THE UNIVERSITY of Jork

Quantum (Path Integral) Molecular Dynamics

Matt Probert Condensed Matter Dynamics Group Department of Physics, University of York, U.K. http://www-users.york.ac.uk/~mijp1

Overview of lecture

Background Theory

CASTEP details

Examples

Background Theory

- Path-Integral
 - We use the Feynmann Path-Integral formulation of quantum mechanics to incorporate an approximate quantum treatment for the non-electronic part of the problem
- Molecular Dynamics
 - We use standard CASTEP + extra contributions from PI to generate forces & energies and hence move the atoms
 - This motion is fictitious and does NOT represent the real dynamics of the system
 - BUT ensemble averages of the PIMD are equivalent to the QM expectation values at an appropriate temperature
 - Hence can use PIMD to incorporate the effects of finite temperature and QM properties of the nucleus into our calculation
 - Hence include effects of zero-point motion, tunnelling, etc.

- Statistical Mechanics
 - Partition Function
 - Expectation Values
 - Density Matrix
 - Time Evolution
- Quantum Mechanics
 - Density Matrix operator
 - Time evolution operator
 - Action

The probability amplitude for a particle beings at some (x',t') is given by the probability of it coming from some starting point (x,t) and then summing over all possible starting points!

A possible path through space-time. The dotted lines indicate possible positions that a path could pass through at each time slice. The propagator integrates over all such possible positions, keeping the end points fixed.

- Integration over all possible paths is done by *time slicing*, i.e. discretizing the path into a number of slices in time, performing the space integration at each slice, and then letting the number of slices go to infinity.
- Mathematically:

$$\int Dx \equiv \lim_{N \to \infty, \Delta t \to \infty} \int dx_{N-1} \int dx_{N-2} \dots \int dx_{1}$$

The action is defined as

$$S[x(t)] = \int_{t_1}^{t_2} dt \, L[x(t)]$$

■ where the Lagrangian is L=T-V

■ The classical path is that for which the action is a *minimum*

x(t)

A ball moving under gravity. The solid line is the classical path, whereas the broken line is a *close* path which has a greater action. The classical trajectory balances potential and kinetic energy to minimise the overall action.

Propagator

Define

$$\Psi(x',t') = \int dx \,\hat{u}(x',t';x,t) \Psi(x,t)$$

where $\hat{u}(x',t';x,t)$ is called the *propagator* and represents the probability of a particle arriving at (x',t') having started at (x,t)

- With path integrals, can write propagator as $\hat{u}(x',t';x,t) = \int_{x(t)=x}^{x(t')=x'} \overline{D}x(t'') \exp\left(\frac{i}{\hbar}S[x(t'')]\right)$
 - where Ďx denotes integration over all possible positions at each time slice and includes some simple numeric prefactors.

The action causes a complex phase factor which causes interference when adding neighbouring paths, e.g. H atom:

paths at a single time slice.

- Oscillations very rapid for large path differences δ
 - For a classical 1 kg mass we see same shape shape as figure 4 but oscillation over ym scale!

A system becomes quantum when action S~ħ

- Oscillations add constructively over width of central peak, and then decohere
- Temperature also matters
 - see quantum effects when thermal wavelength
 de Broglie wavelength

THE UNIVERSITY of York Link to Classical Stat Mech

- It can be shown that QM in imaginary time with Path Integrals is equivalent to classical statistical mechanics at finite temperature!
- If we want the properties of a particle at some (x,t) then the paths in the path integral begin and end on the same point which means that imaginary time is cyclic.
- In practice we discretise the path integral into P slices and converge w.r.t. P

- Skipping details, we finally arrive at: $Z = Tr(\rho) = Tr(\exp(-\beta H)) = \lim_{P \to \infty} Tr(\exp(-\beta H/P))^{P}$ $Z_{P} \sim \int dx_{1} \dots dx_{P} \exp\left(-\beta \sum_{s=1}^{P} \left(\frac{mP}{2\beta^{2}\hbar^{2}}(x_{s+1} - x_{s})^{2} + \frac{V(x_{s})}{P}\right)\right)$
 - where x_s is the position of at one value of the time slice in imaginary time, and $x_{P+1}=x_1$ due to cyclic nature.
- Hence the 'beads on springs' model :

- Discretised Path Integral
- SHO interaction between nearest neighbours in imaginary time
- 1/P reduction in effect of potential
- Spring constant k=mP/β²ħ²
- Hence springs get stiffer at high T
 - classical limit of a single bead
- Floppy springs at low T
 - QM delocalisation
- Centroid corresponds to classical position

Path integral view of a single quantum particle.

Multiple QM Particles

- Spring interaction only within a single particle
- Conventional V/P interaction at equivalent values of imaginary time between particles

- The spring interaction has a fundamental frequency + harmonic modes
 - Need to integrate these accurately with MD to get proper ensemble distribution
 - Ergodicity problems => cannot use NVE or simple Nose-Hoover thermostat
 - Use N-H chain or Langevin
 - In CASTEP PIMD can only use Langevin at moment
- Also, k~P so frequency increases as converge number of beads
 - so must *reduce* MD timestep => more expensive
- Unless use staging modes transformation
 - Transform bead masses to compress the intra-bead spectrum and hence keep timestep constant as increase P

PIMD in CASTEP

```
Usual SCF & MD keywords PLUS
 md use pathint=true
 md num beads=16
  num farms=16
 md pathint staging=true
 md num stages=1
Restrictions
```

- num_farms=1 Or md_num_beads
- no constraints
- only Langevin thermostat

Analysis

Materials Studio does not support PIMD The .castep file gives a brief summary of what is happening in the user units ...

====> Path integral bead no. 003 <=====

Х				MD Da	ta:	Х
Х						Х
Х		time :	0.001000		ps	Х
Х						Х
Х	Potential	Energy:	-543.432706		eV	Х
Х	Kinetic	Energy:	0.034494		eV	Х
Х	Total	Energy:	-543.398212		eV	Х
Х	Hamilt	Energy:	-543.397578		eV	Х
Х						Х
Х	Tempe	erature:	266.854751		K	Х

- More advanced analysis requires more data, for which we use the .md file.
- This contains a LOT of information, for each time step, always using atomic units:

		1.19476	6569E+004		
		-1.99707968E+001	-1.99692125E+001	9.64993404E-004	< E
		6.43328936E-04			< T
		1.32280829E+001	0.0000000E+000	0.0000000E+000	< h
		0.0000000E+000	1.32280829E+001	0.00000000E+000	< h
		0.0000000E+000	0.0000000E+000	1.32280829E+001	< h
Ν	1	4.83250673E+000	3.95868000E+000	-3.95873877E+000	< R
Ν	2	4.61612393E+000	5.48995066E+000	-5.48989189E+000	< R
Ν	1	1.15732344E-004	1.10453835E-004	-1.10452023E-004	< V
Ν	2	-1.15732344E-004	-1.10453835E-004	1.10452023E-004	< V
Ν	1	-1.83347496E-004	1.53896599E-003	-1.53886170E-003	< F
Ν	2	1.83347496E-004	-1.53896599E-003	1.53886170E-003	< F

- PIMD produces usual CASTEP output PLUS
- <seedname>_pimdXXX.md file for each
 bead (1<= XXX <= P)
 </pre>
- These files are identical to normal <seedname>.md file but get 1 for all particles at same value of imaginary time.
- Can then use conventional CASTEP MD tools to analyse such as MDTEP
- Or use the pi_merge script to combine into a single file for visualisation (use md2xyz)...

PIMD case studies

- Stable / Metastable sites
 - BC two-fold coordinated
 - T four-fold coordinated
- Possible saddlepoint sites
 - AB antibonding site
 - C half-way to T
 - H hexagonal (6-fold) site

Spin Density at BC site

T=0 Results

- Large lattice strain around BC site
- Small (inwards) relaxation around T
- Both sites stable with BC preferred to T
- Relative energy
 (BC–T) ~ -0.27eV

Bond	Length (Å)
Si-Si in bulk	2.351
Si-H in SiH4	1.480
Si-H at T	2.278 (-3%)
Si-H at BC	1.650 (+40%)

Site	Lattice Relaxation Energy (eV)
H at T	0.032
H at BC	1.662

Site	Binding Energy (eV)
H at T	0.284
H at BC	0.554

 μ SR \rightarrow 1:2 population of BC:T sites ...

- BUT we see BC<T and there are 8 BC sites for every T site!
- Is it a thermal effect?
 - *Ab initio* MD suggests no significant energy changes
- Non-equilibrium effect?
 - need barrier heights → saddlepoints → yet to be tackled
- Is it a quantum effect?
 - Mass Mu ~ $^{1}/_{9}$ Mass H and ZPM ~ $1/sqrt(mass) \dots$

THE U

PI-bead convergence test

Visualisations

Superimposing all beads at same value of imaginary time at a single instance of MD time (T=300 K, P=16).

THE UNIVERSITY of York H-Defect at BC Site in Silicon

- PI is indeed capturing the quantum effects
 - big difference in energies when turn PI on
 - now get relative energy (BC-T) ~ -0.08 eV
- Still have conventional view BC<T</p>
- Adding ZPM increases energy at both sites
 - bigger effect at BC than T due to confinement
 - enhanced effect for Mu expected

Hydrogen

- BC is still confined <u>BUT</u> T may not be, *i.e.* no longer fixed but mobile/delocalized
- need definitive saddlepoints
- Muonium
 - probable cross-over in ordering of sites
 - probably BC confined but T highly mobile
 - no longer a good analogue for Hydrogen?

PIMD and Surfaces Example

Water-Hydroxyl Overlayers on Metal Surfaces

Phys. Rev. Lett. 104, 066102 (2010)

Xin-Zheng Li, Matt Probert, Ali Alavi, and Angelos Michaelides

- In many systems, the initial wetting layer is not pure water, but a water-hydroxyl mix
 - Bond lengths/angles unusual due to "pinning" with hydrogen-bonds formed to surface atoms
- Transition metal surfaces have been wellcharacterised
 - Pt(111) has large lattice constant and so intermolecule distance ~ 2.83 Å
 - Ni(111) has much smaller distance ~2.50 Å

- In bulk ice have typical O-O distance ~ 2.8Å
- At high pressures (>70 GPa) ice has typical
 O-O distance of ~2.3 Å

No longer a molecular crystal

- Have delocalised protons between O nuclei
- Low T (160 K) measurements of hydrogen diffusion on metal surfaces suggests that quantum tunnelling important
 - Hence need full QM treatment for hydrogen!
 - Short cut to converge number of beads …

PE Slices at fixed R₀₀

THE UNIVERSITY of York Bead Convergence in static PES

Hydrogen in Minerals

Hydrogen is a common component of many minerals but position very hard to locate by traditional techniques

Brucite - $Mg(OH)_2$ – is a simple mineral but location of H unclear

PIMD shows why ...

- Recent paper on high-pressure hydrogen phase diagram
 - Correcting previous paper on structure search to include ZPE and finite T
- Recent paper on high-pressure melting of hydrogen – two-phase coexistence with PIMD
- Paper under review diffusion of H on Ru looking at quantum vs classical diffusion vs T
- Current project diffusion of H on Ni and isotope effects

Summary

- PIMD as a way of going beyond BOMD
 - Quantum treatment of ions but expensive!
- Usual MD caveats
 - Beware equilibration, not all configurations are equal, consider sampling and correlation, etc.
- Apply basic physics to the results
 - conservation laws, equipartition, etc
- Additional concern
 - need to converge w.r.t. number of beads
- BEWARE:
 - the dynamics ARE FICTITIOUS and only the ensemble average is meaningful ...
 - some recent theoretical developments (e.g. centroid PIMD, ring-polymer PIMD) can do this – being actively developed – hope to get into CASTEP soon!

References

- R.P. Feynman, Rev. Mod. Phys **20**(2) 367 (1948)
 - The original paper
- "Quantum Mechanics and Path Integrals"
 - R.P. Feynman and A.R. Hibbs (McGraw-Hill) (1965). Definitive Text.
- "Computer Simulation of Liquids"
 - M.P Allen & D.J. Tildesley (1987). Chapter 10 old but useful.
- M.J. Gillan, Phil. Mag. A 58(1) 257 (1988)
 - semi-classical but nice description of PIMD of H in metals
- M. E. Tuckerman, D. Marx, M. L. Klein, and M. Parrinello, J. Chem. Phys. 104, 5579 (1996)
 - Efficiency improvements such as staging modes
- www.castep.org web site
 - Useful MD and geometry optimisation tutorials, plus FAQs, on-line keyword listing, MDTEP download, etc.