 

bands
n Choose which scheme depending on material 

system size / features
n Also depends on interconnect in computer
n BEWARE: you can over-parallelise a calculation 

– can go slower if put in too many cores as 
comms cost will dominate 


