THE UNIVERSITY of York

Solid-state Nuclear Magnetic Resonance (NMR)

Phil Hasnip

Condensed Matter Dynamics Group

Department of Physics,

University of York, U.K.

http://www-users.york.ac.uk/~pjh503

Many slides courtesy of Jonathan Yates (University of Oxford)

Nuclear Magnetic Resonance

Zero Field

magnetogyric ratio fundamental nuclear constant

Applied Field

NMR signal is proportional to population difference For ¹H in 9.4T at 298K

 ΔE = 2.65 × 10⁻²⁵ J

 n_{upper}/n_{lower} = exp ($-\Delta E / kT$)

= 0.999935

Sensitivity is an issue! Need Large γ and/or B

Isotope	Spin	Y 10 ⁷ T ⁻¹ rad s ⁻¹	Freq MHz @ 9.4T	Abundance %
¹ H	1/2	26.75	400	100
¹³ C	1/2	6.73	100.6	1.1
²⁹ Si	1/2	-5.32	79.6	4.7
³¹ P	1/2	-10.84	162.1	100

Isotope	Spin	Y 10 ⁷ T ⁻¹ rad s ⁻¹	Freq MHz @ 9.4T	Abundance %
¹ H	1/2	26.75	400	100
¹³ C	1/2	6.73	100.6	1.1
²⁹ Si	1/2	-5.32	79.6	4.7
³¹ P	1/2	-10.84	162.1	100
¹⁷ O	5/2	-3.63	54.1	0.04
⁴⁹ Ti	7/2	-1.51	22.6	5.41

Solid-State NMR Spectrometers

600 MHz 14.1 T ~£800,000

400 MHz 9.4 T ~£300,000

Image courtesy Sharon Ashbrook (St Andrews)

Each distinct C atom experiences a different magnetic field and resonates at a unique frequency.

Measure the change wrt a standard (for ¹³C this is liquid tetramethylsilane)

The local field a nucleus feels is not quite the same as the applied field (B₀). The local field is influenced by the positions of neighbouring atoms and the electronic structure of the material. Hence **NMR** is a sensitive probe of atomic-level structure and dynamics.

Larmor frequency $\omega = \gamma B$

 σ magnetic shielding $B = (1-\sigma) B_0$

 δ chemical shift $\delta = \sigma_{ref} - \sigma$

 σ_{ref} is the shielding of a nucleus in a "standard" material. For ¹³C this is liquid tetramethylsilane.

To compute the chemical shifts we just need to calculate the current induced by the external magnetic field

Biot-Savart: induced magnetic field is

B↓in (r)=1/c
$$\int \uparrow \equiv d\uparrow 3 r\uparrow' j(r') \times r-r'/|r-r'|\uparrow 3$$

Obtain current within perturbation theory (linear response)

$$O = O^{(0)} + O^{(1)} + \mathcal{O}(\mathbf{B}^2)$$

spin contribution averages to zero in a diamagnetic insulator

$$B = (1-\sigma) B_0$$

$$B_{in} = -\sigma B_0$$

note: σ is a rank 2 tensor

Maltose sugar used in brewing

MAS-J-HMQC

Maltose sugar used in brewing

MAS-J-HMQC

Molecule to solid variation due to intermolecular interactions (weak hydrogen bonds)

J. Am. Chem. Soc. 127 10216 (2005)

Can create a magnetic field in two ways:

- 1. Intrinsic spin of electrons (i.e. a magnetisation density)
- 2. Charge of electrons (moving charge gives magnetic field)

Induced Field

$$\begin{array}{lll} \mathbf{B}_{\mathrm{in}}^{(1)}(\mathbf{R}_{\mathrm{K}}) & = & \frac{\mu_{0}}{4\pi}\int\mathbf{m}^{(1)}(\mathbf{r})\cdot\left[\frac{3\mathbf{r}_{\mathrm{K}}\mathbf{r}_{\mathrm{K}}-|\mathbf{r}_{\mathrm{K}}|^{2}}{|\mathbf{r}_{\mathrm{K}}|^{5}}\right]\mathrm{d}^{3}\mathbf{r} & + & \frac{\mu_{0}}{4\pi}\frac{8\pi}{3}\int\mathbf{m}^{(1)}(\mathbf{r})\delta(\mathbf{r}_{\mathrm{K}})\mathrm{d}^{3}\mathbf{r} \\ & + & \frac{\mu_{0}}{4\pi}\int\mathbf{j}^{(1)}(\mathbf{r})\times\frac{\mathbf{r}_{\mathrm{K}}}{|\mathbf{r}_{\mathrm{K}}|^{3}}\mathrm{d}^{3}\mathbf{r}. \end{array}$$
 Fermi Contact Orbital

$$H_{eff} = -\sum_{\mathrm{K}} \gamma_{\mathrm{K}} \mathbf{I}_{\mathrm{K}} (1 + \sigma_{\mathrm{K}}) \mathbf{B}_{\mathrm{ext}} + \sum_{\mathrm{K} < \mathrm{L}} \mathbf{I}_{\mathrm{K}} (\mathbf{D}_{\mathrm{KL}} + \mathbf{J}_{\mathrm{KL}}) \mathbf{I}_{\mathrm{L}}$$

NMR experiments aim to control nuclear spins (I) and external field (B) to measure NMR interaction tensors

We aim to calculate NMR tensors via the quantum mechanics of electrons

Spectral simulation via nuclear spin dynamics codes

Magic Angle Spinning

Magic Angle Spinning

Chemical Shift orbital currents create magnetic field

Direct Dipolar Coupling magnetic field created by neighbouring nuclei n.b. function of atom positions only i.e. not directly an electronic property

Quadrupolar coupling

nuclei with I>1/2 interact with gradient of electric field (non-spherical charge density)

spin-spin coupling (J-coupling)
magnetic field induced by neighbouring nuclei
but mediated via valence electrons

Simulation of Observed Spectra

In general not a simple function of NMR interaction tensors. Need to consider experimental conditions (which NMR experiment). Several sophisticated codes to handle this e.g. SIMPSON, Spinevolution (virtual spectrometers)

Effective Hamiltonian

$$H = -rac{1}{2\pi}\sum_{
m K} \gamma_{
m K} {
m I}_{
m K} (1-m{\sigma}_{
m K}) {
m B}_{
m ext}$$
 Bare Dressed

Magnetic Shielding

$$oldsymbol{\sigma}_{\mathrm{K}} = rac{\partial^2 E}{\partial oldsymbol{\mu}_{\mathrm{K}} \partial oldsymbol{B}_{\mathrm{ext}}}$$

Electronic Response

Induced Current **j**(r) Spin Polarisation **m**(r) both cause induced magnetic field at nucleus

Induced Field

$${\bf B}_{\rm in}({\bf R}_{\rm K}) = \frac{\mu_0}{4\pi} \int {\bf j}^{(1)}({\bf r}) \times \frac{{\bf r}_{\rm K}}{|{\bf r}_{\rm K}|^3} \, d^3{\bf r}. \label{eq:Bin}$$

$$oldsymbol{\sigma}_{\mathrm{K}} = -rac{\mathbf{B}_{\mathrm{in}}(\mathbf{R}_{\mathrm{K}})}{\mathbf{B}_{\mathrm{ext.}}}$$

spin contribution averages to zero in a diamagnetic insulator

Electron-mediated interaction of nuclear spins

Nucleus A causes a magnetic field at nucleus B (and vice versa)

In solids J is rarely revealed in splitting of peaks in 1D spectra (anisotropic interactions broaden peaks)

Increasing use of techniques, eg those using spin-echo modulation, to measure J in solids.

THE UNIVERSITY of York

Spin-Spin (J) coupling

Effective Hamiltonian

 $H = \sum_{\mathrm{K} < \mathrm{L}} \mathbf{I}_{\mathrm{K}} (\mathbf{D}_{\mathrm{KL}} + \mathbf{J}_{\mathrm{KL}}) \mathbf{I}_{\mathrm{L}}$ Bare Dressed

Indirect Coupling

$$\mathbf{J}_{\mathrm{KL}} = \frac{\hbar \gamma_{\mathrm{K}} \gamma_{\mathrm{L}}}{2\pi} \frac{\partial^{2} E}{\partial \boldsymbol{\mu}_{\mathrm{K}} \partial \boldsymbol{\mu}_{\mathrm{L}}}$$

(note E here omits the nuclearnuclear magnetic interaction)

$$\mathbf{B}_{\mathrm{in}}^{(1)}(\mathbf{R}_{\mathrm{K}}) = \frac{2\pi}{\hbar \gamma_{\mathrm{K}} \gamma_{\mathrm{L}}} \mathbf{J}_{\mathrm{KL}} \cdot \boldsymbol{\mu}_{\mathrm{L}}$$

Orbital Magnetic dipole induces orbital motion of electrons

Orbital Current

Spin Magnetic dipole induces spin density

Induced Spin density

(calc)

$$^{2h}J_{N7a,N1b} = 7.4\pm0.4 \text{ Hz (expt)}$$

7.7 Hz (calc)

6.5 Hz

J. Am. Chem. Soc. 130, 12663 (2008)

Silicophophates

Christian Bonhomme (Paris)

Si₅O(PO₄)₆

4±2 Hz

1 Hz

Expt: Inorg. Chem. 46, 1379 (2007)

Calc: J. Chem. Phys. 127, 204107 (2007)

Design and optimisation of NMR experiments Interpretation of experiment

Through-space J-coupling

¹ⁱJ_{FF} Expt Calc

F1-F3: 18 Hz 12.5 Hz

F1-F7: 2.6 Hz 3.6 Hz

fluorine-substituted deuterated hydrous magnesium silicate

J. Am. Chem. Soc. 132 15651 (2010

Distributions of J in amorphous solids

Electric Field Gradients

Function of the charge density - ie ground-state property. Also computed by all-electron codes such as Wien2k, Crystal

$$\forall \forall \alpha \beta (r) = \int \uparrow d \uparrow 3 r \uparrow' n(r) / |r - r'| \uparrow 3 [\delta \downarrow \alpha \beta - 3(r \downarrow \alpha - r' \downarrow \alpha)(r \downarrow \beta - r' \downarrow \beta) / |r - r'| \uparrow 2]$$

charge density

Eigenvalues

$$V_{\mathrm{xx}}, V_{\mathrm{yy}}, V_{\mathrm{zz}}$$
 $|V_{\mathrm{zz}}| > |V_{\mathrm{yy}}| > |V_{\mathrm{xx}}|$

Quadrupolar Coupling

$$C_Q = \frac{eQV_{zz}}{h}$$

Asymmetry

$$\eta_Q = rac{V_{ ext{xx}} - V_{ ext{yy}}}{V_{ ext{zz}}}$$

Note: The quadrupolar moment, Q, is a nuclear property. Most recent values given in "*Year-2008 Standard Values of Nuclear Quadrupole Moments*": P. Pyykkö, Mol. Phys. 106, 1965-1974 (2008)

But note Q appears as a simple scaling factor

¹⁷O MAS Glutamic Acid . HCl

*.param file

Must use on-the-fly pseudopotentials

Highly sensitive to geometry – particularly important to optimise H positions; many structures are obtained from XRD, and H is nearly invisible to X-rays!

CONVERGE!

(basis cut-off & k-points)

Chemical Shielding Tensor						
Nucleus		Shield	Shielding tensor			
Species	Ion	Iso(ppm)	Aniso(ppm)	Asym		
H	1	23.81	5.27	0.40		
H	2	24.75	-3.35	0.85		
H	3	27.30	-5.79	0.90		
0	5	-43.73	504.95	0.47		
0	6	-63.53	620.75	0.53		
0	7	-43.73	504.95	0.47		
ј о	8	-63.53	620.75	0.53		

Anisotropy

Asymmetry

$$\sigma_{\rm aniso} = \sigma_{\rm zz} - 1/2(\sigma_{\rm xx} - \sigma_{\rm yy})$$
 $\eta = 3(\sigma_{\rm yy} - \sigma_{\rm xx})/2\sigma_{\rm aniso}$

THE UNIVERSITY of York

```
Atom: O
     1 Coordinates
                         1.641 1.522
                                            5.785
0
TOTAL Shielding Tensor
             218.1858
                           12.1357
                                      -25.7690
              13.4699
                          191.6972
                                       -7.2419
             -25.9178
                           -6.5205
                                       216.3180
                                 185.6127 (ppm)
     1 Eigenvalue
                   sigma xx
0
     1 Eigenvector sigma xx
                                    0.5250
                                               -0.8103
                                                             0.2603
0
     1 Eigenvalue
                   sigma yy
                                 193.8979 (ppm)
0
     1 Eigenvector sigma yy
                                    0.4702
                                                0.5310
                                                             0.7049
0
     1 Eigenvalue sigma zz
                                 246.6904 (ppm)
0
     1 Eigenvector sigma zz
                                  -0.7094
                                               -0.2477
\mathbf{O}
     1 Isotropic:
                        208.7337 (ppm)
0
     1 Anisotropy:
                         56.9351 (ppm)
0
     1 Asymmetry:
                          0.2183
0
```

Note: shielding tensor has a symmetric and an antisymmetric component.
Typical NMR experiments are only sensitive to the symmetric part.
Therefore we only diagonalise the symmetric part of the shielding tensor

A single calculation gives the coupling between one (perturbing) atom and all others. Might need several calculations to get all of the couplings of interest.

Perturbing atom breaks periodicity - if the unit cell is small you might need to build a supercell to inhibit the interaction with periodic images

Contributions to J-coupling

Spin: Fermi Contact (FC) Spin Dipolar (SD)

Charge: Paramagnetic (PARA) and Diamagnetic (DIA) - terms similar to shielding

note: only total J is observable

	Isotropic J-coupling						
	Nucle	eus	J-coupling values				
	Species	Ion	FC	SD	PARA	DIA	TOT(Hz)
	0	1	25.37	0.31	-5.61	0.10	20.18
7	** Si	1					
	Si	10	12.41	-0.04	0.41	0.01	12.79
	Si	16	17.97	0.07	0.43	0.01	18.48
erturbing atom	Si	30	14.40	0.23	0.39	0.01	15.03
		Bond	Length	(A) 1st ima	.ge Is	o(Hz)	
A	niso(Hz)						
=						=======	===
	 Si 001	0 (001 1.6180	8 12.0690	8 2	0.18	57 . 86
	Si 001	Si (3.0267	4 11.2509	6 1	2.90	3.09
	Si 001	Si (3.0390	8 7.7029	0 1	2.79	3.47
	Si 001	Si (3.0962	3 9.8367	5 1	8.48	6.54
	Si 001	Si (030 3.1701	3 11.9128	1 1	5.03	8.39

Some practical things to keep in mind

Structure

NMR is very sensitive to structure!

XRD atom positions are often not sufficient for accurate simulation of NMR parameters.

Dynamics

Atoms move, and spectra are recorded at finite T. How to account for that in (static) calculations?

Accuracy

How good are our present (approximate) density functionals?

Effects of Relativity

scalar relativistic effects easy to treat (relativistic_treatment) spin-orbit interaction is much harder, but may be needed (e.g. for shifts on light atoms bonded to heavy atoms)

Localised *dlf* Electrons

Local Density Approximation (LDA) not enough, need lower self-interaction error.

Paramagnetic Materials

Magnetic fields from electronic spin

CCP NC

Collaborative Computational Project for NMR Crystallography

An emerging field, defined as the combined use of experimental solid-state NMR and computation to provide new insight, with atomic resolutions, into structure, disorder and dynamics in the solid state

CCP NC

Collaborative Computational Project for NMR Crystallography

Development of Open-source (free) tools for visualisation and processing of first-principles NMR data

Magres Fileformat - community standard format for first-principles NMR data

MagresView - view NMR tensors - link to spin-dynamics

MagresPython - process NMR parameters - dynamics and disorder

www.ccpnc.ac.uk

Validated pseudopotential library - released with CASTEP 8
MagresDatabase - in development

Getting more information

NMR Books

Good Introduction

Nuclear Magnetic Resonance (Oxford Chemistry Primers)
P. J. Hore

More advanced

Spin Dynamics: Basics of Nuclear Magnetic Resonance Malcolm H. Levitt

Solid state NMR

Solid-State NMR: Basic Principles and Practice David Apperley, Robin Harris, Paul Hodgkinson

Useful survey of applications

Multinuclear Solid-State Nuclear Magnetic Resonance of Inorganic Materials Kenneth J.D. MacKenzie, M.E. Smith

Recent Review Articles

Recent advances in solid-state NMR spectroscopy of spin *I* = 1/2 nuclei

Anne Lesage, Phys. Chem. Chem. Phys., 2009, 11, 6876

Recent advances in solid-state NMR spectroscopy of quadrupolar nuclei

Sharon E. Ashbrook, Phys. Chem. Chem. Phys., 2009, 11, 6892

Getting more information

GIPAW Theory

Comprehensive review of applications and theory:

First-Principle Calculation of NMR Parameters Using the GIPAW (Gauge Including Projector Augmented Wave) Method: a Chemist's Point of View

Bonhomme, Gervais, Babonneau, Coelho, Pourpoint, Azais, Ashbrook, Griffin, Yates, Mauri, Pickard, Chemical Reviews 112 (11), 5733-5779 (2012)

Original Theory Papers:

All-electron magnetic response with pseudopotentials: NMR chemical shifts,

Chris J. Pickard, and Francesco Mauri.

Phys. Rev. B, 63, 245101 (2001)

Calculation of NMR Chemical Shifts for extended systems using Ultrasoft Pseudopotentials Jonathan R. Yates, Chris J. Pickard, and Francesco Mauri. Physical Review B 76, 024401 (2007)

A First Principles Theory of Nuclear Magnetic Resonance J-Coupling in solid-state systems Sian A. Joyce, Jonathan R. Yates, Chris J. Pickard, Francesco Mauri J. Chem. Phys. 127, 204107 (2007)

www.gipaw.net