
Parallel CASTEP
Matt Probert with thanks to Phil Hasnip
Condensed Matter Dynamics Group
Department of Physics,
University of York, U.K.
http://www-users.york.ac.uk/~mijp1

The story so far…

n CASTEP solves the Kohn-Sham equations for
a periodic system (potential), i.e.

where particle b has the bth solution (band) at
Brillouin zone sampling point k, and

CASTEP in
Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

What does CASTEP do?

CASTEP solves the Kohn-Sham equations for electrons in a
periodic array of nuclei:

Ĥ[⇢] b = Eb b

where particle b has the bth solution (“band”), and

Ĥ[⇢] = � ~2

2m
r2 + V̂HXC [⇢] + V̂ext .

CASTEP in
Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

What does CASTEP do?

CASTEP solves the Kohn-Sham equations for electrons in a
periodic array of nuclei:

Ĥ[⇢] b = Eb b

where particle b has the bth solution (“band”), and

Ĥ[⇢] = � ~2

2m
r2 + V̂HXC [⇢] + V̂ext .

Bloch’s Theorem

n Recall that Bloch’s theorem lets us write:

n Where is periodic and is
an arbitrary phase factor. We express as
a Fourier series:

n Where are complex Fourier coefficients.

Electronic
Structure

Introduction

DFT

Bloch’s
Theorem

Plane-waves

An eigenvalue
problem

Polar oxides

Summary

Bloch’s Theorem

If the nuclei are arranged in a periodically repeating pattern,
their potential acting on the electrons must also be periodic.

V (r + L) = V (r)

Bloch’s theorem: in a periodic potential, the density has the
same periodicity. The possible wavefunctions are all
‘quasi-periodic’:

 k (r) = e
ik.r

uk (r),

where uk (r + L) = uk (r), and eik.r is an arbitrary phase
factor.

Electronic
Structure

Introduction

DFT

Bloch’s
Theorem

Plane-waves

An eigenvalue
problem

Polar oxides

Summary

Bloch’s Theorem

If the nuclei are arranged in a periodically repeating pattern,
their potential acting on the electrons must also be periodic.

V (r + L) = V (r)

Bloch’s theorem: in a periodic potential, the density has the
same periodicity. The possible wavefunctions are all
‘quasi-periodic’:

 k (r) = e
ik.r

uk (r),

where uk (r + L) = uk (r), and eik.r is an arbitrary phase
factor.

Electronic
Structure

Introduction

DFT

Bloch’s
Theorem

Plane-waves

An eigenvalue
problem

Polar oxides

Summary

Bloch’s Theorem

If the nuclei are arranged in a periodically repeating pattern,
their potential acting on the electrons must also be periodic.

V (r + L) = V (r)

Bloch’s theorem: in a periodic potential, the density has the
same periodicity. The possible wavefunctions are all
‘quasi-periodic’:

 k (r) = e
ik.r

uk (r),

where uk (r + L) = uk (r), and eik.r is an arbitrary phase
factor.

CASTEP in
Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

Plane-waves

Since ubk (r) is periodic, we express it as a 3D Fourier series

ubk (r) =
X

G

cGbke
iG.r

where cGbk are complex Fourier coefficients, and the sum is
over all the reciprocal lattice vectors, or G-vectors.

Putting all this together we have:

 bk (r) = e
ik.r

X

G

cGbke
iG.r

=
X

G

cGbke
i(G+k).r

CASTEP in
Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

Plane-waves

Since ubk (r) is periodic, we express it as a 3D Fourier series

ubk (r) =
X

G

cGbke
iG.r

where cGbk are complex Fourier coefficients, and the sum is
over all the reciprocal lattice vectors, or G-vectors.

Putting all this together we have:

 bk (r) = e
ik.r

X

G

cGbke
iG.r

=
X

G

cGbke
i(G+k).r

E
LDA
x [⇢] = �3

4

✓
3

⇡

◆1/3

⇢ (r)
4/3

dr

n (r) , rn (r) , r2
n (r)

Hk [⇢] bk = E bk

Hk [⇢] = � ~2
2m

r2 + VHxc [⇢] + Vext

cGbk

3

The wavefunction

n The complex coefficients are what
CASTEP computes, and take up a lot of the
computer’s memory (RAM).

n G: a reciprocal lattice vector (“G-vector”)
n b: a band index
n k: a Brillouin zone sampling point (“k-point”)

E
LDA
x [⇢] = �3

4

✓
3

⇡

◆1/3

⇢ (r)
4/3

dr

n (r) , rn (r) , r2
n (r)

Hk [⇢] bk = E bk

Hk [⇢] = � ~2
2m

r2 + VHxc [⇢] + Vext

cGbk

3

E
LDA
x [n] ⇠ n (r) ✏ [n (r)] dr

n (r) , rn (r) , r2
n (r)

Hk [⇢] bk = E bk

Hk [⇢] = � ~2
2m

r2 + VHxc [⇢] + Vext

 bk =
X

G

cGbke
i(G+k).r

cGbk

⇢ (r) =
X

bk

fbk | bk (r)|2

fbk

" (r)

(r)

⇢
� ~2
2m

r2 + V
⇥
⇢
" + ⇢

#⇤+ Vxc

⇥
⇢
"⇤
�

" (r) = ✏

"

" (r)

⇢
� ~2
2m

r2 + V
⇥
⇢
" + ⇢

#⇤+ Vxc

⇥
⇢
#⇤
�

(r) = ✏

#

(r)

H = �
X

ij

JijSi.Sj

±1

2
~

⇢ (r) =

✓
⇢11 (r) ⇢12 (r)
⇢21 (r) ⇢22 (r)

◆

3

Where does CASTEP spend its time?
CASTEP in

Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

Solving the Kohn-Sham equations

n Applying H
n Kinetic energy applied in reciprocal-space
n Local potential applied in real-space so need to

(fast) Fourier transform between the two spaces.
n Orthogonalising wavefunctions

n Need to make trial bands orthogonal to each other
n Compute the band-overlap matrix, and transform to

an orthonormal set.

Where does CASTEP spend its time?

CASTEP and FFTs

n To apply H we need to 3D FFT from real to
reciprocal space & vice versa.

n Time to transform 1 band at 1 k-point with NG
G-vectors (plane-waves) is ~O(NG lnNG)

n Therefore to transform each of the Nb bands at
each of the Nk k-points takes a total FFT time
~O(NGNbNk lnNG)

CASTEP in
Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

Fourier transforms

A 3D Fourier transform can be performed as 3 separate
1D transformations – one in each direction (x, y and z).
Time to transform bk (G) ! bk (r) scales as
NG log(NG).
Every band at every k-point has to be transformed, so
total time is ⇠ NGNbNk log(NG).

Orthogonalisation

n We construct the band overlap matrix at each
k-point:
n Time to construct ~O(NG Nb

2Nk)
n Then we decompose this S matrix at each k to

construct orthogonalising transformation
n Time to decompose ~O(Nb

3Nk)
n Then apply transformation to get orthogonal

bands
n Time to apply ~O(NGNb

2Nk)

CASTEP in
Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

Orthogonalisation

We construct the band-overlap matrix for each k-point
Snmk = h nk | mk i. Total time scales as NGN2

b
Nk .

Invert Sk to find an orthogonalising transformation at
each k-point. Total time scales as N3

b
Nk .

Apply transformation to get orthogonal bands. Total
time scales as NGN2

b
Nk .

Scaling of quantities with system size

n For small systems:
n NG small
n NB small
n Nk big
Time usually dominated by the Fourier transform.
Both the Fourier transform and orthonormalisation
scale as ~ Nk so parallelise over k

K-point parallelism

k-point parallelism

n The bands at each k-point are almost
independent of each other:

n Can give each core a subset of k-points and
solve a subset of the equations

n Why “almost” independent? They are coupled
via the density

n where is the band occupancy.

CASTEP in
Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

k-point sampling

The bands for different k-points are independent of each
other, so we get a different set of Kohn-Sham equations at
each:

Ĥk [⇢] bk = Ebk nk

where
⇢(r) =

X

bk

| bk (r)|2

So to find bk we need Ĥk , which depends on ⇢, which
depends on bk ...

We have to solve the equations iteratively.

E
LDA
x [⇢] = �3

4

✓
3

⇡

◆1/3

⇢ (r)
4/3

dr

n (r) , rn (r) , r2
n (r)

Hk [⇢] bk = E bk

Hk [⇢] = � ~2
2m

r2 + VHxc [⇢] + Vext

cGbk

⇢ (r) =
X

bk

fbk | bk (r)|2

fbk

3

E
LDA
x [⇢] = �3

4

✓
3

⇡

◆1/3

⇢ (r)
4/3

dr

n (r) , rn (r) , r2
n (r)

Hk [⇢] bk = E bk

Hk [⇢] = � ~2
2m

r2 + VHxc [⇢] + Vext

cGbk

⇢ (r) =
X

bk

fbk | bk (r)|2

fbk

3

Example – small benchmark

n TiN is a standard small benchmark:
n 33 atoms
n 8 k-points
n 164 bands
n 10962 Gv

CASTEP in
Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

k-point parallelism in action

k-parallel and big systems

n k-parallelism is almost perfect
n Puts very little demand on communication

infrastructure so scales well over ethernet
n Use --dryrun flag to see how many k-points

n BUT as go to bigger system sizes, have bigger
unit cell -> smaller BZ -> need fewer k-points
-> less scope for parallelism!
n The bigger the system the fewer cores we can

use!
n In limit of very big systems Nk = 1

Scaling of quantities with system size

n For big systems:
n NG big
n Nb big
n Nk small
Time dominated by orthogonalisation
~NG Nb

2 Nk

Need to parallelise over something else…

G-vector parallelism

G-vector parallelism

n Large systems dominated by cost of band
orthogonalisation with S matrix:

n Distribute G-vectors over cores
n Contributions to S summed over cores
n NG increases with system size

CASTEP in
Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

G-vector parallelism

Snmk = h nk | mk i
=

X

G

c
?
Gnk

cGmk

�! give each core a subset of G-vectors.
Contributions to S are summed over cores.
NG is large so can use lots of cores.
As simulation size increases, NG also increases.

CASTEP in
Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

G-vector parallelism in actionG-vector parallelism in action

n TiN again
n 1 core

faster due
to non-
parallel FFT

n Effect of
comms

Analysis of G-vector parallelism

n G-vector parallelism requires much more finely-
grained communications than k-point
n More sensitive to interconnect
n Need low-latency network (ethernet is bad!)

n But working on different part of data structures
to k-point parallelism so can combine them …

k+G parallelism

n Independent parallelisation schemes
n E.g. if Nk=2, NG=9000 and Ncore=6:

n For any k-point the G-vector data is split across
3 cores, i.e. 3-way G-vector parallel

n For any subset of G-vectors the data is split
across 2 cores, i.e. 2-way k-point parallel

Data k-point 1 k-point 2
G-vecs 1-3000 Core 1 Core 4
G-vecs 3001-6000 Core 2 Core 5
G-vecs 6001-9000 Core 3 Core 6

CASTEP in
Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

k+G parallelism in actionk+G parallelism in action

n TiN again
n Scaling

limited by
comms at
high core
counts

CASTEP optimal performance

n Always use k-point parallelism if it is there
n Hence run on Ncore = Nk

n Or if that is not practical/feasible choose a high
common factor for k-point and then use G-vector

n E.g. Nk=35

Optimal performance

CASTEP always defaults to using as much k-point parallelism as it can,
and then uses G-vector parallelism across any other cores.

E.g. if Nk = 35

Cores Parallel distribution
70 Each pair of cores gets one k-point

G-vectors are distributed within each pair
36 One core left idle; CASTEP uses 35 cores
35 Each core gets one k-point
21 Cores split into 7 triplets

Each triplet of cores gets 5 k-points
G-vectors are distributed within each triplet

5 Each core gets 7 k-points

Parallel Fourier Transforms

n Why does G-vector parallelism have poorer
performance?
n In G-vector parallel, do 3D FFT as three 1D FFTs
n Each core has all G-vectors in a z-column
n Do 1D FFT along z
n All cores swap data so each has y-column data
n Do 1D FFT along y
n Now swap to get x-column data and do final FFT
n Each core has real-space data along x.

Parallel Fourier Transforms

n The actual 1D FFTs are distributed well
n When the cores swap data, all cores communicate with all

other cores
n For P cores this “data transposition” requires P2

Communications of 1/ P2 data each
n As P increases we end up with huge numbers of tiny

messages – strongly latency-bound!
n On a cluster with multicore nodes, cores often share

interconnect with others on same node: contention
n Time scales as P2 and Fourier transform dominates

computational time for large core counts.

Parallel Fourier Transforms

n Contention can be reduced by aggregating messages
n Cores on same node designate a “master” core
n Cores give data to master
n All masters communicate
n Masters pass data back to cores on their node
n Leads to fewer, longer messages between nodes, so less

latency-bound
n Reduces contention
n Activate via .param file e.g.:

num_proc_in_smp : 2

Parallel FFTs with SMP optimisation

Band-parallelism

n Is there anything else we can parallelise over?

n Done G and k so what about b?
n Nb grows with system size
n Same H for different bands at same k
n Fourier transforms of different bands

independent –> perfect scaling here?

E
LDA
x [n] ⇠ n (r) ✏ [n (r)] dr

n (r) , rn (r) , r2
n (r)

Hk [⇢] bk = E bk

Hk [⇢] = � ~2
2m

r2 + VHxc [⇢] + Vext

 bk =
X

G

cGbke
i(G+k).r

cGbk

⇢ (r) =
X

bk

fbk | bk (r)|2

fbk

" (r)

(r)

⇢
� ~2
2m

r2 + V
⇥
⇢
" + ⇢

#⇤+ Vxc

⇥
⇢
"⇤
�

" (r) = ✏

"

" (r)

⇢
� ~2
2m

r2 + V
⇥
⇢
" + ⇢

#⇤+ Vxc

⇥
⇢
#⇤
�

(r) = ✏

#

(r)

H = �
X

ij

JijSi.Sj

±1

2
~

⇢ (r) =

✓
⇢11 (r) ⇢12 (r)
⇢21 (r) ⇢22 (r)

◆

3

band parallelism

Band-parallel orthogonalisation

n Need to construct S matrix at each k-point

n Inner product is between all pairs of bands
n Need all-to-all communication
n Need high-bandwidth interconnect
n Will limit scaling at high core counts
n Distribute rows of S matrix over cores

Band
Parallelism

Introduction

Band
Parallelism

Performance

The Future

Orthogonalisation

Need to construct overlap matrix S at each k-point
Snm = h n | mi
Inner product is between all pairs of bands
Need all-to-all communications
�! as band-parallelism increases, communication
dominates

Band-parallel functionality

n Band-parallelism is the newest form of parallelism
and is not turned on automatically

n Not all functionality supports band parallism –
depends on CASTEP version

n Can control exact parallel distribution via a
devel_code setting in .param e.g.:
%block devel_code

PARALLEL: kpoint=2 gvector=2 band=2 :END_PARALLEL

%endblock devel_code

Mixing k, G and b parallelism

n k-point, G-vector and band-parallelism are all
independent -> can combine all 3
n k-point scales perfectly, OK on poor

interconnect
n G-vector dominated by comms in FFT: needs

low-latency interconnect
n Band-parallel dominated by comms in

orthogonalisation: needs high-bandwidth
interconnect

Putting it all together …

A bigger benchmark

n Al2O3-3x3 surface slab:
n 270 atoms
n 2 k-points
n 778 bands
n 88184 G-vectors

Al2O3 time
Band

Parallelism

Introduction

Band
Parallelism

Performance

The Future

Al2O3-3x3 time

Al2O3 parallel speedup
Band

Parallelism

Introduction

Band
Parallelism

Performance

The Future

Al2O3-3x3 time

Use 16 core reference as too big to run on anything smaller!

Al2O3 parallel speedup

Use 16 core reference as too big to run on anything smaller!

Band
Parallelism

Introduction

Band
Parallelism

Performance

The Future

Al2O3-3x3 time

Threading

n So far we’ve mostly considered distributed-memory
parallelism

n Can also use shared-memory (OpenMP) parallelism
n Initial implementation released in CASTEP 16.1
n Activate by setting an environment variable
CASTEP_NUM_THREADS to a value greater than 1

n Reduces memory usage per node
n Modest speed-ups for some systems
n Can be combined with usual MPI parallelism
n Expect further optimisations in the future

Al2O3 with threading

Latest developments …

Process grid

n FFT limits scaling for large calculations as it
requires all-to-all comms

n With P processors comms time scales ~ P2

n V24 put into a process grid
n Now only need comms in a
row or a column of the grid
n Less comms & better scaling!

𝑂(𝑃!)

𝑂(𝑃)

Al2O3 with process grid

GPU port in progress …

Summary

Summary

n Plane-wave DFT in CASTEP has lots of
parallelism potential
n Can parallelise over k-points, G-vectors and

bands
n Choose which scheme depending on material

system size / features
n Also depends on interconnect in computer
n BEWARE: you can over-parallelise a calculation

– can go slower if put in too many cores as
comms cost will dominate

