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Overview of lecture

n Exact diagonalization
n Iterative diagonalization

n Indirect approach
n Direct approach

n CASTEP in practice

n NB NB Colour slides are available on the 
website



Exact Diagonalization



Exact Diagonalization

n We want to solve

n to find the eigenenergies       and 
eigenfunctions which we represent in terms 
of the coefficients cGk

n For a simple matrix problem Hx=lx we can 
solve by diagonalizing H
n BUT unlike simple problems we do not know 

the matrix elements of H before we start!
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An Eigenvalue Problem

⇢
� ~2

2m
r2 + V [⇢] (r)

�
 bk (r) = ✏bk bk (r)

 bk is a vector of NG Fourier coefficients
The Hamiltonian is a NG ⇥ NG mixed type (1,1) tensor
�! just an eigenvalue problem!

H[⇢] bk = ✏bk bk
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The trouble with H

n Note that H depends on V
n And V is a functional V[r]
n And r depends on ψ
n And we are trying to diagonalize H to find ψ!

n Hence we must solve iteratively:
n Guess an initial r -> V[r] -> H
n Solve Hψ=eψ to get new approximate y
n Compute new r ; repeat to convergence …



Cost of Exact Diagonalization

n Given the above, we can make an NGx NG 
matrix H and diagonalize it
n Standard linear algebra packages can do this 

in O(NG
3) operations and O(NG

2) storage
n And must repeat for each k-point k
n And iterate to self-consistency

n How big is NG?
n Consider a 10Å3 box and cut-off energy of 

500 eV then NG ~ 50600
n Estimate time ~12 hrs/iteration at 3 GFLOPs 



Trouble

n Exact diagonalization is VERY expensive
n And an NGx NG matrix has NG eigenvalues
n But typically only want the lowest few 

eigenvalues ~ Nelectrons

n And takes a lot of computer power to get 
machine precision in all eigenvalues which 
have to do for every iteration even when far 
from self-consistency

n State of the art up until 1985
n  Limited DFT to a max of ~10 electrons!



Iterative Diagonalization
- indirect approach



Revolutionary new approach

n Car and Parrinello (1985)
n Inspired by extended Lagrangian methods 

in Molecular Dynamics
n Introduced fictitious ‘mass’ and ‘kinetic 

energy’ for each cGk

Do MD with damping in the space of 
cGk so as system ‘cools’ it converges to 
ground state value of cGk and hence 
electron density etc.



Car-Parrinello approach

n Major algorithmic break through!
n Cost ~O(NG

2Nb ) to apply H to all bands
n And explicit orthogonalization step costs 

~O(NGNb
2) 

n BUT Nb<<NG …
n And once got to ground state can combine 

with conventional MD of ions to get ab initio 
MD for the first time

n Still requires ~O(NG
2) storage



Car-Parrinello Drawbacks

n But to ensure adiabatic separation of 
electrons and ions need mass separation
n Choose very small ‘mass’ for cGk

n Hence need very small time step to 
integrate the equations of motion
n Hence not actually that much faster than 

exact diagonalization in ‘time to science’
n And cannot handle metals due to adiabatic 

issues 



Energy Minimization

n One view of the C-P approach was that it 
could be seen as indirect energy minimization
n But simulated annealing is VERY inefficient – 

better for global than local optimization
n So why not use a more efficient direct function 

minimization approach?
n Conjugate-gradients introduced by Teter, 

Payne & Allan (1989) along with an efficient 
pre-conditioner

n Objective: energy eigenvalues 



Iterative Diagonalization
- direct approach



Direct minimization basics

n The groundstate energy E0 is the lowest 
possible energy of the system

n Any wavefunction has energy E ≥ E0 so
n Guess a trial wavefunction y 
n Compute
n Tweak cG to lower E
n When we cannot lower E any more then y 

is the groundstate! 
n Variational principle in action
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Iterative Diagonalisation

The groundstate energy E0 is the lowest possible
energy
Any wavefunction has energy E � E0
�! guess a wavefunction  (cG)
�! compute E =  †H 
�! tweak cG to lower E

When we can’t lower E any more,
 is the groundstate!



Iterative Diagonalization

n Efficient minimization methods need both 
objective function and its derivative

n Functional calculus time:

n And so gradient vanishes at minimum …
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Iterative Diagonalisation

Objective function: energy eigenvalue ✏bk

Use iterative methods, e.g. steepest descents, so we
require the gradient of the objective function.

Time for a little functional calculus:

✏bk =
 †

bk
H bk

 †
bk
 bk

) �✏bk

� †
bk

=

⇣
 †

bk
 bk

⌘
H bk �

⇣
 †

bk
H bk

⌘
 bk

⇣
 †

bk
 bk

⌘2

= H bk � ✏bk bk

where on the last line we’ve assumed  bk is normalised.



Steepest Descents

n Start with     and compute
n Compute the gradient

n This is the change to cG that increases
n We want to decrease     so use negative

n Guess new eigenstate
 

n Vary l until found min     in this direction
n This is called the line minimization step

n Update, recompute gradient, repeat … 

Electronic
Structure

Introduction

DFT

Bloch’s
Theorem

Plane-waves

An eigenvalue
problem

Summary

Steepest Descent Diagonalisation

Starting with  j , compute ✏j
Compute the gradient �✏j

� †
j

This is the change to cG that increases ✏j quickest

We want to decrease ✏j , so use � �✏j

� †
j

.

Make a new guess eigenstate,  new

j
=  j � �

�✏j

� †
j

Vary � until we’ve found the lowest ✏j in this direction.
This procedure is often called a line search.

There are better methods than steepest descent, e.g.
conjugate gradients.
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Multiple eigenstates

n If apply this procedure then will quickly find 
lowest eigenstate 

n Repeating it for      will give same answer! 
n The solution is to explicitly orthogonalize so 

n So need good matrix algebra package/code 
for multiplication, orthogonalization ….
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Multiple Eigenstates

Can find lowest eigenstate  1

What about next lowest  2?

If we just repeat method, we’ll find lowest again!
Need to explicitly orthogonalise so  †

2 1 = 0
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Efficient application of H

n Remember:

n So can split into two terms:
n Kinetic energy – trivial to apply in reciprocal 

space:
n Potential energy – trivial to apply in real 

space:
n Hence use Fast Fourier Transforms to 

switch spaces …
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An Eigenvalue Problem

Now we just need to apply our Hamiltonian efficiently. Recall

Ĥ = � ~2

2m
r2 + V [⇢] (r)

Kinetic energy: r2 bk (G) = �|G + k|2 bk (G)
Trivial to apply in reciprocal-space
Potential energy: V [⇢] (r) bk (r)
Trivial to apply in real-space

Need Fourier transforms!
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Applying the Hamiltonian
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Applying the Hamiltonian



Finding the Groundstate
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Conjugate Gradients

n Steepest descents works – robust but slow
n Conjugate gradients is more efficient
n Both schemes have similar advantages:

n Never need to store H explicitly
n Hence storage ~O(NG )

n Smart use of real/reciprocal space means 
cost of applying H ~O(NGNB )

n Orthogonalization of bands ~O(NGNB
2)

n Cost of FFT ~O(NGNB lnNG )
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Minimization in action



Direct Minimization Advantages

n Direct minimization does not need adiabatic 
separation of electrons and ions
n Hence handles metallic states easily

n Once got ground state can use Hellman-
Feynman theorem to get forces and hence 
do Born-Oppenheimer MD
n With a much bigger time step than C-P
n Traditionally had worse energy conservation 

than C-P but no longer true with recent 
developments such as XL-BOMD



CASTEP in practice



Self consistency

n But H depends on ρ so should we use old ρ 
or new ρ?

n Does it matter?
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Self-consistency

✏new

bk = h new

bk | Ĥ | new

bk i

But Ĥ = Ĥ [⇢]...

Should we use the old ⇢, or:

⇢new =
X

bk

| new

bk |2?

Does it matter?
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Self-consistency

✏new

bk = h new

bk | Ĥ | new

bk i

But Ĥ = Ĥ [⇢]...

Should we use the old ⇢, or:

⇢new =
X

bk

| new

bk |2?

Does it matter?



Density mixing

n Updating ρ requires Fourier transform of 
every band → correct but slow
n Or can fix ρ = ρin and optimise ψ so no 

longer self-consistent until at convergence 
when ρout = ρin

n This is known as density mixing (DM)
n Simplest scheme is linear mixing:

n DM is fast and requires less memory but is 
sometimes unstable …
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Density
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Summary

Density mixing

This is linear density mixing
Select with metals_method : DM

Update  several times for ⇢ = ⇢in

Update ⇢ = (1 � ↵)⇢in + ↵⇢out

Called a Self-Consistent Field (SCF) cycle
↵ controlled by parameter mix_charge_amp
Unfortunately it often doesn’t converge – why?
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The Hartree potential

Problems arise chiefly due to Hartree potential (classical
electron-electron repulsion):

VH (G) / ⇢ (G)

|G|2

Small errors in ⇢in

�! large errors in VH [⇢
in]

�! large errors in ⇢out .

This phenomenon is called charge sloshing.
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Density mixing

We can approximately correct for this sloshing by mixing the
densities in reciprocal-space and adjusting the mixing for
different wavevectors:

⇢new (G) = ⇢in(G) + ↵|G|2
|G|2+G2

0

�
⇢out(G)� ⇢in(G)

�

This is Kerker mixing
G0 controlled by parameter mix_charge_Gmax
Storing ⇢ (G) uses memory, only small G cause trouble
�! only mix for |G|  Gmix

Controlled by mix_cut_off_energy

Charge Sloshing

n Problems arise chiefly due to Hartree potential 
(classical electron-electron repulsion): 

n Small errors in ρin → large errors in VH[ρin] → 
large errors in ρout . 

n This phenomenon is called charge sloshing. 
n Solution is to mix densities to correct for this 

viz. Kerker mixing:



Advanced DM

n Better still – model the dielectric response:

n Where 

n Different schemes (Pulay or Broyden) 
available - both start with

n And then improve e-1GG’ using a history of 
mixing densities
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DM scheme
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Finding the Groundstate

Guess initial 
wavefunction
and density

Compute 
Hamiltonian

Improve
wavefunction

to lower energy

Has energy
changed much?

Compute 
density and mix

to get ρin

Found 
ground state

NO

YES



DM difficulties

n Sometimes DM does not converge
n Can try different CASTEP parameters:

n Try a different DM scheme in .param file: 
dm_mix_scheme = linear / Kerker 
/ Pulay / Broyden

n Reduce mix_charge_amp to 0.1~0.2
n Increase mix_cut_off_energy (up to 

4*cut_off_energy)
n Increase mix_history_length

n Or switch to a non-DM scheme …



EDFT

n Always update 
r so fully self-
consistent but 
computational 
expensive: 

metals_method 
= EDFT

An Eigenvalue
Problem

Self-
consistency

Density
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Finding the Groundstate
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Metals

So far we’ve concentrated on insulators
Metals have degenerate states at the Fermi level
�! algorithmic problems at T=0K
�! run at a finite, nonzero temperature
Fermi-level smeared in energy, controlled by
smearing_width

Bands can be partially occupied, occupation fbk

⇢ =
X

bk

fbk | bk |2 ; E =
X

bk

fbk✏bk

Need especial care converging wrt k-points
Need to include some conduction bands

Metal or Insulator?

n Everything up to now has been for insulators
n Metals have degenerate states at E=EF 

n Problems at T=0 due to occupancy 
discontinuity 

n Solution – run at finite T and smear
n Fractional occupancies:

n Need extra bands and care with k-points!



Summary



Summary

n DFT reduces QM to a matrix e-value problem
n Where number of useful e-states is SMALL 

compared to size of matrix
n Hence iterative diagonalization is best

n DM is a fast scheme but not always stable:
n Fix r when update y
n Energy converges faster than forces

n EDFT is slower but stable
n Always update r when update y
n Energy and forces converges fast
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