Phonons and Lattice Dynamics

Peter Byrne

2021

Outline

and Lattice **Dynamics**

Motivation

Lattice Dynamics of Crystals

Ab initio Lattice Dynamics

Break

Lattice Dynamics in CASTEP

Phonon Examples

Quantities from Phonons

Motivation

Spectroscopy

Phonons and Lattice Dynamics

Peter By

Motivation

Lattice Dynamic of Crysta

Ab initi Lattice Dynam

Brea

Lattice Dynamics in CASTE

Example

from Phonon: Experiments measure response of a system to a perturbation

- Probes dynamic properties of crystal
- Not ground state directly!
- Spectroscopic techniques provide incomplete information
 - IR and Raman have inactive modes
 - Hard to distinguish fundamental and overtones processes in spectra
 - Little information on which atoms involved means that mode assignment is difficult
- Would like a predictive technique that does not rely on intuition to calculate vibrational responses within a crystal.

Phonons and Lattice Dynamics

Peter B

Motivation

Lattice Dynamics of Crysta

Ab initio Lattice Dynamic

Breal

Lattice Dynamics in CASTER

Phonon Example

Quantities from Phonons ab initio methods give us a highly transferable, parameter-free probe of the experimental results.

- Calculate vibrational properties on the same theoretical basis as electronic properties.
- Can probe whether a structure is stable wrt perturbations
- Can compute zero point energy and phonon entropy contributions to free energy.
- Predict Raman and IR peaks
- Captures the effects of electron-phonon interactions

Lattice Dynamics of Crystals

1d Chain of Atoms - I

Phonons and Lattice Dynamics

Peter By

Lattice

Dynamics of Crystals

Ab inition Lattice Dynami

Brea

Lattice Dynamics in CASTE

Example

from Phonons Start with infinite 1d chain of atoms connected by springs (force constant K)

Equilibrium separation is a. u_n is the displacement of an atom from equilibrium position.

Assuming only nearest neighbours interact, the force between neighbors i and i + 1 is

$$F_{n,n+1} = -K(u_{n+1} - u_n)$$

1d Chain of Atoms - II

Phonons and Lattice Dynamics

Peter E

Motiva

Lattice Dynamics of Crystals

Ab initio

Break

Lattice Dynamics

Phonon Example

Quantition from The total force on an atom i is the sum of both nearest neighbours which pull in opposite directions

$$F_n = F_{n,n+1} - F_{n-1,n} = -K(u_{n+1} - u_n) + K(u_n - u_{n-1}) = K(2u_n - u_{n+1} - u_{n-1})$$

We use Newton's second law, F = ma so,

$$M\frac{d^2u_n}{dt^2} = K(2u_n - u_{n+1} - u_{n-1})$$

A known solution of this differential equation is a travelling wave

$$u_{n,q}(t) = \widetilde{u}_{n,q}e^{i(qx-\omega_q t)}$$

where $q=\frac{2\pi}{\lambda}$ is a wavenumber and ω_q is an angular frequency. $\widetilde{u}_{n,q}$ is a vector representing the motion of atom n.

1d Chain of Atoms - III

Phonons and Lattice Dynamics

. 0.0. 2,

Motivatio

Lattice Dynamics of Crystals

Ab initio Lattice Dynami

Break

Lattice Dynamics in CASTE

Example

from Phonons Substituting this into the differential equation gives us

$$M\omega_q^2 = 2K\left[1 + cos(qa)\right]$$

This leads to the dispersion relation:

$$\omega_q = \sqrt{rac{4K}{M}} \left| \sin(qa/2)
ight|$$

Single solution or *branch* for each value of *q*.

Diatomic Crystal - Optic modes I

Phonons and Lattice Dynamics

Peter By

. . . .

Lattice Dynamics of Crystals

Ab inition Lattice Dynami

Brea

Lattice Dynamics in CASTE

Exampl

from Phonon If instead, we attempt to determine the modes for a crystal with two different masses of atoms:

We find that there are now multiple values for ω that will satisfy the differential equation for each q

Diatomic Crystal - Optic modes II

Phonons and Lattice Dynamics

Peter By

Mativat

Lattice Dynamics of Crystals

Ab inition Lattice Dynami

Brea

Lattice Dynamics in CASTE

Example

from

More than one atom per unit cell gives rise to *optic modes* with different characteristic dispersion.

Diatomic Crystal - Optic modes III

Phonons and Lattice Dynamics

Peter B

. . . .

Lattice Dynamics of Crystals

Ab initi Lattice Dynam

Brea

Lattice Dynamics in CASTE

Exampl

from Phonon Reminder from earlier: $\widetilde{u}_{n,q}$ is a vector representing the motion of atom n. If we examine these for both modes at the $\Gamma = (0,0,0)$ point, we see

Accoustic Modes Atoms move in-phase (same direction at the same time)
Optical Modes Atoms move anti-phase

Characterization of Vibrations in 3D Crystals

and Lattice Dynamics

Lattice **Dynamics** of Crystals

 Vibrational modes in solids take form of waves with wavevector-dependent frequencies (just like electronic energy levels).

- $\omega(\mathbf{q})$ relations known as dispersion curves
- N atoms in prim. cell ⇒ 3N branches.
- 3 *acoustic* branches corresponding to sound propagation as $q \to 0$ and 3N - 3 optic branches.

Setting up the 3d problem

Phonons and Lattice Dynamics

Peter B

Motivation

Lattice Dynamics of Crystals

Ab initio Lattice Dynamic

Brea

Lattice Dynamics in CASTEP

Phonon Example

Quantitie from Phonons Firstly, we will fill space with periodically repeating unit cells in 3 dimensions

- Take one as an (arbitrary) origin
- Label the rest with respect to this
- Label the unit cells

$$a=(a_1,a_2,a_3)$$

where a_1 , a_2 and a_3 are integers

Coordinate axes

and Lattice **Dynamics**

Lattice **Dynamics** of Crystals

 The shape of each unit cell is defined by 3 linearly independent vectors \mathbf{a}_1 , \mathbf{a}_2 and \mathbf{a}_3

The origin of the ath unit cell can be defined as

$$\mathbf{r}_a = a_1 \mathbf{a}_1 + a_2 \mathbf{a}_2 + a_3 \mathbf{a}_3$$

relative to the origin a=(0,0,0)

 This co-ordinate system gives us the origin of any of the periodically repeating unit cells throughout space

Placement of Atoms

Phonons and Lattice Dynamics

Peter B

Motivatio

Lattice Dynamics of Crystals

Ab initio Lattice Dynamic

Breal

Lattice Dynamics in CASTER

Phonon Example

from Phonons Within each unit cell we will place n atoms

- We will label these atoms $\kappa = 1, 2, ..., n$
- Relative to the origin of a given unit cell (position r_l) the atoms will be placed at positions r_κ
- So that each atom will have position

$$\mathbf{r}_{\kappa,a} = \mathbf{r}_a + \mathbf{r}_{\kappa}$$

relative to our "origin" of the unit cells

Atomic Motion

Phonons and Lattice Dynamics

Peter By

Motivatio

Lattice Dynamics of Crystals

Ab inition Lattice Dynami

Brea

Lattice Dynamics in CASTE

Example

Quantitie from Phonons

- Now we've defined the equilibrium positions of the atoms, we need to move them to describe thermal motion
- The atoms move an amount

$$\mathbf{u}_{\kappa,a}=(\mathit{U}_{\mathsf{X},\kappa,a},\mathit{U}_{\mathsf{Y},\kappa,a},\mathit{U}_{\mathsf{Z},\kappa,a})$$

from their equilibrium position $\mathbf{r}_{a,\kappa}$

• The actual position of atom (a, κ) under thermal motion is then

$$R_{\kappa,a} = \mathbf{r}_{\kappa,a} + \mathbf{u}_{\kappa,a}$$

Diagram of coordinate system

Phonons and Lattice Dynamics

Peter By

Motivation

Lattice Dynamics of Crystals

Ab inition

1

Lattice Dynamics

Phonor

Quantit from

Formal Theory of Lattice Dynamics

Dynamics

Lattice **Dynamics** of Crystals

Based on expansion of total energy about structural equilibrium co-ordinates

$$E = E_0 + \frac{\partial E}{\partial u} \cdot u + \frac{1}{2!} \frac{\partial^2 E}{\partial u^2} \cdot u^2 + \frac{1}{3!} \frac{\partial^3 E}{\partial u^3} u^3 + \dots$$

• At equilibrium the forces $F_{\alpha,\kappa} = -\frac{\partial E}{\partial u}$ are all zero so 1st term vanishes.

$$\textit{E} = \textit{E}_0 + \frac{1}{2} \sum \textit{\textbf{u}}_{\alpha,\kappa,a}.\Phi^{\kappa,\kappa'}_{\alpha,\alpha'}.\textit{\textbf{u}}_{\kappa',\alpha',a} + ...$$

where $\mathbf{u}_{\alpha,\kappa,a}$ is the displacement of atom κ in unit cell a in Cartesian direction α .

- In the Harmonic Approximation the 3rd and higher order terms are assumed to be negligible
- $\Phi_{\alpha,\alpha'}^{\kappa,\kappa'}(a)$ is the matrix of *force constants*

$$\Phi_{\alpha,\alpha'}^{\kappa,\kappa'}(a) = \frac{\partial^2 E}{\partial \mathbf{u}_{\alpha,\kappa} \partial \mathbf{u}_{\kappa',\alpha'}}$$

The Force Constant Matrix (FCM)

Phonons and Lattice Dynamics

Peter By

N 4 - 45 - - 4

Lattice Dynamics of Crystals

Ab initio Lattice Dynamic

Brea

Lattice Dynamics in CASTE

Example

from Phonon This matrix represents all the effective 3d spring constants between atoms

$$\begin{split} \Phi_{\alpha,\alpha'}^{\kappa,\kappa'}(\textbf{a}) &= \frac{\partial^2 E}{\partial \textbf{u}_{\alpha,\kappa} \partial \textbf{u}_{\kappa',\alpha'}} \\ &= -\frac{\partial F_{\textbf{u}_{\alpha,\kappa,\textbf{a}}}}{\partial \textbf{u}_{\kappa',\alpha',\textbf{a}}} \end{split}$$

Alternative view is change on force on atoms due to displacing an atom

Phonons and Lattice Dynamics

Peter B

....

Lattice Dynamics of Crystals

Ab init Lattice

Break Lattice

Phonon

Quantiti

The Dynamical Matrix (DM)

Solution in 1d can be reused with a few modifications for 3d:

$$oldsymbol{u}_{lpha,\kappa}=oldsymbol{arepsilon}_{oldsymbol{m}lpha,\kappa}e^{ioldsymbol{q}.oldsymbol{R}_{lpha,\kappa}-\omega t}$$

Taking the derivative of the total energy equation to get the force, F and substituting this trial solution, we have

$$D_{\alpha,\alpha'}^{\kappa,\kappa'}(\boldsymbol{q})arepsilon_{mlpha,\kappa} \mathbf{q} = \omega_{m,oldsymbol{q}}^2 arepsilon_{mlpha,\kappa} \mathbf{q}$$

where

$$D_{\alpha,\alpha'}^{\kappa,\kappa'}(\boldsymbol{q}) = \frac{1}{\sqrt{M_{\kappa}M_{\kappa'}}}C_{\alpha,\alpha'}^{\kappa,\kappa'}(\boldsymbol{q}) = \frac{1}{\sqrt{M_{\kappa}M_{\kappa'}}}\sum_{\boldsymbol{a}}\Phi_{\alpha,\alpha'}^{\kappa,\kappa'}(\boldsymbol{a})\mathrm{e}^{-i\boldsymbol{q}.\boldsymbol{R}_{\boldsymbol{a}}}$$

- The **dynamical matrix** $D_{\alpha,\alpha'}^{\kappa,\kappa'}(q)$ is the Fourier transform of the force constant matrix
- The solutions of the eigenvalue equation correspond to vibrational modes
- Mode frequency is square root of corresponding eigenvalue $\omega_{m,q}$.

Formal Theory of Lattice Dynamics II

Phonons and Lattice Dynamics

Peter B

Motivat

Lattice Dynamics of Crystals

Ab initio Lattice Dynamics

Breal

Lattice Dynamics in CASTER

Phonon Example

from Phonons • The dynamical matrix is a $3N \times 3N$ matrix at each wavevector \mathbf{q} .

- $D_{\alpha,\alpha'}^{\kappa,\kappa'}(\boldsymbol{q})$ is a hermitian matrix \Rightarrow eigenvalues $\omega_{m,\boldsymbol{q}}^2$ are real.
- 3N eigenvalues ⇒ modes at each q leading to 3N branches in dispersion curve.
- The mode eigenvector $\varepsilon_{m\alpha,\kappa}$ gives the atomic displacements, and its symmetry can be characterised by group theory.
- Given a force constant matrix $\Phi_{\alpha,\alpha'}^{\kappa,\kappa'}(a)$ we have a procedure for obtaining mode frequencies and eigenvectors over entire BZ.

Ab initio Lattice Dynamics

The Finite-Displacement method

Phonons and Lattice Dynamics

Motiva

Dynamic of Crysta

Lattice Dynamics

D100

from Phonon

The finite displacement method:

- Displace ion κ' in direction α' by small distance $\pm u$.
- Use single point energy calculations and evaluate *forces* on *every* ion in system $F_{\kappa,\alpha}^+$ and $F_{\kappa,\alpha}^+$ for +ve and -ve displacements.
- Compute numerical derivative using central-difference formula

$$\frac{dF_{\kappa,\alpha}}{du} \approx \frac{F_{\kappa,\alpha}^+ - F_{\kappa,\alpha}^-}{2u} = \frac{d^2E}{du_{\kappa,\alpha}du_{\kappa',\alpha'}}$$

- Have calculated entire $row \, k', \alpha'$ of $D_{\alpha,\alpha'}^{\kappa,\kappa'}(\boldsymbol{q}=0)$
- Only need 6Nat SPE calculations to compute entire dynamical matrix.
- This is a *general* method, applicable to any system.
- Can take advantage of space-group symmetry to avoid computing symmetry-equivalent perturbations.
- Works only at $\mathbf{q} = 0$.

Non-diagonal supercell method

and Lattice Dynamics

Peter B

Motiva

Lattice Dynamics of Crysta

Ab initio Lattice Dynamics

Breal

Lattice Dynamics in CASTER

Phonon Example

from Phonons

- New method by J. Lloyd-Williams and B. Monserrat, Phys Rev B, 92, 184301 (2015).
- Extension of finite displacement method
- Old "Direct" Supercell method calculates the FCM for each atom
 - Construct supercell big enough that we can ignore periodicity
 - Supercell needs to be big enough that interactions fall to zero
 - Often requires very large calculations with lots of atoms
- Non-diagonal supercell method takes advantage of periodicity of system
 - Calculates response at q by constructing a minimal supercell.
 - Supercells are much smaller than those in the supercell method.
 - Very efficient and can calculate DM on arbitrary grid.

Second derivatives in QM

Phonons and Lattice Dynamics

. .

Goal is to calculate the *2nd derivatives* of energy to construct FCM or $D_{\alpha,\alpha'}^{\kappa,\kappa'}(\boldsymbol{q})$.

- Energy $E = \langle \Psi | \, \hat{H} \, | \Psi
 angle$ with $\hat{H} = rac{1}{2}
 abla^2 + V_{
 m SCF}$
- Forces (first derivative) can be shown to be

$$F = -rac{dE}{d\lambda} = -\left\langle \psi
ight| rac{dV}{d\lambda} \left| \psi
ight
angle$$

Force constants are the second derivatives of energy

$$k = \frac{d^2 E}{d\lambda^2} = -\frac{dF}{d\lambda} = \left\langle \frac{d\Psi}{d\lambda} \middle| \frac{dV}{d\lambda} \middle| \Psi \right\rangle + \left\langle \Psi \middle| \frac{dV}{d\lambda} \middle| \frac{d\Psi}{d\lambda} \right\rangle - \left\langle \Psi \middle| \frac{d^2 V}{d\lambda^2} \middle| \Psi \right\rangle$$

- None of the above terms vanishes.
- Need **linear response** of wavefunctions *wrt* perturbation (ie $\left\langle \frac{d\Psi}{d\lambda} \right|$).
- In general n^{th} derivatives of wavefunctions needed to compute $2n + 1^{th}$ derivatives of energy. This result is the "2n + 1 theorem".

Density-Functional Perturbation Theory

Phonons and Lattice Dynamics

Ab initio Lattice **Dynamics**

• In DFPT need *first-order* KS orbitals $\phi^{(1)}$, the *linear response* to λ .

- λ may be a displacement of atoms with wavevector q (or an electric field E.)
- If **a** incommensurate $\phi^{(1)}$ have Bloch-like wavefunction: $\phi_{\mathbf{k},\mathbf{q}}^{(1)}(\mathbf{r}) = e^{-i(\mathbf{k}+\mathbf{q})\cdot\mathbf{r}}u^{(1)}(\mathbf{r})$ where $u^{(1)}(\mathbf{r})$ has periodicity of unit cell.
- First-order density $n^{(1)}(\mathbf{r})$ and potential $v^{(1)}$ have similar Bloch representation.
- First-order response orbitals are solutions of Sternheimer equation

$$\left(H^{(0)} - \epsilon_m^{(0)}\right) \left|\phi_m^{(1)}\right\rangle = -v^{(1)} \left|\phi_m^{(0)}\right\rangle$$

- First-order potential $v^{(1)}$ includes response terms of Hartree and XC potentials and therefore depends on first-order density $n^{(1)}(\mathbf{r})$ which depends on $\phi^{(1)}$.
- Finding $\phi^{(1)}$ is therefore a *self-consistent* problem just like solving the Kohn-Sham equations for the ground state.

Variational and Green function approaches

and Lattice Dynamics

Ah initio Lattice **Dynamics**

• Two major approaches to finding $\phi^{(1)}$ are suited to plane-wave basis sets:

Variational DFPT (X. Gonze (1997) PRB **55** 10377-10354). Conjugate-gradient minimization of variational 2nd-order energy expression subject orthogonality constraint $\left\langle \phi_n^{(1)} | \phi_m^{(0)} \right\rangle = 0$

Green function (S. Baroni et al (2001), Rev. Mod. Phys 73, 515-561). Solve Sternheimer equation in self-consistent loop with 1st-order density mixing.

CASTEP implements both DFPT methods (phonon_dfpt_method). Variational DFPT implemented for insulators only, Green function/DM for both insulators and metals.

- DFPT has huge advantage can calculate response to incommensurate q from a calculation on primitive cell.
- Disadvantages of DFPT:
 - Needs derivatives for the XC functional only works for some functionals (LDA, PBE, etc)
 - Not implemented for ultrasoft pseudopotentials have to use NCP

Fourier Interpolation of dynamical Matrices

Phonons and Lattice Dynamics

Peter By

Motiva

Lattice Dynamic

Ab initio Lattice Dynamics

Brea

Dynamics in CASTE

Pnonon Example

from Phonons FCM decays quickly

- Approximate by reverse Fourier transform of DM
- Use forward transform to get DM at arbitrary q
- Handle Coulomb analytically

	••	•		•	• •	• •	•		•	• •	•	•		*	•
	, ,		11		*	, ,		11		*	••		11		*
		11	11	11	1,		11	Ļį	11			1.1	11	11	1
	<u>.</u>		11	/:	√.	١.		11	/:	*		-	11	/:	*
	Ż	4 6			7					•	``	1			**
			:												
t	"		11		•	7				•	7	* *	11	**	•
	<u>,</u>	11	l i	1.	1.		11	11	11	1		11	1 1	11	\vdash
	••				-	-			$\overline{}$				*	$\overline{}$	4
	*	* *	11	4.6	*	4.	* *	11	8.6	*	4.	* *	11	* *	7.
	••	• •	* *	كمو	• •	••	••	* *	کمو	• •	• •	•	* *	كمو	* *
	• •	کاہو		4.0	• •	••	**	•	4.0	• •	• •	کاہ		4.0	• •
	<u>*/•</u>		11	4.4	4 6	•/•	4.4	11	4.4	4 .	y 6	4.4	11	4.4	*
		11	11	11	4	٠.	11	11	11	1		11	11	11	1
		•	11	/:	*/•	١.		11	/:	*/•	•	4.4	11	/:	*
		•		1	••		•	•	•	•		•		•	••

Acoustic Sum Rule

Phonons and Lattice Dynamics

Peter E

Motivo

Lattice Dynamics of Crysta

Ab initio Lattice Dynamics

Brea

Lattice Dynamics in CASTEP

Example

from Phonons At the Γ point, the 3 lowest energy modes should be exactly zero

- This corresponds to the 3 translational symmetries in a periodic crystal
- ullet Atomic motion becomes more and more like a rigid shift as ${m q} o 0$
- Insufficient convergence may lead to this not being true
 - Numerical noise can affect this
 - Insufficient sampling in real or reciprocal space
- We can "fix" solution to enforce this sum rule

REALSPACE Correct the FCM in real space.

RECIPROCAL Correct the DM at q = 0 and then apply this correction to all DMs.

Select method by phonon_sum_rule_method

Break

Lattice Dynamics in CASTEP

Methods in CASTEP

Phonons and Lattice Dynamics

Lattice **Dynamics** in CASTEP

CASTEP can perform ab initio lattice dynamics using

- Primitive cell finite-displacement at q=0
- Supercell finite-displacement for any q
- DFPT at arbitrary q.
- DFPT on MP grid of q with Fourier interpolation to arbitrary fine set of q.
- Finite displacements using non-diagonal supercells with Fourier interpolation.

Full use is made of space-group symmetry to only compute only

- symmetry-independent elements of $D_{\alpha,\alpha'}^{\kappa,\kappa'}(q)$
- q-points in the irreducible Brillouin-Zone for interpolation
- electronic k-points adapted to symmetry of perturbation.

k-points and **q**-points

Phonons and Lattice Dynamics

Motiva

Lattice Dynami of Cryst

Ab initio Lattice Dynami

Break

Lattice Dynamics in CASTEP

Example

from Phonon For phonons we have two sets of points in the Brillouin zone which are both defined in the .cell file

```
k-points These are the points where we solve the Kohn-Sham equations to obtain wavefunctions and total energies. These are specified by: kpoint_<tag>
spectral_kpoint_<tag>
supercell_kpoint_<tag>
```

q-points These are the points that we calculate the phonons modes on. They are specified by:

```
phonon_kpoint_<tag> phonon_fine_kpoint_<tag>
```

where <tag> is one of

mp_grid A Monkhurst-Pack grid specification (n_x, n_y, n_z)

mp_offset An offset to apply to the above grid

list A list of points to sample

spacing Use a grid with at most this spacing

path Generate a path between this list of points

A CASTEP calculation I - simple DFPT

and Lattice Dynamics

Lattice Dynamics of Crystals

Ab initio

Lattice

Dynamics in CASTEP
Phonon

Examples Quantities Lattice dynamics assumes atoms at mechanical equilibrium. **Golden rule:** The first step of a lattice dynamics calculation is a high-precision geometry optimisation

- Parameter task = phonon selects lattice dynamics calculation.
- Iterative solver tolerance is phonon_energy_tol. Value of 10⁻⁵
 eV/Ang**2 usually sufficient. Sometimes need to increase phonon_max_cycles
- Need very accurate ground-state as prerequisite for DFPT calculation elec_energy_tol needs to be roughly square of phonon_energy_tol
- $D_{\alpha,\alpha'}^{\kappa,\kappa'}(\boldsymbol{q})$ calculated at \boldsymbol{q} -points specified in *cell* file by phonon_kpoint_<tag>

Example Phonon Output - Si2

Phonons and Lattice Dynamics

Peter By

.

Lattice Dynamics

Ab inition Lattice Dynam

Break

Lattice Dynamics in CASTEP

Phonon Example

from Phonons

=:		========		
+			Vibrational Frequencies	+
+				+
+				+
+	Performin	g frequency cald	ulation at 3 wavevectors (q-pts)	+
+				+
+				+
+				+
+	q-pt=	1 (0.000000	0.000000 0.000000) 0.1250000000	+
+				+
+			tion < 11.519522 cm-1 applied	+
+	N		1	raman active +
+		(cm-1)	((D/A) **2/amu)	+
+				+
+	1	-0.026685 a	0.0000000 N	N +
+		-0.026685 a	0.0000000 N	N +
+		-0.026685 a	0.0000000 N	N +
+		514.731729 b	0.0000000 N	Y +
+	5	514.731729 b	0.0000000 N	Y +
+	6	514.731729 b	0.0000000 N	Y +
+				+
+	Ch	aracter table fi	om group theory analysis of eigenvect	ors +
+			Point Group = 32, Oh	+
+				+
+	Rep Mul	E 4 2	2' 3 I -4 m_h m_v -3	+
+				+
+	a Tlu l	3 1 -1	-1 0 -3 -1 1 1 0	+
+	b T2g 1	3 -1 -1	1 0 3 -1 -1 1 0	+
+				+

CASTEP phonon calculations II - Fourier Interpolation

Phonons and Lattice Dynamics

Peter B

Motivot

Lattice Dynamic of Crysta

Lattice Dynam

Lattice

Dynamics in CASTEP

Examples

Quantitie from Phonons

- Specify grid of q-points using phonon_kpoint_mp_grid p q r.
- To select interpolation phonon_fine_method = interpolate
- **Golden rule of interpolation:** Always include the Γ point (0,0,0) in the interpolation grid. For even p, q, r use *shifted* grid phonon_fine_kpoint_mp_offset $\frac{1}{2p}\frac{1}{2q}\frac{1}{2r}$ to shift one point to Γ
- $D_{\alpha,\alpha'}^{\kappa,\kappa'}(\boldsymbol{q})$ interpolated to \boldsymbol{q} -points specified in *cell* file by phonon_fine_kpoint_<tag>
- Can calculate fine dispersion plot and DOS on a grid rapidly from one DFPT calculation.
 - Real-space force-constant matrix is stored in .check file.
 - All fine_kpoint parameters can be changed on a continuation run.
 - Interpolation is very fast.

CASTEP phonon calculations III - Non-diagonal Supercell

and Lattice Dynamics

Peter By

Motivs

Lattice Dynamics

Lattice Dynamic

Lattice

Dynamics in CASTEP

Example

from Phonons • To select set both phonon_method = finite_displacement and phonon_fine_method = interpolation

- Specify grid of q-points using phonon_kpoint_mp_grid p q r as for DFPT. CASTEP will automatically determine supercells to use - no need to explicitly set supercell in .cell file.
- K-points for supercell set using spacing or grid keywords supercell_kpoint_mp_spacing
- CASTEP automatically chooses a series of non-diagonal (skew) supercells and performs FD phonons and computes $D_{\alpha,\alpha'}^{\kappa,\kappa'}(\boldsymbol{q})$ on grid of \boldsymbol{q} -points specified in cell file by one of same $phonon_kpoint$ keywords.
- From there calculation proceeds exactly as for supercell or DFPT interpolation.

Running a phonon calculation

Phonons and Lattice Dynamics

Peter B

.

Lattice Dynamic

Ab initio Lattice Dynamic

Break

Lattice Dynamics in CASTEP

Phonon Examples

from Phonons Phonon calculations can be lengthy. CASTEP saves partial calculation periodically in .check file:

 $\label{eq:num_backup_iter} \begin{subarray}{ll} num_backup_iter $n-$ Backup every n q-vectors \\ backup_interval $t-$ Backup every t seconds \\ \end{subarray}$

- Phonon calculations have high inherent parallelism. Because perturbation breaks symmetry relatively large electronic k-point sets are used.
- Number of k-points varies depending on symmetry of perturbation.
- Try to choose number of processors to make best use of k-point parallelism. If N_k not known in advance choose N_P to have as many different prime factors as possible - not just 2!

Phonon Examples

DFPT with interpolation for Au

Phonons and Lattice Dynamics

Potor By

Lattice Dynamic

Ab initio

Lattice Dynamics in CASTE

Phonon Examples

Quantitie from

Phonons and Lattice Dynamics

Peter By

Lattice Dynamic

Ab initio

Bros

Lattice Dynamics in CASTE

Phonon Examples

from Phonons

MoS2 - Bulk vs monolayer

Phonons and Lattice Dynamics

Peter By

Lattice

Dynamic of Crysta

Ab initio Lattice Dynami

Dieak

Dynamics in CASTE

Phonon Examples

from

Convergence issues for lattice dynamics

Phonons and Lattice Dynamics

Motiva

Dyna of Cr

Lattice

Lattice Dynamic in CAST

Phonon Examples

from Phonons ab initio lattice dynamics calculations are very sensitive to convergence issues. A good calculation must be well converged as a function of

- plane-wave cutoff
- electronic kpoint sampling of the Brillouin-Zone (for crystals) (under-convergence gives poor acoustic mode dispersion as ${m q} o 0$
- geometry. Co-ordinates must be well converged with forces close to zero (otherwise calculation will return imaginary frequencies.)
- For DFPT calculations need high degree of SCF convergence of ground-state wavefunctions.
- supercell size for "molecule in box" calculation and slab thickness for surface/s lab calculation.
- Fine FFT grid for finite-displacement calculations.
- Accuracy of 25-50 cm⁻¹ usually achieved or bettered with DFT.
- need GGA functional *e.g.* PBE, PW91 for hydrogenous and H-bonded systems.
- When comparing with experiment remember that disagreement may be due to anharmonicity.

Nb - Imaginary Phonon Modes/Negative Frequencies

Phonons and Lattice Dynamics

Peter By

. . . .

Lattice

Dynamic of Crysta

Ab initio Lattice Dynamic

Brea

Lattice Dynamics in CASTE

Phonon Examples

Quantitie from Phonons

Quantities from Phonons

Phonons and Lattice Dynamics

Peter B

N 4 - 41 - - 41

Lattice Dynamics of Crystal

Ab initio Lattice Dynamic

Break

Lattice Dynamics in CASTEP

Example

Quantities from Phonons

Thermodynamics

- \bullet Given the phonon frequencies, the phonon density of states, $g(\omega)$ can be obtained
- \bullet This is straightforward: just count the number of frequencies in the range w to $\omega+d\omega$
- This histogram is the phonon density of states
- Finite temperature information is obtained by manipulating $g(\omega)$

Thermal Energy

and Lattice Dynamics

Peter B

Motivot

Lattice Dynamic of Crysta

Ab inition
Lattice
Dynami

Brea

Lattice Dynamics in CASTE

Example

Quantities from Phonons The total thermal energy due to atomic motion is given by

$$E_{vib}(T) = E + k_B T \sum_{q} \log \left[2 \sinh \left(\frac{\hbar \omega(q)}{2k_B T} \right) \right]$$

 Many thermodynamic properties can be calculated from this such as entropy, specific heat, etc. which you are free to investigate on your own

Dynamics

Peter Byr

Motivation

Lattice Dynamic

Ab inition

Bros

Lattice Dynamics

Phonon

Quantities from Phonons

Two similar structures

Zincblende BN

Diamond

BN and Diamond

Phonons and Lattice Dynamics

Peter By

Lattice Dynamics

Ab initio

Lattice Dynami

Brea

Dynamics in CASTE

Phonon Example

Quantities from Phonons

Note degeneracies of optical modes at Γ ?

LO/TO Splitting

and Lattice Dynamics

Peter By

Motivat

Lattice Dynamic of Crysta

Lattice Dynami

Brea

Lattice Dynamics in CASTE

Examp

Quantities from Phonons

- Dipole created by displacement of charges of long-wavelength LO mode creates induced electric field.
- For TO motion, $E \perp q$ so $E \cdot q = 0$
- For LO motion, $E \parallel q$ and E.q adds additional restoring force
- Energy (and so frequency) of LO mode is increased
- This is included in the formalism of DFPT.

Powder infra-red

Phonons and Lattice Dynamics

Peter B

Motivo

Lattice Dynamics

Lattice Dynam

Brea

Lattice Dynamics in CASTE

Example

Quantities from Phonons

- IR absorption is governed by the change in polarisation due to a phonon at the Γ point.
 - Can calculate which modes are IR active and how strongly they will interact.

Raman Spectroscopy

Phonons and Lattice Dynamics

Peter B

Lattice Dynamion of Cryst

Ab initio Lattice Dynamic

Brea

Lattice Dynamics in CASTE

Exampl

Quantities from Phonons Raman scattering depends on raman activity tensor

$$I_{\alpha\beta}^{\text{raman}} = \frac{d^3 E}{d\varepsilon_{\alpha} d\varepsilon_{\beta} dQ_m} = \frac{d\epsilon_{\alpha\beta}}{dQ_m}$$

ullet Can do this by displacing the atoms and doing an e-field calculation at each point or by the 2n+1 theorem

 Both methods give similar results but the perturbative method is much faster (ice13 – 16,000 s vs 80,000 s)

Raman Spectra of ZrO2

Phonons and Lattice Dynamics

Peter By

....

Lattice Dynamics

Ab initio Lattice

Brea

Lattice Dynamics in CASTE

Example

Quantities from Phonons

Conclusion

Phonons and Lattice Dynamics

Peter B

Motivat

Lattice Dynamic of Crysta

Lattice Dynam

Brea

Lattice Dynamics in CASTE

Example

Quantities from Phonons Phonons can be calculated by either

- Finite displacement with
 - Primitive cell at $\mathbf{q} = 0$
 - Non-diagonal supercell on MP grid
 - Direct supercell to calculate FCM
- Density functional perturbation theory
 - At arbitrary q
- Interpolation is very useful for finely sampling phonons.
- Acoustic sum rule can help correct frequencies at q = 0
- Thermodynamic properties available!
- Raman and and IR can be calculated

Thanks for listening!

References

and Lattice Dynamics

Motivation

of Crysta
Ab initio

Lattice Dynamic

Phonor Examp

Quantities from Phonons

Books on Lattice Dynamics

- M. T. Dove Introduction to Lattice Dynamics, CUP. elementary introduction.
- J. C. Decius and R. M. Hexter Molecular Vibrations in Crystals Lattice dynamics from a spectroscopic perspective.
- Horton, G. K. and Maradudin A. A. Dynamical properties of solids (North Holland, 1974) A comprehensive 7-volume series - more than you'll need to know.
- Born, M and Huang, K Dynamical Theory of Crystal Lattices, (OUP, 1954) - The classic reference, but a little dated in its approach.

References on ab initio lattice dynamics

- K. Refson, P. R. Tulip and S. J Clark, Phys. Rev B. **73**, 155114 (2006)
- S. Baroni et al (2001), Rev. Mod. Phys 73, 515-561.
- Variational DFPT (X. Gonze (1997) PRB 55 10377-10354).
- Richard M. Martin Electronic Structure: Basic Theory and Practical Methods: Basic Theory and Practical Density Functional Approaches Vol 1 Cambridge University Press, ISBN: 0521782856

The Supercell method

Phonons and Lattice Dynamics

. -.-. –,

Lattice

Dynamic of Crysta Ab initio

Dynam

. .

Dynamics in CASTE

Examples

Quantities from Phonons The *supercell method* is an extension of the finite-displacement approach which depends on *short-ranged* nature of FCM: $\Phi_{\alpha,\alpha'}^{\kappa,\kappa'}(a) \to 0$ as $R_a \to \infty$.

In non-polar insulators and most metals $\Phi_{\alpha,\alpha'}^{\kappa,\kappa'}(a)$ decays as $1/R^5$ or faster. In polar insulators Coulomb term decays as $1/R^3$ Define radius R_c beyond which $\Phi_{\alpha,\alpha'}^{\kappa,\kappa'}(a)$ is negligible For supercell with $L>2R_c$ then $C_{\alpha,\alpha'}^{\kappa,\kappa'}(\mathrm{sc})\approx\Phi_{\alpha,\alpha'}^{\kappa,\kappa'}(a)$.

	•	•	3		•			3		•			•	
		11												٠.
<u> </u>				1	_	11			_	_				$\overline{}$
١.	_	_			_		_	_		_	-	_	_	_
						ć.			/					/
											_		_	
$^{\prime}$					_	* *			$\overline{}$	_				$\overline{}$
	4.1	ij	11	1 1		11	Įį.	11	1		11	Į:	11	i
١,		11	/:	→ .	•		11	/:	*/•	٠.		11	/:	√.
: /	3		کمو	•		ξ		٩	•		3	•	٥,	••
• •	**		•				•	•				•	•	
••		11	:	*	√.		11		* *	√.		11		٧.
	11	Ļį	11	1 1		11	ŢŢ				11	Ţ		1
		11	/:	₩.			11	:/	√.			11	:/	√.
	•		كمؤ	••		•		مكو	••		•		مکو	••

The Supercell method

Phonons and Lattice Dynamics

Peter B

8.4 mail:

Lattice Dynamic of Crysta

Ab initi Lattice Dynam

Brea

Lattice Dynamics in CASTEP

Example

Quantities from Phonons • Choose sufficiently large supercell and compute $C_{\alpha,\alpha'}^{\kappa,\kappa'}(\text{sc})$ using finite-displacement method.

Non-periodic real-space force-constant matrix directly mapped from periodic supercell FCM. $\Phi_{\alpha,\alpha'}^{\kappa,\kappa'}(a) \equiv C_{\alpha,\alpha'}^{\kappa,\kappa'}(sc)$

- Sourier transform using definition of D to obtain dynamical matrix of primitive cell at any desired a.
- 1 Diagonalise $D_{\alpha,\alpha'}^{\kappa,\kappa'}(q)$ to obtain eigenvalues and eigenvectors.

This method is often (confusingly) called the "direct" method.

Overlap Errors

Phonons and Lattice Dynamics

Motivati

Lattice Dynamics of Crysta

Lattice Dynam

Bre

Lattice Dynamics in CASTE

Exampl

Quantities from Phonons Size of supercell limits R_c . Too small a supercell means that $\Phi_{\alpha,\alpha'}^{\kappa,\kappa'}(a)$ can not be cleanly extracted from $C_{\alpha,\alpha'}^{\kappa,\kappa'}(\text{SC})$ and dispersion curves will contain error.

