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Beyond DFT

 What do we mean by a band gap?
 What is the excitation?

e Sometimes want to describe excited states of
electronic systems:

— Optical properties
— Excitons

— Charge transfer

— Structure

— Dynamics
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Time-dependent DFT

* One-to-one correspondence between time-
dependent one-body densities and time-
dependent one-body potentials

n(r.t)<v,,(r.t)
* Time dependent Kohn-Sham equations

ia¢f'a(:’t) = [—%2+ vis [ ](r )}qu (1)



Why TD-DFT

Formally exact and improvements of the xc-
functionals is still possible.

Improvement of wavefunction based methods
can only be done at huge costs in
computational time.

Computationally more efficient and scales
better than ab-initio methods.

Can be easily combined with MD —you get
forces



Approaches to TD-DFT

Real-time propagation
Sternheimer frequency scan
Linear Response (Casida)

Solution of the response equation
Lanczos chains



Some formalities

TDDFT in the linear response formulation

The basic quantity in LR-TDDFT is the density-density response function
op(r, 1)
5’0(’,.’1,‘1‘(1‘,3 t/) Vo

which relates the first order density response to the applied perturbation

x(r,t, v’ t") =

Sp(r,t) = / d°r’ dt’ x(r,t,v',t") dv(r',t'),



Response function

The physical response function is related to the non-interacting KS response function via the
Dyson-like equation

x(r,t,v',t') = xs(r, b0/, t')+

5t _t 5 e .t
+/d3r1dt1/d3rgdt2 Xs(r,t,r1,t1) (t 2) - U (r1,t1) x(ro,ta,r,t1),
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orin Fourier space X (r;r',w) = x5 ' (r, 1, w) — — fac(r1,r2,w)

The KS response function can be computed (non-interacting system)

X, 1, w) = S (i — f) PR 0 (V)

v w— (€ — €x) + i1



TD-DFT in practice

After writing the dynamic polarizability in KS basis one gets
A(w) B(w) X1 L1 o0 X
B*(w) A*(w) Yy, | 'l o0 -1 Y, |-

with Aiaa,jbr (w) — 50‘75ij5ab(€aa — fio) + (lalfH T ch (w)l.]b)

Biaa,jb‘r(w) — (laIfH + fg(w)bb)’

e 0% Agelpr, pi]
and OT (p. Toi W :/ ezw(tl—tg) zc|FTs Pl d(t- —t5).
ze (¥1 ) o 0ps(r1,t1)0p-(r2,t2) (t1 )

In the adiabatic approximation the TDDFT kernel is time-independent (and its Fourier
transform is independent from W) and therefore the number of solutions of Casida’s
equations is equal to the dimensionality of the matrices.



Simplify notation

(5 % )(¥)=+(0 2)(¥)

 Tamm-Dancoff approximation

AX =wX

where

={X1...Xi} Xi= ) Zuita



TD-DFT in

Castep

« Based on Hutter's formulation
J. Chem. Phys. 118, 3928 (2003)

(H? - )| @)+ P&V [nV]| @) = 0| D )

« Self-consistent response
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Hartree-Fock Contribution

» Contribution to excitation energy
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* http://www.hector.ac.uk/cse/distributedcse/reports/castep02/



Intensity

Example
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#¥BLOCK lattice_abc
6.0 6.0 6.0

90.0 90.0 90.0

¥ENDBLOCK lattice_abc

¥BLOCK species_pot
N N_00.recpot
¥ENDBLOCK species_pot

¥BLOCK positions_abs

N ©.6893 0.0 0.0

N -0.6893 0.0 0.0
%ENDBLOCK positions_abs
kpoints_mp_grid 1 1 1
FIX_ALL_CELL true

symmetry_generate

Example: N,

task : spectral
spectral_theory : tddft
xc_functional : lda
fix_occupancy : true
opt_strategy : speed
tddft_nextra_states : 4
tddft_num_states : 10

tddft_eigenvalue_method :

davidson



++++++++++++++++++++ A

Some iterations...

Time-Dependent DFT Calculation

NB: Calculating singlet states only
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+

+ TDDFT excitation energies

+ -------------------------

+ State number Energy in eV Estimated error

+

+

- 1 5.389370934360212 6.9753711408E-07 spurious
+ 2 6.037881253610007 9.0568954265E-07 Singlet
+ 3 ©.038887862713620 8.2371540215E-07 Singlet
+ 4 6.296051105997545 9.2209779744E-07 Singlet
+ 5 6.296051934448821 8.8907697662E-07 Singlet
+ 6 9.114970608091221 7.7091845361E-07 Singlet
+ 7 9.114970919633304 9.8733193863E-07 Singlet
+ 8 9.423086373661569 9.1482768917E-07 Singlet
+ 9 11.480297881574630  7.8964451155E-07 Singlet
+ 10 12.284357054899688 9.6666531863E-07 Singlet
+

+

+ TDDFT calculation time: 57.39

+

Nriting analysis data to N2-LDA.castep_bin

Nriting model to N2-LDA.check
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Note: One or more states have been marked as spurious.

These states may not be true TDDFT states, yet are valid solutions

to the equations being solved. A geometry optimisation, MD or

phonon calculation where the selected state is spurious may have

limited physical meaning.

Optical matrix elements / oscillator strengths should be negligible

for spurious states.
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N2.tddft and .bands files

Occ.
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Overlap
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Another example

%BLOCK LATTICE_CART
4.196884689078602
0.000000000000000
0.000000000000000

%ENDBLOCK LATTICE_CART

%BLOCK POSITIONS_FRAC
P -0.5000000000000002
P 1.0000000000000002
P -0.0000000000000005
P 9.5000000000000003
%ENDBLOCK POSITIONS_FRAC

kpoints_mp_grid 1 1 1
symmetry_generate

%BLOCK SPECIES_POT

0.000000000000000
15.000000000000002
-9.000000000000029

1.9048791258879185
-1.9048791258879185
1.9125190256942162
-1.91251909256942162

P P_OQOPBE_OP.recpot

%ENDBLOCK SPECIES_POT

0.000000000000000
0.000000000000001
4.563427984024002

0.9107624444447524
1.4107624444447526
9.4980918164309386
9.9980918164309384

phosphorous

task : spectral
xc_functional PBE
fix_occupancy : true

spectral_theory : tddft
tddft_num_states : 12
spin_polarised : true

opt_strategy :speed
elec_energy_tol 1.0e-12 eV



+ 4+ 4+ 4+

B

+ 4+

Excitation Energies

State number Energy in eV Estimated error
1 0.783442128062892  4.3491749946E-07 Triplet
2 1.364692207056864  7.9884918922E-97 Triplet
3 1.719504901920373  7.9228211278E-07 Triplet
4 1.751885263778976  8.0642059869E-07 Triplet
5 2.077954759586475 8.6286667012E-07 Triplet
6 2.097696876062901  8.9205214095E-07 Triplet
7 2.2850790941990853  7.7473654913E-07 Triplet
8 2.521388110389361  8.7691194996E-07 Triplet
9 2.569385820649139  7.4534855252E-07 Triplet
19 2.656291997881030  9.0939675695E-07 Triplet
11 2.662265767168658 O9.3858554114E-07 Triplet
12 2.716517634327477  9.8533575488E-07 Triplet

State Occ.

1 5 -->

1 10 -->

1 5 -->

1 8 -->

1 9 -->

1 10 -->
Total overlap for state

2 5 -->

2 6 -->
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2 5 -->
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Total overlap for state

3 9 -->

3 190 -->

3 9 -->

3 10 -->
Total overlap for state

4 8 -->

4 190 -->

4 8 -->

4 10 -->

4 19 -->
Total overlap for state

5 9 -->

5 10 -->

5 9 -->

5 190 -->

Total overlap for state

Unocc.

Overlap
16 9.001524
11 9.631881
16 0.004060
12 9.001710
13 9.091859
11 9.354534
1 - 9.999958
16 9.002678
14 9.001526
15 0.001824
12 0.006650
13 9.006345
11 9.337583
16 9.001926
14 0.001434
15 9.091661
12 9.005916
13 9.005662
11 9.622909
2 = 9.999056
11 9.629691
13 9.013514
11 9.335751
13 0.018442
3 = 0.998717
11 9.601638
12 9.029184
11 9.331015
12 9.033164
16 9.001230
4 - 0.998674
11 9.341329
13 0.028207
11 9.619382
13 0.008010
5 = 0.999499
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Forces

Contributions from TDDFT response wavefunction

Also need to take into account how the TDDFT
response wavefunction changes as the ground state is
perturbed

Requires the solution of a self-consistent Sternheimer
equation to obtain the Handy-Schaefer Z vector

Essentially computing a 3"-order energy derivative, so
need 3™ derivative of XC functional

http://www.hector.ac.uk/cse/distributedcse/reports/
castep03/




Castep TD-DFT Features

Calculation of singlet and triplet states in Tamm-Dancoff
approximation for both open and closed-shell systems

‘Pure’ and hybrid-DFT adiabatic XC kernels

Solvers: Conjugate gradient and block Davidson (both with
precondition- ing)

G-vector parallel

Optimisations for -point

Calculation checkpointing and restart

Oscillator strengths (for computing spectra)

Characterisation of eigenvectors by decomposing into KS orbitals

Calculation of atomic forces using the Handy-Schaefer Z-vector
method

Structure optimisation of a chosen excited state Born-Oppenheimer
molecular dynamics of a chosen excited state



