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THE UNIVERSITY o Y7k Overview of lecture

m Bloch’s Theorem
m Band Structure

m Density of States
m Examples

m Phonons

m NB Colour slides are available on the
website
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Bloch’s Theorem



THE UNIVERSITYW Recap

m Bloch’s theorem: the density has the same
periodicity as the potential, BUT the possible
wavefunctions are all ‘quasi-periodic’:

i(r) = e™Tuk(r)

s We write u, (r) in a plane-wave basis as:

Uk(r) = ZCeriG'r
G

m where G are the reciprocal lattice vectors,
defined so that G.L = 2mum.
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s Adding or subtracting G from k leaves
properties unchanged

m system is periodic in reciprocal-space too.

m Hence only need to study behaviour in the
reciprocal-space unit cell

= And then know how it behaves everywhere.

m Conventional to center unit cell around
G = 0 (a.k.a. the Gamma point)

m Call this the 1st Brillouin Zone.
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m The region of reciprocal space nearer to the
origin than any other allowed wavevector is
called the 1st Brillouin zone..
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Band Structure
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m How does the energy of states vary across
the Brillouin zone?

= Consider one particular wavefunction:
U(r) = *"u(r)
m Consider two different limits:

m electrons with high potential energy,
m and electrons with high kinetic energy.



THE UNIVERSITY 0fJork Very localized electrons

m If an electron is trapped in a very strong
potential, then we can neglect the KE.:

H=V
m The energy of our wavefunction is then
Ek) = [ v (OVOunEs
S AGOIRE
_ / V(1) u(r)2d®r

m i.e. iIndependent of k! So can just use k = 0.
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m For an electron moving freely in space then

PE=0 and the Hamlltoznlan s just KE:
~ h
H =
2mv

m The eigenstates of the Hamiltonian are just
plane-waves — i.e. cg, = 0 except for one
particular G.

m Our wavefunction is now
2p(r) _ CGei(k_l_G)'r
= V2(r) = —(k+G)?(r)
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E(k) = /w (r) V24 (
= G)Z/w

2m

h? 5
= K
2m( + G)
m S0 E(k) is quadratic in k, with the lowest

energy state at G =0

m Each state has energy that changes with k
=> forms an energy band in reciprocal space
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-T1/a 0 Tr/a



THE UNIVERSITY of Jork Free electron bands

-41T1/a -2T1/a 0 21T1/a 41T/3

m But states are periodic in reciprocal space
=> get parabola about each lattice point



THE UNIVERSITY of Jork Free electron bands

-T1/a 0 Ti/a
m But states are periodic in reciprocal space
=> fold back using G'=Gxm.2=/L
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m More complex in 3D

m The reciprocal lattice vectors are not simple
cubic and the BZ can vary a lot:
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Band structure

m The way the energies of all of the states
change with k is called the band structure.

m k is a 3D vector so E(k) is hard to visualize

m Conventional to plot energies along special
high-symmetry directions.

m These energies represent either max or min

energies for t

ne bands across the whole BZ.

m [N real materia

S electrons are neither

completely localised nor completely free

m But still see these features in band structures.
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THE UNIVERSITY 0f 7k Electronic transitions

m Electrons are Fermions and obey Pauli
exclusion principle

m Lowest N, states are occupied by electrons

m At T=0 K all states below the Fermi energy, E.
, are occupied and states above are empty

m Band-structures often shifted so E- =0

m In semi-conductors and insulators there is a
region of energy just above Er with no bands
— the band gap.
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Density of States



THE UNIVERSITY@‘/M DenSIty Of StateS

m The band structure is a good way to
visualise the dispersion (wavevector-
dependence) of the energy states

m Ditto the band-gap, the possible electronic
transitions, etc.

m But the transition probability depends on
how many states are available in the initial
and final energies (e.g. Fermi golden rule).

m Band structure only tells you about the
bands along high symmetry directions.



THE UNIVERSITYW DOS

m \What we need is the full density of states
(DOS) across the whole BZ

= Not just the special directions.

» The density of states is 9(E) = 91@ g/;_/

where Q. is the volume of reciprocal space
associated with each G-vector.

s \We have to uniformly sample the BZ, just
as for the calculation of the ground state
electronic structure.
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m Equivalent DOS using ¢
crystal symmetry to
reduce sampling
region to the
irreducible wedge




THE UNIVERSITYW DOS for Free EleCtronS

= For free electrons we saw E(k) o (K + G)?

m SO for a fixed E the k-vectors form a
spherical shell of area 4nlk + G|?

dN
dk
= g(E)

x |k+ G|

1 dN 1 oN adk
Qg dE ~ Qg dk dE

1
k 2

X |+Guk+m

x VE
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s Computing a band structure or a DOS is
straightforward:

m First compute the ground state electronic
density with a good k-point sampling

m Then fix the density, and find the states at the
band structure/DOS k-points

m The difference between DOS and band
structure is only in the choice of sample k

m NB As the density is fixed for the second
calculation, it takes much less time per k-point
than the original ground state calculation.
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Example —
Band Offsets



THE UNIVERSITY 0f 7k Application — Band Offsets

m Heterojunctions are formed when two different types of
semiconductor are joined together.

m Heterostructures are used extensively in the electronic (e.qg.
transistors) and optoelectronic (e.g. LED’s) industry.

Conduction Band (CB)

Valence Band (VB)

Straddling Gap Staggered Gap Broken Gap
(type ) (type Il) (type )



THE UNIVERSITY 0f J7k Calculating Band Offsets

s Knowledge of the band structures of the two
individual materials is not sufficient to determine
the band offset.

m Band energies are determined with respect to the
average potential in the solid.

m It is also necessary to perform a supercell
calculation to determine how the potentials are
lined up with respect to each other.




THE UNIVERSITY 0£/frk The Average Potential

s The potential can be averaged across the x-y planes
(junction normal to z).

m This is the microscopic average potential.

m The macroscopic average potential is calculated over
the period over the microscopic potential.

m | he band structures are measured relative to the
macroscopic average.

1 Z+A/2 Z'+)\.'/_2

)L)L' szot(Z”)dZ”dZ'

z=A/2z'-A"/2

;tot (Z) =

s Can then use this to do band line-up
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Offset is 0.4eV — useful for LED’s and near-IR detectors
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Phonons



THE UNIVERSITY W PhOnonS

m A crystal is more than just electrons —
contains ions/atoms and quasi particles such
as phonons etc.
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m What is a phonon? A quantized lattice
vibration of a crystal

m \When a sound wave travels through a
crystal, it creates a periodic distortion:



THE UNIVERSITYW Phonon dlSpGFSlOn

m The periodic distortion means a wavevector g

m Another reciprocal space quantity — do not
confuse with k or G!

m Distortion is real so: dj(r) = a4 cos(q.r)
m Can plot a phonon band structure.

m Usually plot frequency w against q, not E.

s Shows frequency of different lattice vibrations,
from long-wavelength acoustic modes to the
shorter optical ones

m Negative w means structural instability ...
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Phonon dispersion
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Summary
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m Reciprocal space is very useful

m Provides natural language for describing
periodic systems

m All the periodic responses are contained within
the 1st Brillouin Zone

m Can calculate E(k) for the electrons
m Band structure => special directions in BZ
m Density of states => uniform sampling of BZ

m Exactly the same language and concepts
apply to phonons — quantized lattice vibrations



