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Overview of lecture

n Bloch’s Theorem
n Band Structure
n Density of States
n Examples
n Phonons

n NB Colour slides are available on the 
website



Bloch’s Theorem



Recap

n Bloch’s theorem: the density has the same 
periodicity as the potential, BUT the possible 
wavefunctions are all ‘quasi-periodic’: 

n We write uk (r) in a plane-wave basis as: 

n where G are the reciprocal lattice vectors, 
defined so that G.L = 2πm. 
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Recap of Bloch’s Theorem

Bloch’s theorem: in a periodic potential, the density has the
same periodicity. The possible wavefunctions are all
‘quasi-periodic’:

 k (r) = e
ik.r

uk (r).

We write uk (r) in a plane-wave basis as:

uk (r) =
X

G

cGke
iG.r,

where G are the reciprocal lattice vectors, defined so that
G.L = 2⇡m.
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Recap of Bloch’s Theorem

Bloch’s theorem: in a periodic potential, the density has the
same periodicity. The possible wavefunctions are all
‘quasi-periodic’:

 k (r) = e
ik.r

uk (r).

We write uk (r) in a plane-wave basis as:

uk (r) =
X

G

cGke
iG.r,

where G are the reciprocal lattice vectors, defined so that
G.L = 2⇡m.



1st Brillouin Zone

n Adding or subtracting G from k leaves 
properties unchanged
n system is periodic in reciprocal-space too. 

n Hence only need to study behaviour in the 
reciprocal-space unit cell
n And then know how it behaves everywhere. 

n Conventional to center unit cell around      
G = 0 (a.k.a. the Gamma point)
n Call this the 1st Brillouin Zone. 
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First Brillouin Zone (2D)

The region of reciprocal space nearer to the origin than any
other allowed wavevector is called the 1st Brillouin zone.

2D Example

n The region of reciprocal space nearer to the 
origin than any other allowed wavevector is 
called the 1st Brillouin zone:. 



Band Structure



E vs k

n How does the energy of states vary across 
the Brillouin zone? 

n Consider one particular wavefunction: 

n Consider two different limits:
n electrons with high potential energy,
n and electrons with high kinetic energy. 
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E versus k

How does the energy of states vary across the Brillouin
zone? Let’s consider one particular wavefunction:

 (r) = e
ik.r

u(r)

We’ll look at two different limits – electrons with high
potential energy, and electrons with high kinetic energy.
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Very localised electrons

If an electron is trapped in a very strong potential, then we
can neglect the kinetic energy and write:

Ĥ = V̂

The energy of our wavefunction is then

E(k) =

Z
 ?(r)V (r) (r)d3r

=

Z
V (r)| (r)|2d

3r

=

Z
V (r)|u(r)|2d

3r

It doesn’t depend on k at all! We may as well do all
calculations at k = 0.

Very localized electrons

n If an electron is trapped in a very strong 
potential, then we can neglect the KE: 

n The energy of our wavefunction is then 

n i.e. independent of k! So can just use k = 0.
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Very localised electrons

If an electron is trapped in a very strong potential, then we
can neglect the kinetic energy and write:

Ĥ = V̂

The energy of our wavefunction is then

E(k) =

Z
 ?(r)V (r) (r)d3r

=

Z
V (r)| (r)|2d

3r

=

Z
V (r)|u(r)|2d

3r

It doesn’t depend on k at all! We may as well do all
calculations at k = 0.



H band structure (isolated)
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H band structure
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Free Electrons

For an electron moving freely in space there is no potential,
so the Hamiltonian is just the kinetic energy operator:

Ĥ = � ~2

2m
r2

The eigenstates of the Hamiltonian are just plane-waves –
i.e. cGk = 0 except for one particular G.

Our wavefunction is now

 (r) = cGe
i(k+G).r

) r2 (r) = �(k + G)2 (r)
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Free Electrons

For an electron moving freely in space there is no potential,
so the Hamiltonian is just the kinetic energy operator:

Ĥ = � ~2

2m
r2

The eigenstates of the Hamiltonian are just plane-waves –
i.e. cGk = 0 except for one particular G.

Our wavefunction is now

 (r) = cGe
i(k+G).r

) r2 (r) = �(k + G)2 (r)

Free electron limit

n For an electron moving freely in space then 
PE=0 and the Hamiltonian is just KE:

n The eigenstates of the Hamiltonian are just 
plane-waves – i.e. cGk = 0 except for one 
particular G. 

n Our wavefunction is now 



Free electrons

n So E(k) is quadratic in k, with the lowest 
energy state at G = 0 

n Each state has energy that changes with k  
=> forms an energy band in reciprocal space
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Free Electrons

E(k) = � ~2

2m

Z
 ?(r)r2 (r)d3r

=
~2

2m
(k + G)2

Z
 ?(r) (r)d3r

=
~2

2m
(k + G)2

So E(k) is quadratic in k, with the lowest energy state
G = 0.



Free electron bands
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Free Electrons
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Free Electrons

Free electron bands

n But states are periodic in reciprocal space 
=> get parabola about each lattice point
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Free Electrons

Free electron bands

n But states are periodic in reciprocal space 
=> fold back using G’=G±m.2p/L



Al - a nearly free electron metal
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Al band structure



3D Brillouin Zone

n More complex in 3D
n The reciprocal lattice vectors are not simple 

cubic and the BZ can vary a lot:
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3D

In 3D things get complicated. In general the reciprocal
lattice vectors do not form a simple cubic lattice, and the
Brillouin zone can have all kinds of shapes.



Band structure

n The way the energies of all of the states 
change with k is called the band structure. 
n k is a 3D vector so E(k) is hard to visualize

n Conventional to plot energies along special 
high-symmetry directions. 
n These energies represent either max or min 

energies for the bands across the whole BZ. 
n In real materials electrons are neither 

completely localised nor completely free
n But still see these features in band structures. 



Band structure of Cu
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Band structure of Cu



Electronic transitions

n Electrons are Fermions and obey Pauli 
exclusion principle
n Lowest Ne states are occupied by electrons 
n At T=0 K all states below the Fermi energy, EF 

, are occupied and states above are empty
n Band-structures often shifted so EF = 0 

n In semi-conductors and insulators there is a 
region of energy just above EF with no bands 
– the band gap. 



Band structure of Si



Density of States



Density of States

n The band structure is a good way to 
visualise the dispersion (wavevector-
dependence) of the energy states
n Ditto the band-gap, the possible electronic 

transitions, etc. 
n But the transition probability depends on 

how many states are available in the initial 
and final energies (e.g. Fermi golden rule). 
n Band structure only tells you about the 

bands along high symmetry directions. 



DOS

n What we need is the full density of states 
(DOS) across the whole BZ
n Not just the special directions. 

n The density of states is
where ΩG is the volume of reciprocal space 
associated with each G-vector. 
n We have to uniformly sample the BZ, just 

as for the calculation of the ground state 
electronic structure. 
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Densities of States

What we need is the full density of states across the whole
Brillouin zone, not just the special directions.

The density of states is g(E) = 1
⌦G

dN

dE
where ⌦G is the

volume of reciprocal space associated with each G-vector.

We have to sample the Brillouin zone evenly, just as we do
for the calculation of the ground state.



Sampling DOS

n Full DOS
Recap

The Brillouin
zone

Band
structure

DOS

Phonons

Summary

Densities of States



Sampling DOS

n Equivalent DOS using 
crystal symmetry to 
reduce sampling 
region to the 
irreducible wedge
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Densities of States



DOS for Free Electrons

n For free electrons we saw
n So for a fixed E the k-vectors form a 

spherical shell of area 4p|k + G|2

Recap

The Brillouin
zone

Band
structure

DOS

Phonons

Summary

Free electrons

For free electrons

E(k) / (k + G)2

So for a fixed E the k-vectors form a spherical shell of area
4⇡|k + G|2.

dN

dk
/ |k + G|2

) g(E) =
1
⌦G

dN

dE
=

1
⌦G

dN

dk

dk

dE

/ |k + G|2 1
|k + G|

/
p

E
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Free electrons

For free electrons

E(k) / (k + G)2

So for a fixed E the k-vectors form a spherical shell of area
4⇡|k + G|2.

dN

dk
/ |k + G|2

) g(E) =
1
⌦G

dN

dE
=

1
⌦G

dN

dk

dk

dE

/ |k + G|2 1
|k + G|

/
p

E



Ideal DOS
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Free electrons



DOS of Al
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Aluminium



Computing a DOS

n Computing a band structure or a DOS is 
straightforward: 
n First compute the ground state electronic 

density with a good k-point sampling
n Then fix the density, and find the states at the 

band structure/DOS k-points 
n The difference between DOS and band 

structure is only in the choice of sample k
n NB As the density is fixed for the second 

calculation, it takes much less time per k-point 
than the original ground state calculation. 



Example –
Band Offsets



Application – Band Offsets

n Heterojunctions are formed when two different types of 
semiconductor are joined together.

n Heterostructures are used extensively in the electronic (e.g. 
transistors) and optoelectronic (e.g. LED’s) industry.



Calculating Band Offsets

n Knowledge of the band structures of the two 
individual materials is not sufficient to determine 
the band offset.

n Band energies are determined with respect to the 
average potential in the solid.

n It is also necessary to perform a supercell 
calculation to determine how the potentials are 
lined up with respect to each other.



The Average Potential

n The potential can be averaged across the x-y planes 
(junction normal to z).

n This is the microscopic average potential.
n The macroscopic average potential is calculated over 

the period over the microscopic potential.
n The band structures are measured relative to the 

macroscopic average.

n Can then use this to do band line-up
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An Example: FeSi2 on Si

Offset is 0.4eV – useful for LED’s and near-IR detectors



Phonons



Phonons

n A crystal is more than just electrons – 
contains ions/atoms and quasi particles such 
as phonons etc.

Recap

The Brillouin
zone

Band
structure

DOS

Phonons

Summary

Phonons

When a sound wave travels through a crystal, it creates a
periodic distortion to the atoms.



Phonons

n What is a phonon? A quantized lattice 
vibration of a crystal

n When a sound wave travels through a 
crystal, it creates a periodic distortion: Recap
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Phonons

When a sound wave travels through a crystal, it creates a
periodic distortion to the atoms.



Phonon dispersion

n The periodic distortion means a wavevector q 
n Another reciprocal space quantity – do not 

confuse with k or G!
n Distortion is real so: 
n Can plot a phonon band structure. 

n Usually plot frequency ω against q, not E. 
n Shows frequency of different lattice vibrations, 

from long-wavelength acoustic modes to the 
shorter optical ones 

n Negative ω means structural instability …
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Phonons

Periodic distortion �! wavevector q.
Distortion is real not complex so:

dq(r) = aq cos(q.r)

Can plot a phonon band structure.

Usually plot frequency ! against q, not E .

Shows frequency of different lattice vibrations, from
long-wavelength acoustic modes to the shorter optical ones.
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More than one atom per unit cell gives rise to optic modes with different
characteristic dispersion.

Phonon dispersion

q

q

q
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Summary



Summary

n Reciprocal space is very useful
n Provides natural language for describing 

periodic systems
n All the periodic responses are contained within 

the 1st Brillouin Zone
n Can calculate E(k) for the electrons 

n Band structure => special directions in BZ
n Density of states => uniform sampling of BZ

n Exactly the same language and concepts 
apply to phonons – quantized lattice vibrations


