THE UNIVERSITY of York

Reciprocal space description of electrons and phonon states

Matt Probert

Condensed Matter Dynamics Group

Department of Physics,

University of York, U.K.

http://www-users.york.ac.uk/~mijp1

- Bloch's Theorem
- Band Structure
- Density of States
- Examples
- Phonons

NB Colour slides are available on the website

Bloch's Theorem

Bloch's theorem: the density has the same periodicity as the potential, BUT the possible wavefunctions are all 'quasi-periodic':

$$\psi_k(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_k(\mathbf{r})$$

■ We write $u_k(\mathbf{r})$ in a plane-wave basis as:

$$u_k(\mathbf{r}) = \sum_G c_{Gk} e^{i\mathbf{G}.\mathbf{r}}$$

• where **G** are the reciprocal lattice vectors, defined so that $\mathbf{G}.\mathbf{L} = 2\pi m$.

- Adding or subtracting G from k leaves properties unchanged
 - system is periodic in reciprocal-space too.
- Hence only need to study behaviour in the reciprocal-space unit cell
 - And then know how it behaves everywhere.
- Conventional to center unit cell around
 G = 0 (a.k.a. the Gamma point)
 - Call this the 1st Brillouin Zone.

■ The region of reciprocal space nearer to the origin than any other allowed wavevector is called the 1st Brillouin zone:.

Band Structure

- How does the energy of states vary across the Brillouin zone?
- Consider one particular wavefunction:

$$\psi(\mathbf{r}) = e^{i\mathbf{k}.\mathbf{r}}u(\mathbf{r})$$

- Consider two different limits:
 - electrons with high potential energy,
 - and electrons with high kinetic energy.

If an electron is trapped in a very strong potential, then we can neglect the KE:

$$\hat{H} = \hat{V}$$

The energy of our wavefunction is then
$$E(k) = \int \psi^*(\mathbf{r}) V(\mathbf{r}) \psi(\mathbf{r}) d^3 \mathbf{r}$$
$$= \int V(\mathbf{r}) |\psi(\mathbf{r})|^2 d^3 \mathbf{r}$$
$$= \int V(\mathbf{r}) |u(\mathbf{r})|^2 d^3 \mathbf{r}$$

• i.e. independent of $\mathbf{k}!$ So can just use $\mathbf{k} = 0$.

H band structure (isolated)

CASTEP Band Structure

For an electron moving freely in space then PE=0 and the Hamiltonian is just KE:

$$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2$$

- The eigenstates of the Hamiltonian are just plane-waves i.e. $c_{Gk} = 0$ except for one particular **G**.
- Our wavefunction is now

$$\psi(\mathbf{r}) = c_G e^{i(\mathbf{k}+\mathbf{G})\cdot\mathbf{r}}$$

 $\Rightarrow \nabla^2 \psi(\mathbf{r}) = -(\mathbf{k}+\mathbf{G})^2 \psi(\mathbf{r})$

$$E(\mathbf{k}) = -\frac{\hbar^2}{2m} \int \psi^*(\mathbf{r}) \nabla^2 \psi(\mathbf{r}) d^3 \mathbf{r}$$

$$= \frac{\hbar^2}{2m} (\mathbf{k} + \mathbf{G})^2 \int \psi^*(\mathbf{r}) \psi(\mathbf{r}) d^3 \mathbf{r}$$

$$= \frac{\hbar^2}{2m} (\mathbf{k} + \mathbf{G})^2$$

- So E(k) is quadratic in k, with the lowest energy state at G = 0
- Each state has energy that changes with k
 forms an energy band in reciprocal space

Free electron bands

But states are periodic in reciprocal space
 => get parabola about each lattice point

Free electron bands

But states are periodic in reciprocal space
 => fold back using G'=G±m.2π/L

THE UNIVERSITY of York Al - a nearly free electron metal

- More complex in 3D
- The reciprocal lattice vectors are not simple cubic and the BZ can vary a lot:

- The way the energies of all of the states change with k is called the band structure.
 - k is a 3D vector so E(k) is hard to visualize
- Conventional to plot energies along special high-symmetry directions.
 - These energies represent either max or min energies for the bands across the whole BZ.
- In real materials electrons are neither completely localised nor completely free
 - But still see these features in band structures.

Band structure of Cu

- Electrons are Fermions and obey Pauli exclusion principle
 - Lowest *N_e* states are occupied by electrons
 - At T=0 K all states below the Fermi energy, E_F
 , are occupied and states above are empty
 - Band-structures often shifted so $E_F = 0$
- In semi-conductors and insulators there is a region of energy just above E_F with no bands
 - the band gap.

Band structure of Si

Density of States

- The band structure is a good way to visualise the *dispersion* (wavevector-dependence) of the energy states
 - Ditto the band-gap, the possible electronic transitions, etc.
- But the transition probability depends on how many states are available in the initial and final energies (e.g. Fermi golden rule).
 - Band structure only tells you about the bands along high symmetry directions.

- What we need is the full density of states (DOS) across the whole BZ
 - Not just the special directions.
- The density of states is $g(E) = \frac{1}{\Omega_G} \frac{dN}{dE}$ where Ω_G is the volume of reciprocal space associated with each **G**-vector.
- We have to uniformly sample the BZ, just as for the calculation of the ground state electronic structure.

■ Full DOS

Sampling DOS

 Equivalent DOS using crystal symmetry to reduce sampling region to the irreducible wedge

DOS for Free Electrons

- For free electrons we saw $E(\mathbf{k}) \propto (\mathbf{k} + \mathbf{G})^2$
- So for a fixed E the k-vectors form a spherical shell of area $4\pi |k + G|^2$

$$\frac{dN}{dk} \propto |\mathbf{k} + \mathbf{G}|^{2}$$

$$\Rightarrow g(E) = \frac{1}{\Omega_{G}} \frac{dN}{dE} = \frac{1}{\Omega_{G}} \frac{dN}{dk} \frac{dk}{dE}$$

$$\propto |\mathbf{k} + \mathbf{G}|^{2} \frac{1}{|\mathbf{k} + \mathbf{G}|}$$

$$\propto \sqrt{E}$$

Ideal DOS

- Computing a band structure or a DOS is straightforward:
 - First compute the ground state electronic density with a good k-point sampling
 - Then fix the density, and find the states at the band structure/DOS **k**-points
 - The difference between DOS and band structure is only in the choice of sample **k**
- NB As the density is fixed for the second calculation, it takes much less time per k-point than the original ground state calculation.

Example – Band Offsets

Application – Band Offsets

- Heterojunctions are formed when two different types of semiconductor are joined together.
- Heterostructures are used extensively in the electronic (e.g. transistors) and optoelectronic (e.g. LED's) industry.

Calculating Band Offsets

- Knowledge of the band structures of the two individual materials is not sufficient to determine the band offset.
- Band energies are determined with respect to the average potential in the solid.
- It is also necessary to perform a supercell calculation to determine how the potentials are lined up with respect to each other.

The Average Potential

- The potential can be averaged across the *x-y* planes (junction normal to *z*).
- This is the *microscopic average* potential.
- The macroscopic average potential is calculated over the period over the microscopic potential.
- The band structures are measured relative to the macroscopic average.

$$\overline{\overline{V}}_{tot}(z) = \frac{1}{\lambda \lambda'} \int_{z-\lambda/2}^{z+\lambda/2} \overline{V}_{tot}(z'') dz'' dz'$$

Can then use this to do band line-up

An Example: FeSi₂ on Si

Offset is 0.4eV – useful for LED's and near-IR detectors

Phonons

A crystal is more than just electrons – contains ions/atoms and quasi particles such as phonons etc.

- What is a phonon? A quantized lattice vibration of a crystal
- When a sound wave travels through a crystal, it creates a periodic distortion:

- The periodic distortion means a wavevector q
 - Another reciprocal space quantity do not confuse with k or G!
- Distortion is real so: $d_q(\mathbf{r}) = a_q \cos(\mathbf{q}.\mathbf{r})$
- Can plot a *phonon* band structure.
 - Usually plot frequency ω against q, not E.
 - Shows frequency of different lattice vibrations, from long-wavelength acoustic modes to the shorter optical ones
 - Negative ω means structural instability ...

Phonon dispersion

α -quartz: CASTEP vs Expt

Summary

- Reciprocal space is very useful
 - Provides natural language for describing periodic systems
 - All the periodic responses are contained within the 1st Brillouin Zone
- Can calculate E(k) for the electrons
 - Band structure => special directions in BZ
 - Density of states => uniform sampling of BZ
- Exactly the same language and concepts apply to phonons – quantized lattice vibrations