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THE UNIVERSITY o Y7k Overview of lecture

m Total Energy

m Lattice constants
m Pressure driven phase transitions
» Bond energy, formation energy, surface ...

m Forces
m Hellman-Feynman theorem

m Stresses
m Elastic constants
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THE UNIVERSITYW Recap

s Quantum Mechanics gives a complete
description of materials chemistry & physics

m QM of electrons and nuclei.

m Covalent, ionic, metallic and van der Waals
bonding are all emergent properties of the QM
behaviour of electrons.

m Born-Oppenheimer Approximation

m Treat nuclei classically and assume electrons
move adiabatically in a field of fixed ions.

s QM electrons give interactions between atoms



THE UNIVERSITYW TOtaI energy

m Primary computed property in DFT is the
ground state energy.

m All observables related to the change in
energy when the system is perturbed.

m Crystal structure

m lon positions and lattice parameters that
minimize the total energy.

m Phase stability
m Phase with lowest E is most stable at T=0

m Elastic constants



THE UNIVERSITYW Energy VOIUme curves

m Consider a simple structure: Q‘—:%:Qo

m The equilibrium CaO lattice

parameter is given by the (QJ Qo (Q/

minimum energy:
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THE UNIVERSITY 0f/frk Equation of State

m A popular EoS is the Birch-Murnaghan:
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m \Where the equilibrium volume is V, and the
bulk modulus is given by
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m And the pressure derivative iIs By = ==
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Phys. Rev 71 809 (1947)



THE UNIVERSITYW B”’Ch-Murnaghan EOS

m The bulk modulus is a physical observable

m But two definitions

m Can extract from fitting B-M EoS to
compression data

m Or from 2nd derivative as in ultrasound
experiments d? P
By = —V0—2
dV

m And the results are not the same! Why?



THE UNIVERSITYW B-M Flt

Effect of fitting range
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THE UNIVERSITY 0f k. First order phase transitions

m A structure will change phase to the one of
lowest free energy

m Phase equilibrium happens if:

m Pressure of both phases are equal
» Enthalpy of both phases are equal:

Ey — E1 = P(Vo — V)

m Can use gradient of common tangent to get
transition pressure ...
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CaO Phase Transition
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m Or can plot enthalpy H vs pressure P and
see which phase has lowest H at given P

m Requires accurate P calculation ...



THE UNIVERSITYW More COmpleX, eg TlOz

s Which phase is most
stable?

m calculate E(V) curve S

':.J -

» Forsterite is most stable of all =,
u 'l:"[.]'

the phases considered 5

» then Wadsleyite and then
Ringwoodite as increase
pressure

m Limited to set of considered
structures

» What if miss something?
m Active research topic ...
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m High pressure
Hydrogen

m Plot AH wrt Cmca
phase

m Solid lines are new
structures, dashed
had been already
considered by
others
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THE UNIVERSITYW Bonds

m Atoms form bonds in solids in molecules
m Energy varies with length of bond:

Energy

>

R
m Hence min energy = equilibrium bond length



THE UNIVERSITY 0 Jork Dissociation Energy

m If we stretch a bond too much it will break

m Energy required is the dissociation energy,
i.e. AH = E(molecule) - sum E(fragments)

s Example: methane CH,
m dissociation energy = E(CH,) - E(CH;) - E(H)
m Covalent bonds are strong — typically 1-5 eV
m Environment dependent
m Always requires energy => endothermic
m H;C-H bond is ~4.5 eV as bond is short
m N, triple bond is VERY strong = 9.8 eV



THE UNIVERSITYW Bond Energy

m Average dissociation energy over all bonds
in a molecule is the bond energy

m More transferable

s Example: methane CH,
mbond energy = V4*( E(CH,)-E(C)-4E(H))
m NB long bonds are weak

m BE of
m BE of
m BE of

H-H = 4.5 eV, length = 0.74 A
H-C = 4.3 eV, length = 1.09 A

H-Si= 3.3 eV, length = 1.48 A

m BE of Si-Si = 2.3 eV, length =2.33 A
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m For solids or liquids

m The energy required to break all the bonds
between the basic units (atoms or molecules)
of the material

m i.e. the intra-molecular bonds
m Example: silicon

m Cohesive energy = 1/n *( E(SI,)) — n*E(SI) )
m Example: water ~ 0.4 eV/molecule

m Relates to boiling point of water — not
dissociating water into H, and 72 O, !
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m \What about defects? Simplest is the point
vacancy — a single missing atom ...

m Neutral vacancy in an elemental solid:
N—1
N

EV EN 1 EN

m Need to consider effect of relaxation around
the vacancy — inward or outward?

s Might also be symmetry breaking
m €.g. Jahn-Teller effect



THE UNIVERSITYW DefeCt format|0n energy

m More general, for charged defects in non-
elemental system:

Eform — Gdefect — Gideal — Hdefeet — Hideal

2 : removed 2 : added
J

m Includes change in free energy and change
iIn chemical potential and charge transfer

m Depends on reservoir
» Where do the defect atoms go/come from?

m Neglects change in entropy



THE UNIVERSITYW Chemlcal pOtentlaI

m For an elemental solid, chemical potential pu
IS the energy of gas phase

m For an compound solid, depends on
chemical bonds present

m E.9. quartz (SiO,):
Usio, = Msi + Mo, = Mg + 1o, + AHsio,
i + AHsio, < psi < Ug;
%uéz + %AHSiOZ < Mo S %Mgz

where Ug; is chem pot of gas-phase Si, and
1o, is the chem pot of diatomic gas-phase O,
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m As well as studying bulk materials and
defects, can also study surfaces

m Surface energy v is the energy required to
form a surface: 1
Vzﬂ(E _k*Ebulk)

» Where the surface calculation contains 2
surfaces separated by k planes of atoms

surface

s And E, . Is the energy in bulk of 1 plane
m And A is the area of the surface created
m Can also be measured directly in expt
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m The equilibrium shape of a crystal or
nanoparticle is given by min Gibbs free energy

m Surface Gibbs free energy is AG = E YA
J

» Variational problem — minimize AG subject to
fixed volume constraint

(001
i )

m Hence surface with lowest y will dominate

brookite anatase

<y>=0.7 J/m? <y>=0.5 J/m?
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THE UNIVERSITYW Forces

m For a given set of atomic positions the
atoms will feel a force if not at equilibrium:

Energy

>

R
= Rule of thumb: F>1.0 eV/A is a large force.



THE UNIVERSITY of Yok Forces and Stresses

s Minimum energy configuration corresponds
to zero force

m Using forces to find the minimum is much
more efficient than just using energy alone

s Minimum enthalpy corresponds to zero
force and stress

m Can therefore minimise enthalpy w.r.t.
supercell shape due to internal stress and
external pressure

s Can minimize under external pressure to
find new structures
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m Classically we have the force F at position R
Is determined from the potential energy as

F=-V,U(R)
s Quantum mechanically we therefore expect
F=-V.(E)
where
_(Y|H|Y)

EI= )
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Stresses



THE UNIVERSITYW StreSS

m \Whilst force is a simple 3-vector, stress is a
rank-2 tensor

Oxx Oazy Ozxz
o — O'yx O'yy O'yg;
Ozzx Uzy Oz2
s Symmetry reduces this to 6 independent
components:

= Diagonal = 6, c,,, 6,, = compression
m Off-diagonal = c,,, 6,,, 6, = shear

m Convention: P+ o = 0 at equilibrium
m i.e. P>0 = compression, P, ,=1/3 Tr(c)
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NB Much messier if
non-orthogonal cell




THE UNIVERSITYW QM StreSSeS

m |f we write the three unit cell vectors a, b, ¢
as the columns of a matrix h then the effect
of an applied strain € is to change the shape

of the unit cell:
h'=(I+¢)h

m We then have the stress tensor o related to
the strain tensor ¢ by:

1 0E
off
Vde,,

O

where V is the volume of the unit cell.
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Elastic Constants
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1
s In 1D youknow E = E;+ 5/~c(:zc—:):0)2
where k = elastic constant
m Or In terms of dimensionless strain:

L
E = Ey + 5/~c52

m In 3D, we have 4t rank elastic constants
tensor but can write as 6x6 using Voigt:

6
v
E(e) = Fy + 5 Z Cijéiéj —+ 0(3)

s Which has max 21 urﬁquue components



THE UNIVERSITY 0f frk Simple elastic constants

m For certain high-symmetry crystals there
are only a few distinct components to ¢;

m Hence can efficiently calculate with the
appropriate minimal pattern of strains

m £.9. In a cubic crystal there are only 3
distinct terms: ¢,,, ¢, and ¢,

m E.9. can choose strain to just study ¢, :

0 0 0 31/
=215 0 0 FE = Fp C146% + O(3)
o o O 2
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THE UNIVERSITY of Jrk Summary

m Total energy is VERY useful

s Changes can determine phase stability, lattice
parameters, bond energies, defect energies,
surface energies, etc.

m Can also calculate derivatives
m E.g. forces (change wrt ionic positions)
m E.g. stress (change wrt cell parameters)

m E.g. elastic constants (29 order strain
derivative)
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