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THE UNIVERSITY o Y7k Overview of lecture

m First Principles Computational Modelling
= Motivation
x Meaning
m Applications

m NB Colour slides are available on the
website
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Why Computer Modelling?



THE UNIVERSITYW Why?

m Computers get cheaper & more powerful
every year

m Experiments tend to get more expensive each
year

m IF computer simulation offers acceptable
accuracy then at some point it should become
cheaper than experiment.

m This has already occurred in many branches of
science and engineering.

m Is this possible for properties of materials?



THE UNIVERSITYW MOtlvatlon

s Computer simulation is now the “3@ way”

m Advantages
m Precise control of system under study

m Can interpret complex experimental data

m Predict new materials / properties

m Can do ‘what if’ experiments to reveal
detailed underlying causes

m Can do practically impossible experiments,
e.g. extreme conditions — planetary cores

= As well as saving time and money



THE UNIVERSITYW ... Mmore mOtlvatlon

m Disadvantages
m Requires correct underlying theory
m How well tested & developed is it?
m And correct computer implementation
m How well verified is the code?

m And correct usage!

= How competent is the user? Do they
understand the limitations of the
theory/code? Are they using appropriate
method?



THE UNIVERSITY 0fJrk Test and Verification

m \We shall be using the CASTEP code:

m Based upon the Density Functional Theory
(DFT) version of quantum mechanics

m More on DFT in future lectures ...

m CASTEP has been tested on many different
systems and compared to experiment

= \We now know where it can be used safely,
and where it should be used with caution

x And YOU are the users!
m Hence need for some training ...



THE UNIVERSITY 0f fork Example of test & verification

m CASTEP is one of a number of widely used
DFT programs

m Uses a common recipe of ‘plane waves and
pseudopotentials’ — more on that soon

m Traditionally test the ‘pseudopotential’ by
comparing predict lattice constant of simple
materials against experiment

m Usually get ~few % error

m But that is complicated by experimental error,
finite temperature, material quality, etc

m SO hard to be definitive about HOW good it is ...



THE UNIVERSITY g£/07k Recent community project

m Recently the ‘delta-codes’ project made a
detailed study of the effect of the pseudopot

https://molmod.ugent.be/deltacodesdft
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THE UNIVERSITYW Delta-COdeS prOJeCt

m The study was careful to disentangle the
effects of accuracy vs precision

m Each code calculated an ‘energy-volume’
curve for each of 71 elements

s Compared pseudopotential codes (e.q.
CASTEP) against more computationally
expensive codes that do not use
pseudopotentials using the value of ‘delta’



THE UNIVERSITYW What |S delta?

E;h

meV I

code 2

code 1

-

V
m A is the RMS difference between the E-V
curves over 6% interval around equilibrium



THE UNIVERSITYW Delta-COdeS reSUIt

s Found that the error between modern high
quality pseudopotentials (as used in
CASTEP) and "“all electron™ codes is now
SMALLER than experimental noise

m The result is a mega-paper “Reproducibility in
density functional theory calculations of
solids” Science 351 6280 (2016)

m 69 co-authors, 15 codes, 7 pages main text +
165 pages of ‘'supplementary information’



THE UNIVERSITYW Impllcatlon

m All these independent codes now agree
with each other to a high degree of
precision

m Hence correct implementation of basic DFT
in different codes

m This was not the case 10 years ago — some
codes gave consistently worse answers

m But the results are not same as experiment

m This is the accuracy issue
m See later lectures for why and how to fix
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What about
“First Principles”?



THE UNIVERSITYW Meanlng

m “First principles” means we rely only on
fundamental laws of science

m In this case, quantum mechanics and not on
empirical fits
m Hence should be accurate

m \We can use QM to calculate the properties
of electrons — can we do this for real solids
or liquids or molecules or surfaces or ...

m Limitations are finite computer speed &
memory
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1. Take atomic numbers/elements as input

.1, Periodic Table
of the Elements

i BhE bR
2. Solve QM equations

T\I’MB + V‘I’MB = —igﬁm

3. Predict physical and chemical properties
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m Unfulfilled promise:

m For the first 50 years of QM, just about every
solution was for a single particle

m Claim:

m [t was claimed (by Dirac) that the Schrodinger
equation explained all of chemistry, biology,
materials science, etc.

m BL

T:

"he mathematics of many-particle QM is too

complicated — and too computationally
expensive — to apply to realistic systems



THE UNIVERSITYW DenSIty FU”Ct'OnaI Theory

m DFT is a reformulation of QM in terms of
the electronic charge density

m A big simplification over many-body
wavefunction — and an observable!

m 1964: The foundations of density functional
theory (the Hohenberg-Kohn Theorem)

m 1965: The Kohn-Sham equations (practical
method for performing calculations)



THE UNIVERSITYW PraCt|Ca| DFT

m DFT then languished until ...

m 1981: A good local density approximation

m 1985: The Car-Parrinello method

1987 first version CASTEP

s 1991: Implementation on parallel computers
- a version of CASTERP called CETEP

m 1998: Nobel prize (in chemistry) for DFT
1999 — 2001: total rewrite of CASTEP

m ... DFT now creating >15,000 papers / year
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m Usmg DFT to study the origins of life:

-y Cos(” wad | Oy o

FIG. 7 (color online). Glycine (left), activated glycine (center),
and the glycine-glycine dipeptide (right) between an FeS, surface
(below) and water. COS: carbonyl sulfide.
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m Phase change materials for BlueRay DVD:
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FIG. 8 (color online). Crystallization in GST alloy at 600 K.
(a) Amorphous structure after 215 ps, (b) crystalline structure
after 1045 ps.




What is CASTEP?
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THE UNIVERSITY offrk Introducing CASTEP

m CASTEP is a general-purpose DFT code

m uses plane-wave basis set (position
independent, easy to improve accuracy)

m use pseudopotentials (replaces nuclei and
iInner electrons with pseudo-ion)

m IS parallel (can run on single core PC or
largest supercomputer)

m can calculate wide range of properties ...



THE UNIVERSITY of Yok CASTEP abilities

= Total energies
m forces and stresses with LDA/GGA/mGGA/sX/hybrid/LDA+U/vdW/S-O etc.
s Electronic structure
m electronic charge, potential, band structure, DOS, atomic populations
s  Geometry Optimisation
m atomic positions, cell parameters, external pressure/stress
= Molecular dynamics
m finite temperature, zero-point and non-equilibrium properties
= [ransition state searches
s chemical reaction pathways, diffusion barriers
= Phonons
s Band structure, DOS, quasi-harmonic thermodynamics
s Electric field response
m polarisability, dielectric constants, Born charges, LO/TO splitting
s Magnetic Response
» NMR, Chemical shifts, electric field gradients, hyperfine constants, etc.

s ELNES, EELS, Raman, IR, Wannier Functions, electron-phonon coupling,
elastic constants, deformation potential, and more ...



THE UNIVERSITY@‘/M CASTEP develOperS

m CASTEP is developed by a core team of
UK academics + collaborators:

n Stewart Clark (University of Durham)

m Phil Hasnip (University of York)

m Chris Pickard (University of Cambridge)
m Matt Probert (University of York)

m Keith Refson (STFC)

m Jonathan Yates (University of Oxford)

m Plus many PhD students + postdocs



THE UNIVERSITY@‘/M CASTEP reSponS|b|I|t|eS

m Each developer is responsible for a
different part of the code - principally:

m Stewart Clark = XC functionals

» Phil Hasnip = ground state energy

m Chris Pickard = pseudopotentials

m Matt Probert = geometry optimisation + MD

m Keith Refson = phonons
= Jonathan Yates = NMR

m Plus other areas too!
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What can it do
for my research?



THE UNIVERSITY@‘/M CASTEP appllcatlonS

m Can use CASTEP for a purely theoretical
study

m [0 elucidate underlying mechanism of a
reaction or process, or to study materials
under extreme conditions, or ...

m Or in collaboration with experimentalists

m 1o help interpret experiments, predict
spectra, or ...

m Or...



THE UNIVERSITYW Can yOu guess’?

NaCaB507(0OH)4.
3(H20)
{z=4}

124 ions
512 electrons
Egap ~5 eV

Basic energy
minimization
took 36 secs
on 72 cores ...
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THE UNIVERSITY 0f fork Examples of things | work on

m Thermoelectrics — Heusler alloys & novel 2D

s AFM materials for spintronics

m 2D materials, e.g. graphene, MoS2, ribbons

m High pressure — quartz + shock waves

m Biophysics — DNA + amines

m Superconductivity — metallic carbides

s Hydrogen — quantum diffusion, phase diagram
... all with same first principles approach!



THE UNIVERSITYW App|ICatI0n Example

Water-Hydroxyl Overlayers on
Metal Surfaces

Phys. Rev. Lett. 104, 066102 (2010)

Xin-Zheng Li, Matt Probert, Ali Alavi, and Angelos Michaelides
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m In many systems, the initial wetting layer is
not pure water, but a water-hydroxyl mix

m Bond lengths/angles unusual due to
“pinning” with hydrogen-bonds formed to
surface atoms

m | ransition metal surfaces have been well-
characterised

m Pt(111) has large lattice constant and so
inter-molecule distance ~ 2.83 A

= Ni(111) has much smaller distance ~2.50 A



THE UNIVERSITYW Water prOblem

= In bulk ice have typical O-O distance ~ 2.8A

m At high pressures (>70 GPa) ice has typical
O-O distance of ~2.3 A

= No longer a molecular crystal

m Have delocalised protons between O nucleli

m Low T (160 K) measurements of hydrogen
diffusion on metal surfaces suggests that
quantum tunnelling important

m Hence need full QM treatment for hydrogen!



THE UNIVERSITY o fork Ab initio Molecular Dynamics

m Use classical mechanics to move the atoms

m Born-Oppenheimer approximation decouples
nucleus and electrons and have electrons always
relaxed onto the instantaneous B-O surface

m Using forces and stresses derived from the
electronic wavefunction — hence ab initio MD

m Can use to study dynamical properties or to
simulate a thermal equilibrium

m But the nucleus is always treated classically

= Hence no quantum fluctuations, tunneling, zero
point motion, etc.



THE UNIVERSITY@G/M Path Integral MD

m Use Feynman Path Integral formulation of
Quantum Mechanics for the nucleus

= now Includes ZPM etc

= important for light defects

and/or low temperatures
m ‘Deads on springs” view with
imaginary time axis Path integral view of a

u Computationa”y expensive! single quantum particle.
m Use task-farming — one value of iz per farm
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Summary



THE UNIVERSITY of Jrk Summary

x QM of materials is hard
m Many interacting particles
s DFT makes QM of materials feasible
= Need to know about the approximations

m CASTEP is a robust and reliable
implementation of DFT for periodic systems

m \Vide feature set
m User friendly for theory and experimentalists
m Fast and scalable



THE UNIVERSITY 0F 7k Useful References

s Hohenberg & Kohn, Phys. Rev. B 136, 864 (1964)
s Kohn & Sham, Phys. Rev. A 140, 1133 (1965)
s MC Payne et al, Rev. Mod. Phys 64, 1045 (1992)

s RM Martin, “Electronic Structure: basic theory and
practical methods ”, Cambridge University Press (2004)

s SJ Clark, MD Segall, CJ Pickard, PJ Hasnip, MIJ Probert,
K Refson and MC Payne, ‘First principles methods using
CASTEP ", Zeitschrift fir Kristallographie 220, 567 (2005)

m V Milman, K Refson, SJ Clark, CJ Pickard, JR Yates, S-P
Gao, PJ Hasnip, MIJ Probert, A Perlov and MD Segall,
“Electron and vibrational spectroscopies using DFT, plane

waves and pseudopotentials: CASTEP implementation”,
J. Molec. Structure: THEOCHEM (2010)



