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Overview of lecture

n What is electronic structure?
n Density Functional Theory
n Periodicity and Bloch’s Theorem
n Bloch’s Theorem and k-points

n Plane wave basis set
n Pseudopotentials

n NB Colour slides are available on the 
website



Electronic Structure



What is Electronic Structure?

n The properties of materials and chemicals 
are governed by their electrons. 
n It is the electrons which determine whether 

atoms are bonded or not
n And what type of bonds are formed (e.g. 

ionic, covalent, metallic, Van der Waals). 
n The term ‘electronic structure’ is used to 

describe how the electrons are spread 
around a crystal or molecule. 



First Principles Modelling

n A.k.a. Ab Initio = “From the beginning”
n Using laws of Quantum Mechanics
n No fitting to experimental data

n In quantum chemistry, usually taken to 
mean Hartree-Fock theory 

(or beyond e.g. MP2, CI, etc)
n In physics, usually taken to mean DFT 

(or beyond e.g. GW, QMC, etc)



Advantages of Ab Initio

n High accuracy and predictive ability
n not limited by the fitting data-set
n can cope with unusual environments, and 

bond breaking/making
n wide range of properties can be calculated

n BUT computationally expensive
n limited in size of system can study
n need powerful computers



Which Ab Initio?

n In this module, will focus on DFT
n Density Functional Theory

n widely used in academia + industry
n good balance of accuracy and speed

n There are some limitations
n One uncontrolled approximation at its heart
n More advanced forms of QM can avoid this 

but MUCH more expensive and limited to 
study of small systems



What is DFT?



What is DFT?

n Density Functional Theory
n An alternative view of Quantum Mechanics
n Uses the electronic charge density of a 

material as the key ingredient
n No need for wavefunctions

n Intended to make electronic structure 
calculations of real materials a practicality
n What should that be tricky?



Simple Quantum Mechanics

n The 1-particle Schrödinger equation is:

n So all we need to do is solve that for a real 
material – how hard can it be?
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Electronic Structure Simulations

The 1-particle Schrödinger equation is:
✓
� ~2

2m
r2 + V̂

◆
 (r, t) = i~@ (r, t)

@t

Now we just have to solve it for a real material.

How hard can it be?



Real materials

n A real material contains M nuclei and N 
electrons and so Schrödinger equation is:Electronic
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The horror.... the horror...

For M nuclei and N electrons:
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How big are M and N?

For a few grams of material:

M ⇠ 100, 000, 000, 000, 000, 000, 000, 000
N ⇠ 1000, 000, 000, 000, 000, 000, 000, 000

Oh dear.

For a few grams of material we typically 
have M~1023 and N~1024 …



Born-Oppenheimer approximation

n Compared to electrons, nuclei are heavy and 
slow (me << mp )
n Electrons react “instantly” to nuclear motion
n Nuclear wavefunction very localized

n  Can break down for light atoms and/or low T
n Concentrate QM effort on electrons
n No need for time dependent QM
n This is the Born-Oppenheimer approximation:
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QM for the electrons

Nuclei are heavy, slow and boring
�! no QM for nuclei
Electrons are light, quick and interesting
�! Nuclei appear static
�! No explicit time-dependence for electrons

This is the Born-Oppenheimer approximation.

 (R1, ...,RM , r1, ..., rN , t) �!  (r1, ..., rN)

Now we can solve the time-independent Schrödinger
equation.



Enter DFT

n Focus on the ground state
n Often dominates everyday properties
n Not true for optical properties

n The wavefunction is not experimentally 
measurable – only the density …

n Density Functional Theory
n Hohenberg-Kohn Theorem 1964
n Kohn-Sham Equations 1965
n Nobel prize for Kohn 1998



DFT Fundamentals

n H-K Theorem
n The groundstate energy E ONLY depends 

on the electron density 
n And the mapping is unique via a universal 

functional E = E [r]
n K-S Equations

n The groundstate energy E and density         
of electrons are exactly the same as those 
of non-interacting particles, iff we include an 
extra potential – the exchange-correlation 
potential = Vxc 
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Density Functional Theory (DFT)

Hohenberg-Kohn theorem: The groundstate energy E only
depends on the electron density ⇢ (r).

Kohn-Sham DFT: The groundstate energy E and density
⇢ (r) of electrons are exactly the same as those of
non-interacting particles, if we include a special extra
potential – the exchange-correlation potential.
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Density Functional Theory (DFT)

Hohenberg-Kohn theorem: The groundstate energy E only
depends on the electron density ⇢ (r).

Kohn-Sham DFT: The groundstate energy E and density
⇢ (r) of electrons are exactly the same as those of
non-interacting particles, if we include a special extra
potential – the exchange-correlation potential.



Kohn-Sham Problems

n Do not know how to calculate the Kinetic Energy of 
a density!
n But we can do this for a wavefunction
n Introduce fictitious single-particle orbitals that give the 

correct density and for which can calculate KE
n Do not know the universal functional

n Write in terms of things we do know, e.g. electron-
electron interaction so the unknown bits are “small” 
and hence can be easily approximated as a single 
“exchange-correlation” (XC) functional.



Kohn-Sham Equations

n Converts the many-body Schrödinger 
equation for N electrons into N equations each 
with 1 quasi-particle:

n and         and             are density functionals
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Density Functional Theory

Solve N non-interacting Schrödinger equations
(the Kohn-Sham equations):

⇢
� ~2

2m
r2 + V [⇢] (r) + Vxc [⇢] (r)

�
 b (r) = ✏b b (r)

⇢(r) =
NX

j=1

| b(r)|2

V [⇢] and Vxc [⇢] are density functionals. Unfortunately we
don’t know Vxc [⇢]! Fortunately even crude approximations
tend to give reasonable answers.
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Density Functional Theory

Solve N non-interacting Schrödinger equations
(the Kohn-Sham equations):

⇢
� ~2

2m
r2 + V [⇢] (r) + Vxc [⇢] (r)

�
 b (r) = ✏b b (r)

⇢(r) =
NX

j=1

| b(r)|2

V [⇢] and Vxc [⇢] are density functionals. Unfortunately we
don’t know Vxc [⇢]! Fortunately even crude approximations
tend to give reasonable answers.
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Density Functional Theory

Solve N non-interacting Schrödinger equations
(the Kohn-Sham equations):

⇢
� ~2

2m
r2 + V [⇢] (r) + Vxc [⇢] (r)

�
 b (r) = ✏b b (r)

⇢(r) =
NX

j=1

| b(r)|2

V [⇢] and Vxc [⇢] are density functionals. Unfortunately we
don’t know Vxc [⇢]! Fortunately even crude approximations
tend to give reasonable answers.
NB exact form of Vxc is unknown – 
but we do have good approximations



Exchange-Correlation Functional

n DFT is formally exact but in practice we need 
to approximate Exc
n The LDA assumes that Exc[r](r)  at some point r

is the same as if every point had same density
n Hence LDA is fitted to Homogenous Electron 

Gas data calculated with high level QM methods
n expected to be good for metals
n actually works well for many systems!
n tends to overbind energies and shorten bonds

n More advanced approximations are available –
see later lectures …



Why Bother?

n Many-body QM is hard
n It is impossible to solve the Schrödinger equation 

exactly for all but the most simple problems
n Numerical approaches expand unknown 

wavefunction in terms of known basis functions and 
unknown coefficients

n a simple spin system with 20 particles needs 220
coefficients (spin up & down)

n exponential scaling is bad!
n DFT is easy

n uses a 3D scalar field instead – much better!



Periodicity and 
Bloch’s Theorem



Physics to the rescue …

n But we still have N~1024 so is it impossible 
to solve DFT for real materials?

n In a solid, most materials form a regular 
pattern – can make up out of repeating unit 
cells – so we can exploit periodicity …
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Crystals and Unit Cells

In the solid state, most materials like to have their atoms
arranged in some kind of regular, repeating pattern, e.g.



Bloch’s Theorem

n A fundamental theorem of condensed 
matter physics

n If the nuclei are arranged periodically then 
the potential and density must be periodic:

n Bloch’s Theorem: Hence the wavefunction 
must be ‘quasi-periodic’:

n where                                is periodic and        
is an arbitrary phase factor.
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Bloch’s Theorem

If the nuclei are arranged in a periodically repeating pattern,
their potential acting on the electrons must also be periodic.

V (r + L) = V (r)

Bloch’s theorem: in a periodic potential, the density has the
same periodicity. The possible wavefunctions are all
‘quasi-periodic’:

 k (r) = e
ik.r

uk (r),

where uk (r + L) = uk (r), and eik.r is an arbitrary phase
factor.

Electronic
Structure

Introduction

DFT

Bloch’s
Theorem

Plane-waves

An eigenvalue
problem

Polar oxides

Summary

Bloch’s Theorem

If the nuclei are arranged in a periodically repeating pattern,
their potential acting on the electrons must also be periodic.

V (r + L) = V (r)

Bloch’s theorem: in a periodic potential, the density has the
same periodicity. The possible wavefunctions are all
‘quasi-periodic’:

 k (r) = e
ik.r

uk (r),

where uk (r + L) = uk (r), and eik.r is an arbitrary phase
factor.
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Bloch’s Theorem

If the nuclei are arranged in a periodically repeating pattern,
their potential acting on the electrons must also be periodic.

V (r + L) = V (r)

Bloch’s theorem: in a periodic potential, the density has the
same periodicity. The possible wavefunctions are all
‘quasi-periodic’:
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Bloch’s Theorem

If the nuclei are arranged in a periodically repeating pattern,
their potential acting on the electrons must also be periodic.

V (r + L) = V (r)

Bloch’s theorem: in a periodic potential, the density has the
same periodicity. The possible wavefunctions are all
‘quasi-periodic’:

 k (r) = e
ik.r

uk (r),

where uk (r + L) = uk (r), and eik.r is an arbitrary phase
factor.



Exploiting Periodicity

n So now we only have to solve the K-S 
equations in a single unit cell
n Hence N~102 not 1024 …
n Hence calculate energy per unit cell, etc

n Although in fact we are simulating an 
infinite number of electrons …

n And can use supercell approach to handle 
aperiodic systems e.g. molecules, surfaces, 
interfaces, grain boundaries, etc.



Supercell Approximation

n What if want to calculate properties of a 
crystal defect? or an isolated molecule? or 
a surface?

n Use a supercell
n e.g. put 1 defect into a 2x2x2 cell
n e.g. add vacuum around molecule
n e.g. add vacuum above surface



Nanotube Primitive Cell



Nanotube Supercell



K-points
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k-point sampling

In principle we need to integrate over all possible k when
constructing the density. Fortunately the wavefunctions
change slowly as we vary k, so we can approximate the
integral with a summation:

⇢(r) =

Z
| k (r)|2d

3k

⇡
X

k

| k (r)|2

We need to make sure we use enough k-points to get
accurate results.

We’ll be looking at k-points more closely in a later talk.

More Bloch’s Theorem

n Bloch’s Theorem says that in a periodic 
potential wavefunction is quasi-periodic

n Neighbouring cells vary by phase factor
n Hence need to integrate over all possible 

values of k when constructing density: 
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Bloch’s Theorem

If the nuclei are arranged in a periodically repeating pattern,
their potential acting on the electrons must also be periodic.

V (r + L) = V (r)

Bloch’s theorem: in a periodic potential, the density has the
same periodicity. The possible wavefunctions are all
‘quasi-periodic’:

 k (r) = e
ik.r

uk (r),

where uk (r + L) = uk (r), and eik.r is an arbitrary phase
factor.
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k-point sampling
K-point sampling

n Convergence required for periodic calculation:



BZ sampling

n We sample the k-points within the 1st Brillouin 
zone (dual of real-space unit cell)

n Number of points depends on size of BZ
n As zone gets smaller (larger real-space cell) 

then need less k-points
n Standard sampling is a Monkhorst-Pack mesh
n Need dense sampling for metals to capture 

discontinuity in band occupancy at E=EF

n Can use crystal symmetry to reduce number



Planewaves



Kohn-Sham Equations

n Rewrite the many-body Schrödinger equation 
for N electrons into N 1-particle equations:

n And occupy each band b with 2 electrons
n This looks like a set of eigenvalue equations …
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Density Functional Theory

Solve N non-interacting Schrödinger equations
(the Kohn-Sham equations):

⇢
� ~2

2m
r2 + V [⇢] (r) + Vxc [⇢] (r)

�
 b (r) = ✏b b (r)

⇢(r) =
NX

j=1

| b(r)|2

V [⇢] and Vxc [⇢] are density functionals. Unfortunately we
don’t know Vxc [⇢]! Fortunately even crude approximations
tend to give reasonable answers.



Periodicity and Basis Sets

n How can we represent a wavefunction or 
density in a computer?
n Real-space grid will require very dense 

mesh to get required resolution
n Alternatively could write it in terms of 

coefficients of known basis functions …
n Obvious basis set for periodic system is 3D 

sine and cosine functions -> Fourier series 
and so can combine with Bloch’s theorem:



Plane waves and Fourier Series

n 3D Fourier basis (also known as plane waves):

n where cGk are unknown complex coefficients
n The sum is over all wavevectors G which fit the 

unit cell and k comes from Bloch’s theorem
n Hence       is a vector of coefficients cGk 
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Plane-waves

Since  k (r) is periodic, we express it as a 3D Fourier series

 k (r) =
X

G

cGke
i(G+k).r

where cGk are complex Fourier coefficients, and the sum is
over all wavevectors with the right periodicity.

Each  k is now a vector of coefficients cGk .
There are an infinite number of allowed G
Fortunately as |G| ! 1, |cGk | ! 0
) can truncate the Fourier expansion safely
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Plane-waves

Since  k (r) is periodic, we express it as a 3D Fourier series

 k (r) =
X

G

cGke
i(G+k).r

where cGk are complex Fourier coefficients, and the sum is
over all wavevectors with the right periodicity.

Each  k is now a vector of coefficients cGk .
There are an infinite number of allowed G
Fortunately as |G| ! 1, |cGk | ! 0
) can truncate the Fourier expansion safely



Which plane waves are allowed?

n Not all values of G are allowed
n Have to be reciprocal lattice vectors
n Smallest G is given by largest wavelength in 

real space: Gmin=2p/a
n Hence form a discrete set

n If we make the unit cell longer in one 
direction then the allowed wavevectors in 
that direction become shorter

n But still an infinite set?



Cut-off energy

n In practice the coefficients cGk associated 
with larger G become smaller and smaller
n Corresponds to finer real-space resolution in 

description of density etc.

n Hence can truncate set at a largest Gmax
n Express as the cut-off energy:

f (x) f 0 (x) = 0 x⇤ s.t. f (x⇤) = 0

xn+1 = xn � f (xn)

f 0 (xn)

xn+1 = xn +�x = xn � f 0 (xn)

f 00 (xn)

xn+1 = xn � [H(f)]�1 rf (xn)
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k
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Plane-waves

Since  k (r) is periodic, we express it as a 3D Fourier series

 k (r) =
X

G

cGke
i(G+k).r

where cGk are complex Fourier coefficients, and the sum is
over all wavevectors with the right periodicity.

Each  k is now a vector of coefficients cGk .
There are an infinite number of allowed G
Fortunately as |G| ! 1, |cGk | ! 0
) can truncate the Fourier expansion safely



Convergence

n The cut-off energy is a key convergence 
parameter
n Larger values always correspond to better 

results but need more computer time & memory
n The ground state energy obeys variational 

principle and hence increasing Ecut adds more 
variational freedom and hence montonically 
improves the quality of the density and lowers 
the ground state energy

n Not all properties are variational …



Convergence of E0
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Cut-off Energy



Convergence of pressure
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Cut-off Energy



Pseudopotentials



Why do we need them?

n Chemical bonding 
arises from overlap of 
outer electrons

n Core states 
approximately inert 
and insensitive to 
environment

n Hence combine inner 
electrons with nucleus 
to make a pseudo-ion

Why Pseudopotentials?

Introduction
❖Synopsis
❖Why Pseudopotentials?

Pseudopotential Theory

Pseudopotential in
practice

Where to obtain potentials

Conclusions

Pseudopotentials: CASTEP Workshop: Frankfurt 2012 4 / 33

1s

3s

2p

2s

1s
2s
2p
3s

● Chemical bonding arises from va-
lence electron overlap

● Core states insensitive to chemical
environment.

● Frozen-core approximation elimi-
nates core states from plane-wave
calculation

● Smoothed valence states require
much lower plane-wave cutoff.



More

n But as well as reducing the number of 
electrons, there is another advantage:
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Pseudopotentials

Wavefunction 
near nucleus 
oscillates – 
required for 
orthogonality 
with inner 
states
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Pseudopotentials

More
n So we can replace the Coulomb potential of 

nucleus with a modified, weaker potential – 
the pseudopotential:



More
n And so pseudo-wavefunction is smoother 

and needs fewer plane waves to describe it!
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Pseudopotentials



Result?

n The core electrons are combined with 
nucleus to make an ion, saving electrons

n The outer electrons interact with this ion
n Pseudopotential constructed to have 

identical behaviour outside the ‘core radius’ 
(rc) but fewer oscillations inside rc where it 
does not affect any bonding etc

n Hence need fewer plane waves per state 
and fewer states!



Summary



Eigenvalue Equation

n DFT can be written in simple form using the 
K-S Hamiltonian operator:

n Hence the set of K-S equations can be 
rewritten as an eigenvalue problem:

n Where the Hamiltonian         is an Hermitian 
matrix of size NGxNG and         is a vector of 
NG Fourier coefficients for each k-point
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An Eigenvalue Problem

⇢
� ~2

2m
r2 + V [⇢] (r)

�
 bk (r) = ✏bk bk (r)

 bk is a vector of NG Fourier coefficients
The Hamiltonian is a NG ⇥ NG mixed type (1,1) tensor
�! just an eigenvalue problem!

H[⇢] bk = ✏bk bk
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An Eigenvalue Problem
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An Eigenvalue Problem

Now we just need to apply our Hamiltonian efficiently. Recall

Ĥ = � ~2

2m
r2 + V [⇢] (r)

Kinetic energy: r2 bk (G) = �|G + k|2 bk (G)
Trivial to apply in reciprocal-space
Potential energy: V [⇢] (r) bk (r)
Trivial to apply in real-space

Need Fourier transforms!



Summary

n Bloch’s Theorem and periodicity greatly 
simplify the problem
n Need to use k-points to sample BZ
n Use supercells for non-periodic systems

n Plane waves are a natural basis set
n Single parameter Ecut to determine quality

n Pseudopotentials remove unimportant 
electrons from the problem
n And reduce the Ecut needed
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