

Finding the electronic ground state

Matt Probert

Condensed Matter Dynamics Group

Department of Physics,

University of York, U.K.

http://www-users.york.ac.uk/~mijp1

- Exact diagonalization
- Iterative diagonalization
 - Indirect approach
 - Direct approach
- CASTEP in practice

NB NB Colour slides are available on the website

Exact Diagonalization

We want to solve

$$H[\rho]\psi_{bk} = \epsilon_{bk}\psi_{bk}$$

- to find the eigenenergies ϵ_{bk} and ψ_{bk} (\mathbf{r}) eigenfunctions which we represent in terms of the coefficients c_{Gk}
- For a simple matrix problem Hx=λx we can solve by diagonalizing H
 - BUT unlike simple problems we do not know the matrix elements of **H** before we start!

- Note that H depends on V
 - And V is a functional V[ρ]
 - And ρ depends on ψ
 - And we are trying to diagonalize H to find ψ !

- Hence we must solve iteratively:
 - Guess an initial $\rho \rightarrow V[\rho] \rightarrow H$
 - Solve $H\psi = \varepsilon \psi$ to get new approximate ψ
 - Compute new ρ; repeat to convergence ...

Cost of Exact Diagonalization

- Given the above, we can make an $N_G x N_G$ matrix H and diagonalize it
 - Standard linear algebra packages can do this in $O(N_G^3)$ operations and $O(N_G^2)$ storage
 - And must repeat for each k-point k
 - And iterate to self-consistency
- How big is N_G ?
 - Consider a 10Å^3 box and cut-off energy of 500 eV then $N_G \sim 50600$
 - Estimate time ~12 hrs/iteration at 3 GFLOPs

- Exact diagonalization is VERY expensive
 - And an $N_G x N_G$ matrix has N_G eigenvalues
 - But typically only want the lowest few eigenvalues ~ N_{electrons}
 - And takes a lot of computer power to get machine precision in all eigenvalues which have to do for every iteration even when far from self-consistency
- State of the art up until 1985
 - Limited DFT to a max of ~10 electrons!

Iterative Diagonalization - indirect approach

Revolutionary new approach

- Car and Parrinello (1985)
 - Inspired by extended Lagrangian methods in Molecular Dynamics
 - Introduced fictitious 'mass' and 'kinetic energy' for each c_{Gk}

Do MD with damping in the space of c_{Gk} so as system 'cools' it converges to ground state value of c_{Gk} and hence electron density etc.

- Major algorithmic break through!
- Cost $\sim O(N_G^2 N_b)$ to apply H to all bands
 - And explicit orthogonalization step costs $\sim O(N_G N_b^2)$
 - BUT *N_b*<<*N_G* ...
 - And once got to ground state can combine with conventional MD of ions to get ab initio
 MD for the first time
- Still requires $\sim O(N_G^2)$ storage

- But to ensure adiabatic separation of electrons and ions need mass separation
 - Choose very small 'mass' for c_{Gk}
- Hence need very small time step to integrate the equations of motion
 - Hence not actually that much faster than exact diagonalization in 'time to science'
 - And cannot handle metals due to adiabatic issues

- One view of the C-P approach was that it could be seen as indirect energy minimization
 - But simulated annealing is VERY inefficient –
 better for global than local optimization
- So why not use a more efficient direct function minimization approach?
 - Conjugate-gradients introduced by Teter,
 Payne & Allan (1989) along with an efficient pre-conditioner
 - Objective: energy eigenvalues

Iterative Diagonalization - direct approach

Direct minimization basics

- The groundstate energy E_0 is the lowest possible energy of the system
- Any wavefunction has energy $E \ge E_0$ so
 - lacksquare Guess a trial wavefunction ψ
 - Compute $E = \psi^{\dagger}H\psi$
 - Tweak c_G to lower E
 - When we cannot lower E any more then ψ is the groundstate!
 - Variational principle in action

Iterative Diagonalization

- Efficient minimization methods need both objective function and its derivative
- Functional calculus time:

$$\epsilon_{bk} = \frac{\psi_{bk}^{\dagger} H \psi_{bk}}{\psi_{bk}^{\dagger} \psi_{bk}}$$

$$\Rightarrow \frac{\delta \epsilon_{bk}}{\delta \psi_{bk}^{\dagger}} = \frac{\left(\psi_{bk}^{\dagger} \psi_{bk}\right) H \psi_{bk} - \left(\psi_{bk}^{\dagger} H \psi_{bk}\right) \psi_{bk}}{\left(\psi_{bk}^{\dagger} \psi_{bk}\right)^{2}}$$

$$= H \psi_{bk} - \epsilon_{bk} \psi_{bk}$$

And so gradient vanishes at minimum ...

Steepest Descents

- Start with ψ_i and compute ϵ_i
- Compute the gradient $\frac{\delta \epsilon_j}{\delta \psi_i^{\dagger}}$
 - This is the change to c_G that increases ϵ_j
 - We want to decrease ϵ_i so use negative
- Guess new eigenstate $\psi_j^{new} = \psi_j \lambda \frac{\delta \epsilon_j}{\delta \psi_j^\dagger}$
- Vary λ until found min ϵ_j in this direction
 - This is called the *line minimization* step
- Update, recompute gradient, repeat ...

- If apply this procedure then will quickly find lowest eigenstate ψ_1
- Repeating it for ψ_2 will give same answer!
- The solution is to explicitly orthogonalize so $\psi_2^\dagger \psi_1 = \mathbf{0}$

 So need good matrix algebra package/code for multiplication, orthogonalization Remember:

$$\hat{H} = -\frac{\hbar^2}{2m} \nabla^2 + V[\rho](\mathbf{r})$$

- So can split into two terms:
- Kinetic energy trivial to apply in reciprocal space: $\nabla^2 \psi_{bk}(\mathbf{G}) = -|\mathbf{G} + \mathbf{k}|^2 \psi_{bk}(\mathbf{G})$
- Potential energy trivial to apply in real space: $V[\rho](\mathbf{r})\psi_{bk}(\mathbf{r})$
- Hence use Fast Fourier Transforms to switch spaces ...

Applying the Hamiltonian

Finding the Groundstate

- Steepest descents works robust but slow
- Conjugate gradients is more efficient
- Both schemes have similar advantages:
 - Never need to store H explicitly
 - Hence storage $\sim O(N_G)$
 - Smart use of real/reciprocal space means cost of applying H ~O(N_GN_B)
 - Orthogonalization of bands $\sim O(N_G N_B^2)$
 - Cost of FFT $\sim O(N_G N_B \ln N_G)$

Minimization in action

Direct Minimization Advantages

- Direct minimization does not need adiabatic separation of electrons and ions
 - Hence handles metallic states easily
- Once got ground state can use Hellman-Feynman theorem to get forces and hence do Born-Oppenheimer MD
 - With a much bigger time step than C-P
 - Traditionally had worse energy conservation than C-P but no longer true with recent developments such as XL-BOMD

CASTEP in practice

$$\epsilon_{b\mathbf{k}}^{new} = \langle \psi_{b\mathbf{k}}^{new} | \hat{\mathbf{H}} | \psi_{b\mathbf{k}}^{new} \rangle$$

But H depends on ρ so should we use old ρ or new ρ?

$$\rho^{\textit{new}} = \sum_{\textit{bk}} |\psi^{\textit{new}}_{\textit{bk}}|^2$$

■ Does it matter?

- Updating ρ requires Fourier transform of every band → correct but slow
 - Or can fix $\rho = \rho_{in}$ and optimise ψ so no longer self-consistent until at convergence when $\rho_{out} = \rho_{in}$
 - This is known as *density mixing* (DM)
 - Simplest scheme is linear mixing:

$$\rho = (1 - \alpha)\rho^{in} + \alpha\rho^{out}$$

■ DM is fast and requires less memory but is sometimes unstable ...

 Problems arise chiefly due to Hartree potential (classical electron-electron repulsion):

$$V_H(\mathbf{G}) \propto rac{
ho(\mathbf{G})}{\left|\mathbf{G}
ight|^2}$$

- Small errors in ρ_{in} → large errors in $V_H[\rho_{in}]$ → large errors in ρ_{out} .
- This phenomenon is called *charge sloshing*.
- Solution is to mix densities to correct for this viz. Kerker mixing:

$$\rho^{new}(\mathbf{G}) = \rho^{in}(\mathbf{G}) + \frac{\alpha |\mathbf{G}|^2}{|\mathbf{G}|^2 + G_0^2} \left(\rho^{out}(\mathbf{G}) - \rho^{in}(\mathbf{G}) \right)$$

Better still – model the dielectric response:

$$\rho^{new}\left(\mathbf{G}\right) = \rho^{in}\left(\mathbf{G}\right) + \epsilon_{\mathbf{G}\mathbf{G}'}^{-1}\left(\rho^{out}\left(\mathbf{G}'\right) - \rho^{in}\left(\mathbf{G}'\right)\right)$$

$$\bullet \text{ Where } \epsilon_{\mathbf{G}\mathbf{G}'}^{-1} = 1 - \frac{\delta\rho\left(G\right)}{\delta\rho\left(G'\right)}$$

- Different schemes (Pulay or Broyden) available - both start with

$$\epsilon_{\mathbf{G}\mathbf{G}'}^{-1} \simeq rac{lpha \left|\mathbf{G}
ight|^2 \delta_{GG'}}{\left|\mathbf{G}
ight|^2 + G_o^2}$$

■ And then improve ϵ^{-1}_{GG} , using a history of mixing densities

DM scheme

- Sometimes DM does not converge
- Can try different CASTEP parameters:
 - Try a different DM scheme in .param file:
 dm_mix_scheme = linear / Kerker
 / Pulay / Broyden
 - Reduce mix_charge_amp to 0.1~0.2
 - Increase mix_cut_off_energy (up to 4*cut_off_energy)
 - Increase mix_history_length
- Or switch to a non-DM scheme ...

Always update ρ so fully selfconsistent but computational expensive:

metals_method
= EDFT

- Everything up to now has been for insulators
- Metals have degenerate states at E=E_F
 - Problems at T=0 due to occupancy discontinuity
 - Solution run at finite T and smear
 - Fractional occupancies:

$$ho = \sum_{bk} f_{bk} |\psi_{bk}|^2$$
; $E = \sum_{bk} f_{bk} \epsilon_{bk}$

Need extra bands and care with k-points!

Summary

- DFT reduces QM to a matrix e-value problem
 - Where number of useful e-states is SMALL compared to size of matrix
 - Hence iterative diagonalization is best
- DM is a fast scheme but not always stable:
 - Fix ρ when update ψ
 - Energy converges faster than forces
- EDFT is slower but stable
 - Always update ρ when update ψ
 - Energy and forces converges fast

Useful References

- MC Payne *et al*, Rev. Mod. Phys **64**, 1045 (1992)
- WH Press et al, "Numerical Recipes: The Art of Scientific Computing", Cambridge University Press (1989 2007)
- RM Martin, "Electronic Structure: basic theory and practical methods", Cambridge University Press (2004)
- SJ Clark, MD Segall, CJ Pickard, PJ Hasnip, MIJ Probert,
 K Refson and MC Payne, "First principles methods using CASTEP", Zeitschrift für Kristallographie 220, 567 (2005)