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Overview of lecture

n Total Energy
n Lattice constants
n Pressure driven phase transitions
n Bond energy, formation energy, surface …

n Forces
n Hellman-Feynman theorem

n Stresses
n Elastic constants



Total Energy



Recap

n Quantum Mechanics gives a complete 
description of materials chemistry & physics
n QM of electrons and nuclei. 

n Covalent, ionic, metallic and van der Waals 
bonding are all emergent properties of the QM 
behaviour of electrons. 

n Born-Oppenheimer Approximation
n Treat nuclei classically and assume electrons 

move adiabatically in a field of fixed ions.
n QM electrons give interactions between atoms 



Total energy

n Primary computed property in DFT is the 
ground state energy. 
n All observables related to the change in 

energy when the system is perturbed. 
n Crystal structure 

n Ion positions and lattice parameters that 
minimize the total energy. 

n Phase stability
n Phase with lowest E is most stable at T=0 

n Elastic constants



Energy volume curves

n Consider a simple structure:
n The equilibrium CaO lattice 

parameter is given by the 
minimum energy:

Energy-Volume Curves 
•  Consider a simple structure 

where one wants to determine 
the lattice parameter 

•  Plot energy vs volume 

Energy-Volume Curves 
•  Consider a simple structure 

where one wants to determine 
the lattice parameter 

•  Plot energy vs volume 



Equation of State

n A popular EoS is the Birch-Murnaghan:

n Where the equilibrium volume is     and the 
bulk modulus is given by

n And the pressure derivative is 
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Birch-Murnaghan EoS

n The bulk modulus is a physical observable
n But two definitions

n Can extract from fitting B-M EoS to 
compression data

n Or from 2nd derivative as in ultrasound 
experiments 

n And the results are not the same! Why?

Birch-Murnaghan EoS 
•  Equation of state (T=0) 

•  Two definitions of bulk modulus: 

–  As a fit to B-M or other EoS 

–    
•  These are not equivalent 

–  Compression EoS experiments use a B-M fit 
–  Ultrasound methods measure 2nd derivative 
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Birch-Murnaghan EoS 
•  Range of data changes fit 

result 
•  V<=V0 accessible to 

experiment but V>V0 also 
available to calculation 

•  B0 should be compared 
over the same or similar 
range as experiment  

B-M Fit

n Range of data 
changes fit!

n Experiment can only 
do V<=V0 but 
calculation can do 
both

n Must use same (or 
similar) range of V 
as in experiment to 
get comparable B0



First order phase transitions

n A structure will change phase to the one of 
lowest free energy

n Phase equilibrium happens if:
n Pressure of both phases are equal
n Enthalpy of both phases are equal:

n Can use gradient of common tangent to get 
transition pressure …

First-order Phase Transitions 
•  Phase equilibrium occurs when 2 criteria are met 

simultaneously 
–  Pressures of the two phases are equal 
–  Enthalpies are equal  
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CaO Phase Transition

n Or can plot enthalpy H vs pressure P and 
see which phase has lowest H at given P

n Requires accurate P calculation …



More complex, e.g. TiO2

n Which phase is most 
stable?
n calculate E(V) curve
n Forsterite is most stable of all 

the phases considered
n then Wadsleyite and then 

Ringwoodite as increase 
pressure

n Limited to set of considered 
structures
n What if miss something?
n Active research topic …



n High pressure 
Hydrogen

n Plot DH wrt Cmca 
phase

n Solid lines are new 
structures, dashed 
had been already 
considered by 
others



Forces
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 *                                                    *

 *            Cartesian components (eV/A)             *

 * -------------------------------------------------- *

 *                   x            y            z      *

 *                                                    *

 * N         1      0.56342      0.00000      0.00000 *

 * N         2     -0.56342      0.00000      0.00000 *

 *                                                    *

 ******************************************************

For a given set of atomic positions the 
ions will experience a force

After minimising the energy of the electrons 
CASTEP will compute the ionic forces 

(v. cheap using Hellman-Feyman theorem)

Rule of Thumb Force>1.0 eV/Å is a large force

Bonds

n Atoms form bonds in solids in molecules
n Energy varies with length of bond:

n Hence min energy = equilibrium bond length

Forces
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Dissociation Energy

n If we stretch a bond too much it will break
n Energy required is the dissociation energy, 

i.e. DH = E(molecule) - sum E(fragments)
n Example: methane CH4

n dissociation energy = E(CH4) - E(CH3) - E(H)
n Covalent bonds are strong – typically 1-5 eV
n Environment dependent

n Always requires energy => endothermic
n H3C-H bond is ~4.5 eV as bond is short
n N2 triple bond is VERY strong = 9.8 eV



Bond Energy

n Average dissociation energy over all bonds 
in a molecule is the bond energy
n More transferable
n Example: methane CH4 

n bond energy = ¼*( E(CH4)-E(C)-4E(H))

n NB long bonds are weak
n BE of H-H = 4.5 eV, length = 0.74 Å
n BE of H-C = 4.3 eV, length = 1.09 Å
n BE of H-Si = 3.3 eV, length = 1.48 Å
n BE of Si-Si = 2.3 eV, length = 2.33 Å



Cohesive energy

n For solids or liquids
n The energy required to break all the bonds 

between the basic units (atoms or molecules) 
of the material

n i.e. the intra-molecular bonds
n Example: silicon

n Cohesive energy = 1/n *( E(Sin) – n*E(Si) )
n Example: water ~ 0.4 eV/molecule

n Relates to boiling point of water – not 
dissociating water into H2 and ½ O2 ! 



Defect formation energy

n What about defects? Simplest is the point 
vacancy – a single missing atom …

n Neutral vacancy in an elemental solid:

n Need to consider effect of relaxation around 
the vacancy – inward or outward? 

n Might also be symmetry breaking 
n e.g. Jahn-Teller effect

this paper. One simple way to estimate these effects would
be to compare the DFT and QMC energies at the same defect
structure !e.g., the DFT optimal structure". However, the su-
percell convergence errors discussed herein will still affect
the QMC calculation, and so need to be understood and
minimized before the comparison of two different ab initio
methodologies becomes meaningful. The aim of this paper is
to show how to systematically reduce the different supercell
convergence errors independent of the ab initio methodology
chosen.
This paper is structured as follows: in Sec. II, we will

review what is already known about the vacancy in silicon,
in Sec. III we will explain the key features of our methodol-
ogy in some detail, illustrated with the neutral silicon va-
cancy calculation. We will report our results for the neutral
silicon vacancy in Sec. IV, and will briefly summarize in Sec.
V.

II. REVIEW

The vacancy in silicon is a technologically important de-
fect, as it is known to play an important role in both self-
diffusion and impurity diffusion, and hence it is essential to
have a detailed understanding of both the electronic and
ionic structure of the defect. The vacancy also occurs in a
variety of charge states, conventionally referred to as V2!,
V!, V0, V", and V2". It is known that this system shows
the negative-U effect, that is, V2! spontaneously converts
directly to V0. For simplicity, this theoretical work will only
focus on the neutral vacancy, V0, although in some experi-
mental techniques it is the charged vacancies that are actu-
ally studied.

A. Experimental studies

The experimental studies have been reviewed by
Watkins.4 In summary, electron-paramagnetic-resonance
studies can be used to give the symmetry and spatial distri-
bution of the highest unpaired localized electron state. This
has shown that the symmetry of the single neutral vacancy
V0 is D2d .5 This is understood to be due to the four dangling
bonds, created by the removal of a silicon atom from a per-
fect lattice, hybridizing with each other to form two new
levels. These are the A1 singlet which lies deep in the bulk
valence bands and the T2 triplet which lies in the energy gap.
The neutral vacancy has only one of the gap states occupied,
which results in a Jahn-Teller distortion, with the ionic relax-
ation lowering the Td-point symmetry of the perfect lattice to
that observed in the experiments.
Electron-nuclear double resonance has also been used to

study the charged vacancies,6,7 which in general have lower
symmetry than the neutral vacancy considered here. Deep
level transient spectroscopy has also been used to give infor-
mation about the ionization levels associated with charge
state changes.8–11 Positron lifetime measurements have also
given information about the defect volume associated with
charge state changes.12,13 However, none of these techniques
gives information on the defect volume or formation energy
of the V0 state. This has led to some confusion, with some

theoretical studies claiming an outwards relaxation of the
atoms surrounding the vacancy, and others an inwards relax-
ation.

B. Theoretical studies

There have been numerous theoretical studies of the sili-
con vacancy using different theoretical techniques. For ex-
ample, Green’s-function calculations14–16 predicted an out-
wards relaxation of the vacancy, whilst more recent
tight-binding17,18 and ab initio studies19–25 have proposed an
inwards relaxation. Recent ab initio cluster calculations26
have suggested an inwards-relaxed D2d symmetry structure,
whereas successive ab initio supercell calculations using dif-
ferent supercell sizes !from 32 to 216 atoms" and different
special k-point sampling techniques have yielded a broad
spread of formation energies !from 2.6 eV to 4.6 eV" and
symmetries !including D2d , C3v , C2v , and T2d), including
some outwards relaxations !although the majority favor in-
wards relaxation". In particular, Puska et al.25 thoroughly re-
viewed the previous theoretical studies and also performed a
sequence of ab initio supercell calculations using different
system sizes and sampling techniques. They found a large
spread in possible answers, which they attributed to the en-
ergy dispersion of the vacancy-induced deep levels, being
therefore particularly sensitive to details of the Brillouin-
zone sampling scheme used.
Three key quantities of interest are the following:
!1" The vacancy formation energy, which for a neutral

vacancy in a supercell is defined as

EV#EN"1"!N"1
N "EN , !1"

where EN is the total energy of the defect-free N atom su-
percell, etc.

!2" The symmetry of the defect.
!3" The volume of the defect !actually the tetrahedron

formed by the positions of the four atoms r1 , . . . ,r4 sur-
rounding the vacancy",

V#
1
6 #!r4"r1"•!r2"r1"$!r3"r1"#. !2"

III. METHOD

As an illustration of the methodology, we perform what
we believe to be the best converged ab initio calculation of
the neutral silicon vacancy yet undertaken. As discussed in
Sec. II, this is not the first time such a calculation has been
attempted. However, there has been a lot of scatter in the
theoretical calculations, even within the same paper in some
instances. We seek to explain the origin of this scatter, and in
so doing, produce a definitive answer for the neutral silicon
vacancy formation energy and the structure of the lattice re-
laxation around the vacancy. Our calculations are performed
with the CASTEP #Ref. 27$ code using the Perdew-Wang
!PW91" #Ref. 28$ generalized gradient approximation !GGA"
for the exchange-correlation functional !which has been
shown in many previous defect studies to result in very

M. I. J. PROBERT AND M. C. PAYNE PHYSICAL REVIEW B 67, 075204 !2003"

075204-2



Defect formation energy

n More general, for charged defects in non-
elemental system:

n Includes change in free energy and change 
in chemical potential and charge transfer

n Depends on reservoir
n Where do the defect atoms go/come from?

n Neglects change in entropy

J. Phys.: Condens. Matter 22 (2010) 025501 M I J Probert

All electronic structure calculations are converged to a
high degree before any ionic relaxation is attempted using
a plane wave cutoff energy of at least 400 eV, a Brillouin
zone sampling density of at least 2π × 0.04 Å

−1
and an

SCF convergence tolerance of at least 10−8 eV/atom. Ionic
relaxation proceeds until the largest force on any atom is
less than 0.01 eV Å−1 in magnitude and the corresponding
enthalpy change is less than 1 × 10−6 eV/atom. For cell
relaxation calculations, the additional constraint is that the
largest component of the stress tensor must be less than
0.01 GPa at convergence. All calculations are performed at
zero temperature: where this is likely to lead to a difference
with experimental results then this will be commented upon.

The Gibbs free energy of the system, in contact with a
particle reservoir, is given by

G(T, P) = U + PV − T S = H − T S, (1)

where U is the internal energy, H is the enthalpy and S the
entropy. The chemical potential for a given species of atom j
is defined as

µ j = ∂G(T, P)

∂n j
, (2)

where n j is the number of atoms of species j . Hence
the formation energy of a defect (neglecting entropic
contributions) is given by

Eform = Gdefect − G ideal = Hdefect − Hideal

+
∑

j

n jµ
removed
j −

∑

j

n jµ
added
j − neµe, (3)

where µremoved is the chemical potential of the reservoir where
removed atoms are put, µadded is the chemical potential of the
reservoir where additional atoms are taken from and µe is the
chemical potential of electrons for a charged defect. In this
work only neutral defects are considered and hence the last
term may be neglected

For a compound material such as α-quartz, the chemical
potential of the material is determined by the SiO2 unit:

µSiO2 = µSi + µO2 = µ∗
Si + µ∗

O2
+ $HSiO2 (4)

where µ∗
Si is the chemical potential of Si in pure (bulk

crystalline) form, µ∗
O2

is the chemical potential of O in pure
(diatomic gas) form and $HSiO2 is the enthalpy of formation
of SiO2. Hence the chemical potentials of individual Si and O
atoms in α-quartz may vary:

µ∗
Si + $HSiO2 ! µSi ! µ∗

Si

1
2µ

∗
O2

+ 1
2$HSiO2 ! µO ! 1

2µ
∗
O2

(5)

and so there will be a range of formation energies, depending
on the environment, e.g. Si-rich, O2-rich, etc. Using the DFT
convergence parameters given above, it is found that $HSiO2 =
−10.616 eV at 0 GPa and $HSiO2 = −10.382 eV at 2 GPa.

2.1. Validation

Xe is an unusual element to include in a DFT calculation,
and as GGA-DFT does not adequately describe van der Waals
interactions, it makes no sense to attempt to validate the
Xe pseudopotential and the total energy methodology by
calculating the properties of bulk Xe. However, there is some
experimental data on the structure of the XeO4 molecule, and
so that will be used for validation instead. Experimentally, it is
known that XeO4 is tetrahedral [18] with an Xe–O bond length
of 1.736 Å in the gas phase at ambient conditions.

Total energy calculations and ionic relaxations of the
XeO4 molecule were performed within a cubic supercell,
and convergence w.r.t. the size of the supercell was tested
with gamma-point-only Brillouin zone sampling, in order to
properly describe a gas phase molecule. The Xe ultrasoft
pseudopotential explicitly treats all the 5s25p6 electrons. It
was found that an 8 Å cubic supercell was sufficient for
convergence, yielding a relaxed Xe–O bond length of 1.820 Å
(+4.8% w.r.t. experiment). Whilst this is not as accurate as
might be hoped for, it gives an indication of the likely accuracy
of the subsequent calculations. A Mulliken population
analysis [19] showed that the Xe atom has a Mulliken
charge of qM(Xe) = +2.92 and each of the O atoms has
qM(O) = −0.73, and hence the mechanism of the Xe–O bond
formation is largely charge transfer. The formation energy
of the molecule w.r.t. mono-atomic gas was calculated to be
−12.252 eV, which suggests the molecule is reasonably stable,
as indeed was found by the stable converged ionic relaxation.
If, however, the stability w.r.t. dissociation into O2 molecules
is calculated, then the formation energy becomes +5.328 eV,
which suggests that the molecule is only metastable, as known
experimentally. We are therefore reasonably confident in our
ability to describe Xe–O compounds within DFT-GGA and are
not aware of any other DFT calculations of this molecule for
comparison.

The validation for α-quartz calculations is much more
straightforward, as there is already a substantial literature of
such calculations. The only defect in quartz investigated in
any depth is that of the O-vacancy [20–23] in various charged
states. This seems to be the most obvious defect to be
found experimentally as a simple bond-counting picture would
suggest a formation energy of the Si vacancy about twice that
of the O vacancy, with second-order effects due to electronic
and ionic relaxation. There have been no calculations of the
Si vacancy until recently, when in a study of amorphous quartz
Richard et al [23] suggested a substantial energy lowering due
to ionic relaxation around the Si vacancy, and so this defect
might not be as uncommon as previously expected.

Total energy calculations, with full ionic and cell
relaxation, were performed for α-quartz. The experimentally
known structure has 6 O and 3 Si atoms per conventional
hexagonal unit cell with P3221 symmetry. The relaxed
theoretical minimum enthalpy structures are given in table 1.
The zero pressure DFT-LDA has lattice parameters −1.4%
w.r.t. experiment and DFT-GGA +1.6% w.r.t. experiment
which is a commonly observed trend.

2



Chemical potential

n For an elemental solid, chemical potential µ 
is the energy of gas phase

n For an compound solid, depends on 
chemical bonds present
n E.g. quartz (SiO2):

where       is chem pot of gas-phase Si, and        
is the chem pot of diatomic gas-phase O2

J. Phys.: Condens. Matter 22 (2010) 025501 M I J Probert

All electronic structure calculations are converged to a
high degree before any ionic relaxation is attempted using
a plane wave cutoff energy of at least 400 eV, a Brillouin
zone sampling density of at least 2π × 0.04 Å

−1
and an

SCF convergence tolerance of at least 10−8 eV/atom. Ionic
relaxation proceeds until the largest force on any atom is
less than 0.01 eV Å−1 in magnitude and the corresponding
enthalpy change is less than 1 × 10−6 eV/atom. For cell
relaxation calculations, the additional constraint is that the
largest component of the stress tensor must be less than
0.01 GPa at convergence. All calculations are performed at
zero temperature: where this is likely to lead to a difference
with experimental results then this will be commented upon.

The Gibbs free energy of the system, in contact with a
particle reservoir, is given by

G(T, P) = U + PV − T S = H − T S, (1)

where U is the internal energy, H is the enthalpy and S the
entropy. The chemical potential for a given species of atom j
is defined as

µ j = ∂G(T, P)

∂n j
, (2)

where n j is the number of atoms of species j . Hence
the formation energy of a defect (neglecting entropic
contributions) is given by

Eform = Gdefect − G ideal = Hdefect − Hideal

+
∑

j

n jµ
removed
j −

∑

j

n jµ
added
j − neµe, (3)

where µremoved is the chemical potential of the reservoir where
removed atoms are put, µadded is the chemical potential of the
reservoir where additional atoms are taken from and µe is the
chemical potential of electrons for a charged defect. In this
work only neutral defects are considered and hence the last
term may be neglected

For a compound material such as α-quartz, the chemical
potential of the material is determined by the SiO2 unit:

µSiO2 = µSi + µO2 = µ∗
Si + µ∗

O2
+ $HSiO2 (4)

where µ∗
Si is the chemical potential of Si in pure (bulk

crystalline) form, µ∗
O2

is the chemical potential of O in pure
(diatomic gas) form and $HSiO2 is the enthalpy of formation
of SiO2. Hence the chemical potentials of individual Si and O
atoms in α-quartz may vary:

µ∗
Si + $HSiO2 ! µSi ! µ∗

Si

1
2µ

∗
O2

+ 1
2$HSiO2 ! µO ! 1

2µ
∗
O2

(5)

and so there will be a range of formation energies, depending
on the environment, e.g. Si-rich, O2-rich, etc. Using the DFT
convergence parameters given above, it is found that $HSiO2 =
−10.616 eV at 0 GPa and $HSiO2 = −10.382 eV at 2 GPa.

2.1. Validation

Xe is an unusual element to include in a DFT calculation,
and as GGA-DFT does not adequately describe van der Waals
interactions, it makes no sense to attempt to validate the
Xe pseudopotential and the total energy methodology by
calculating the properties of bulk Xe. However, there is some
experimental data on the structure of the XeO4 molecule, and
so that will be used for validation instead. Experimentally, it is
known that XeO4 is tetrahedral [18] with an Xe–O bond length
of 1.736 Å in the gas phase at ambient conditions.

Total energy calculations and ionic relaxations of the
XeO4 molecule were performed within a cubic supercell,
and convergence w.r.t. the size of the supercell was tested
with gamma-point-only Brillouin zone sampling, in order to
properly describe a gas phase molecule. The Xe ultrasoft
pseudopotential explicitly treats all the 5s25p6 electrons. It
was found that an 8 Å cubic supercell was sufficient for
convergence, yielding a relaxed Xe–O bond length of 1.820 Å
(+4.8% w.r.t. experiment). Whilst this is not as accurate as
might be hoped for, it gives an indication of the likely accuracy
of the subsequent calculations. A Mulliken population
analysis [19] showed that the Xe atom has a Mulliken
charge of qM(Xe) = +2.92 and each of the O atoms has
qM(O) = −0.73, and hence the mechanism of the Xe–O bond
formation is largely charge transfer. The formation energy
of the molecule w.r.t. mono-atomic gas was calculated to be
−12.252 eV, which suggests the molecule is reasonably stable,
as indeed was found by the stable converged ionic relaxation.
If, however, the stability w.r.t. dissociation into O2 molecules
is calculated, then the formation energy becomes +5.328 eV,
which suggests that the molecule is only metastable, as known
experimentally. We are therefore reasonably confident in our
ability to describe Xe–O compounds within DFT-GGA and are
not aware of any other DFT calculations of this molecule for
comparison.

The validation for α-quartz calculations is much more
straightforward, as there is already a substantial literature of
such calculations. The only defect in quartz investigated in
any depth is that of the O-vacancy [20–23] in various charged
states. This seems to be the most obvious defect to be
found experimentally as a simple bond-counting picture would
suggest a formation energy of the Si vacancy about twice that
of the O vacancy, with second-order effects due to electronic
and ionic relaxation. There have been no calculations of the
Si vacancy until recently, when in a study of amorphous quartz
Richard et al [23] suggested a substantial energy lowering due
to ionic relaxation around the Si vacancy, and so this defect
might not be as uncommon as previously expected.

Total energy calculations, with full ionic and cell
relaxation, were performed for α-quartz. The experimentally
known structure has 6 O and 3 Si atoms per conventional
hexagonal unit cell with P3221 symmetry. The relaxed
theoretical minimum enthalpy structures are given in table 1.
The zero pressure DFT-LDA has lattice parameters −1.4%
w.r.t. experiment and DFT-GGA +1.6% w.r.t. experiment
which is a commonly observed trend.
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high degree before any ionic relaxation is attempted using
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zone sampling density of at least 2π × 0.04 Å
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SCF convergence tolerance of at least 10−8 eV/atom. Ionic
relaxation proceeds until the largest force on any atom is
less than 0.01 eV Å−1 in magnitude and the corresponding
enthalpy change is less than 1 × 10−6 eV/atom. For cell
relaxation calculations, the additional constraint is that the
largest component of the stress tensor must be less than
0.01 GPa at convergence. All calculations are performed at
zero temperature: where this is likely to lead to a difference
with experimental results then this will be commented upon.

The Gibbs free energy of the system, in contact with a
particle reservoir, is given by

G(T, P) = U + PV − T S = H − T S, (1)

where U is the internal energy, H is the enthalpy and S the
entropy. The chemical potential for a given species of atom j
is defined as

µ j = ∂G(T, P)

∂n j
, (2)

where n j is the number of atoms of species j . Hence
the formation energy of a defect (neglecting entropic
contributions) is given by
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where µremoved is the chemical potential of the reservoir where
removed atoms are put, µadded is the chemical potential of the
reservoir where additional atoms are taken from and µe is the
chemical potential of electrons for a charged defect. In this
work only neutral defects are considered and hence the last
term may be neglected

For a compound material such as α-quartz, the chemical
potential of the material is determined by the SiO2 unit:

µSiO2 = µSi + µO2 = µ∗
Si + µ∗

O2
+ $HSiO2 (4)

where µ∗
Si is the chemical potential of Si in pure (bulk

crystalline) form, µ∗
O2

is the chemical potential of O in pure
(diatomic gas) form and $HSiO2 is the enthalpy of formation
of SiO2. Hence the chemical potentials of individual Si and O
atoms in α-quartz may vary:
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and so there will be a range of formation energies, depending
on the environment, e.g. Si-rich, O2-rich, etc. Using the DFT
convergence parameters given above, it is found that $HSiO2 =
−10.616 eV at 0 GPa and $HSiO2 = −10.382 eV at 2 GPa.

2.1. Validation

Xe is an unusual element to include in a DFT calculation,
and as GGA-DFT does not adequately describe van der Waals
interactions, it makes no sense to attempt to validate the
Xe pseudopotential and the total energy methodology by
calculating the properties of bulk Xe. However, there is some
experimental data on the structure of the XeO4 molecule, and
so that will be used for validation instead. Experimentally, it is
known that XeO4 is tetrahedral [18] with an Xe–O bond length
of 1.736 Å in the gas phase at ambient conditions.

Total energy calculations and ionic relaxations of the
XeO4 molecule were performed within a cubic supercell,
and convergence w.r.t. the size of the supercell was tested
with gamma-point-only Brillouin zone sampling, in order to
properly describe a gas phase molecule. The Xe ultrasoft
pseudopotential explicitly treats all the 5s25p6 electrons. It
was found that an 8 Å cubic supercell was sufficient for
convergence, yielding a relaxed Xe–O bond length of 1.820 Å
(+4.8% w.r.t. experiment). Whilst this is not as accurate as
might be hoped for, it gives an indication of the likely accuracy
of the subsequent calculations. A Mulliken population
analysis [19] showed that the Xe atom has a Mulliken
charge of qM(Xe) = +2.92 and each of the O atoms has
qM(O) = −0.73, and hence the mechanism of the Xe–O bond
formation is largely charge transfer. The formation energy
of the molecule w.r.t. mono-atomic gas was calculated to be
−12.252 eV, which suggests the molecule is reasonably stable,
as indeed was found by the stable converged ionic relaxation.
If, however, the stability w.r.t. dissociation into O2 molecules
is calculated, then the formation energy becomes +5.328 eV,
which suggests that the molecule is only metastable, as known
experimentally. We are therefore reasonably confident in our
ability to describe Xe–O compounds within DFT-GGA and are
not aware of any other DFT calculations of this molecule for
comparison.

The validation for α-quartz calculations is much more
straightforward, as there is already a substantial literature of
such calculations. The only defect in quartz investigated in
any depth is that of the O-vacancy [20–23] in various charged
states. This seems to be the most obvious defect to be
found experimentally as a simple bond-counting picture would
suggest a formation energy of the Si vacancy about twice that
of the O vacancy, with second-order effects due to electronic
and ionic relaxation. There have been no calculations of the
Si vacancy until recently, when in a study of amorphous quartz
Richard et al [23] suggested a substantial energy lowering due
to ionic relaxation around the Si vacancy, and so this defect
might not be as uncommon as previously expected.

Total energy calculations, with full ionic and cell
relaxation, were performed for α-quartz. The experimentally
known structure has 6 O and 3 Si atoms per conventional
hexagonal unit cell with P3221 symmetry. The relaxed
theoretical minimum enthalpy structures are given in table 1.
The zero pressure DFT-LDA has lattice parameters −1.4%
w.r.t. experiment and DFT-GGA +1.6% w.r.t. experiment
which is a commonly observed trend.
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All electronic structure calculations are converged to a
high degree before any ionic relaxation is attempted using
a plane wave cutoff energy of at least 400 eV, a Brillouin
zone sampling density of at least 2π × 0.04 Å

−1
and an

SCF convergence tolerance of at least 10−8 eV/atom. Ionic
relaxation proceeds until the largest force on any atom is
less than 0.01 eV Å−1 in magnitude and the corresponding
enthalpy change is less than 1 × 10−6 eV/atom. For cell
relaxation calculations, the additional constraint is that the
largest component of the stress tensor must be less than
0.01 GPa at convergence. All calculations are performed at
zero temperature: where this is likely to lead to a difference
with experimental results then this will be commented upon.

The Gibbs free energy of the system, in contact with a
particle reservoir, is given by

G(T, P) = U + PV − T S = H − T S, (1)

where U is the internal energy, H is the enthalpy and S the
entropy. The chemical potential for a given species of atom j
is defined as

µ j = ∂G(T, P)

∂n j
, (2)

where n j is the number of atoms of species j . Hence
the formation energy of a defect (neglecting entropic
contributions) is given by

Eform = Gdefect − G ideal = Hdefect − Hideal

+
∑

j

n jµ
removed
j −

∑

j

n jµ
added
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where µremoved is the chemical potential of the reservoir where
removed atoms are put, µadded is the chemical potential of the
reservoir where additional atoms are taken from and µe is the
chemical potential of electrons for a charged defect. In this
work only neutral defects are considered and hence the last
term may be neglected

For a compound material such as α-quartz, the chemical
potential of the material is determined by the SiO2 unit:

µSiO2 = µSi + µO2 = µ∗
Si + µ∗

O2
+ $HSiO2 (4)

where µ∗
Si is the chemical potential of Si in pure (bulk

crystalline) form, µ∗
O2

is the chemical potential of O in pure
(diatomic gas) form and $HSiO2 is the enthalpy of formation
of SiO2. Hence the chemical potentials of individual Si and O
atoms in α-quartz may vary:
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and so there will be a range of formation energies, depending
on the environment, e.g. Si-rich, O2-rich, etc. Using the DFT
convergence parameters given above, it is found that $HSiO2 =
−10.616 eV at 0 GPa and $HSiO2 = −10.382 eV at 2 GPa.

2.1. Validation

Xe is an unusual element to include in a DFT calculation,
and as GGA-DFT does not adequately describe van der Waals
interactions, it makes no sense to attempt to validate the
Xe pseudopotential and the total energy methodology by
calculating the properties of bulk Xe. However, there is some
experimental data on the structure of the XeO4 molecule, and
so that will be used for validation instead. Experimentally, it is
known that XeO4 is tetrahedral [18] with an Xe–O bond length
of 1.736 Å in the gas phase at ambient conditions.

Total energy calculations and ionic relaxations of the
XeO4 molecule were performed within a cubic supercell,
and convergence w.r.t. the size of the supercell was tested
with gamma-point-only Brillouin zone sampling, in order to
properly describe a gas phase molecule. The Xe ultrasoft
pseudopotential explicitly treats all the 5s25p6 electrons. It
was found that an 8 Å cubic supercell was sufficient for
convergence, yielding a relaxed Xe–O bond length of 1.820 Å
(+4.8% w.r.t. experiment). Whilst this is not as accurate as
might be hoped for, it gives an indication of the likely accuracy
of the subsequent calculations. A Mulliken population
analysis [19] showed that the Xe atom has a Mulliken
charge of qM(Xe) = +2.92 and each of the O atoms has
qM(O) = −0.73, and hence the mechanism of the Xe–O bond
formation is largely charge transfer. The formation energy
of the molecule w.r.t. mono-atomic gas was calculated to be
−12.252 eV, which suggests the molecule is reasonably stable,
as indeed was found by the stable converged ionic relaxation.
If, however, the stability w.r.t. dissociation into O2 molecules
is calculated, then the formation energy becomes +5.328 eV,
which suggests that the molecule is only metastable, as known
experimentally. We are therefore reasonably confident in our
ability to describe Xe–O compounds within DFT-GGA and are
not aware of any other DFT calculations of this molecule for
comparison.

The validation for α-quartz calculations is much more
straightforward, as there is already a substantial literature of
such calculations. The only defect in quartz investigated in
any depth is that of the O-vacancy [20–23] in various charged
states. This seems to be the most obvious defect to be
found experimentally as a simple bond-counting picture would
suggest a formation energy of the Si vacancy about twice that
of the O vacancy, with second-order effects due to electronic
and ionic relaxation. There have been no calculations of the
Si vacancy until recently, when in a study of amorphous quartz
Richard et al [23] suggested a substantial energy lowering due
to ionic relaxation around the Si vacancy, and so this defect
might not be as uncommon as previously expected.

Total energy calculations, with full ionic and cell
relaxation, were performed for α-quartz. The experimentally
known structure has 6 O and 3 Si atoms per conventional
hexagonal unit cell with P3221 symmetry. The relaxed
theoretical minimum enthalpy structures are given in table 1.
The zero pressure DFT-LDA has lattice parameters −1.4%
w.r.t. experiment and DFT-GGA +1.6% w.r.t. experiment
which is a commonly observed trend.
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high degree before any ionic relaxation is attempted using
a plane wave cutoff energy of at least 400 eV, a Brillouin
zone sampling density of at least 2π × 0.04 Å

−1
and an

SCF convergence tolerance of at least 10−8 eV/atom. Ionic
relaxation proceeds until the largest force on any atom is
less than 0.01 eV Å−1 in magnitude and the corresponding
enthalpy change is less than 1 × 10−6 eV/atom. For cell
relaxation calculations, the additional constraint is that the
largest component of the stress tensor must be less than
0.01 GPa at convergence. All calculations are performed at
zero temperature: where this is likely to lead to a difference
with experimental results then this will be commented upon.

The Gibbs free energy of the system, in contact with a
particle reservoir, is given by

G(T, P) = U + PV − T S = H − T S, (1)

where U is the internal energy, H is the enthalpy and S the
entropy. The chemical potential for a given species of atom j
is defined as

µ j = ∂G(T, P)

∂n j
, (2)

where n j is the number of atoms of species j . Hence
the formation energy of a defect (neglecting entropic
contributions) is given by
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j −
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where µremoved is the chemical potential of the reservoir where
removed atoms are put, µadded is the chemical potential of the
reservoir where additional atoms are taken from and µe is the
chemical potential of electrons for a charged defect. In this
work only neutral defects are considered and hence the last
term may be neglected

For a compound material such as α-quartz, the chemical
potential of the material is determined by the SiO2 unit:

µSiO2 = µSi + µO2 = µ∗
Si + µ∗

O2
+ $HSiO2 (4)

where µ∗
Si is the chemical potential of Si in pure (bulk

crystalline) form, µ∗
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is the chemical potential of O in pure
(diatomic gas) form and $HSiO2 is the enthalpy of formation
of SiO2. Hence the chemical potentials of individual Si and O
atoms in α-quartz may vary:
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and so there will be a range of formation energies, depending
on the environment, e.g. Si-rich, O2-rich, etc. Using the DFT
convergence parameters given above, it is found that $HSiO2 =
−10.616 eV at 0 GPa and $HSiO2 = −10.382 eV at 2 GPa.

2.1. Validation

Xe is an unusual element to include in a DFT calculation,
and as GGA-DFT does not adequately describe van der Waals
interactions, it makes no sense to attempt to validate the
Xe pseudopotential and the total energy methodology by
calculating the properties of bulk Xe. However, there is some
experimental data on the structure of the XeO4 molecule, and
so that will be used for validation instead. Experimentally, it is
known that XeO4 is tetrahedral [18] with an Xe–O bond length
of 1.736 Å in the gas phase at ambient conditions.

Total energy calculations and ionic relaxations of the
XeO4 molecule were performed within a cubic supercell,
and convergence w.r.t. the size of the supercell was tested
with gamma-point-only Brillouin zone sampling, in order to
properly describe a gas phase molecule. The Xe ultrasoft
pseudopotential explicitly treats all the 5s25p6 electrons. It
was found that an 8 Å cubic supercell was sufficient for
convergence, yielding a relaxed Xe–O bond length of 1.820 Å
(+4.8% w.r.t. experiment). Whilst this is not as accurate as
might be hoped for, it gives an indication of the likely accuracy
of the subsequent calculations. A Mulliken population
analysis [19] showed that the Xe atom has a Mulliken
charge of qM(Xe) = +2.92 and each of the O atoms has
qM(O) = −0.73, and hence the mechanism of the Xe–O bond
formation is largely charge transfer. The formation energy
of the molecule w.r.t. mono-atomic gas was calculated to be
−12.252 eV, which suggests the molecule is reasonably stable,
as indeed was found by the stable converged ionic relaxation.
If, however, the stability w.r.t. dissociation into O2 molecules
is calculated, then the formation energy becomes +5.328 eV,
which suggests that the molecule is only metastable, as known
experimentally. We are therefore reasonably confident in our
ability to describe Xe–O compounds within DFT-GGA and are
not aware of any other DFT calculations of this molecule for
comparison.

The validation for α-quartz calculations is much more
straightforward, as there is already a substantial literature of
such calculations. The only defect in quartz investigated in
any depth is that of the O-vacancy [20–23] in various charged
states. This seems to be the most obvious defect to be
found experimentally as a simple bond-counting picture would
suggest a formation energy of the Si vacancy about twice that
of the O vacancy, with second-order effects due to electronic
and ionic relaxation. There have been no calculations of the
Si vacancy until recently, when in a study of amorphous quartz
Richard et al [23] suggested a substantial energy lowering due
to ionic relaxation around the Si vacancy, and so this defect
might not be as uncommon as previously expected.

Total energy calculations, with full ionic and cell
relaxation, were performed for α-quartz. The experimentally
known structure has 6 O and 3 Si atoms per conventional
hexagonal unit cell with P3221 symmetry. The relaxed
theoretical minimum enthalpy structures are given in table 1.
The zero pressure DFT-LDA has lattice parameters −1.4%
w.r.t. experiment and DFT-GGA +1.6% w.r.t. experiment
which is a commonly observed trend.
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Surfaces

n As well as studying bulk materials and 
defects, can also study surfaces

n Surface energy g is the energy required to 
form a surface:

n Where the surface calculation contains 2 
surfaces separated by k planes of atoms

n And Ebulk is the energy in bulk of 1 plane
n And A is the area of the surface created

n Can also be measured directly in expt  

γ= 1
2A

Esurface − k *Ebulk( )



Wulff construction

n The equilibrium shape of a crystal or 
nanoparticle is given by min Gibbs free energy

n Surface Gibbs free energy is
n Variational problem – minimize DG subject to 

fixed volume constraint
n Hence surface with lowest g will dominate 
n e.g. TiO2

<g>=1.1 J/m2           <g>=0.7 J/m2          <g>=0.5 J/m2

ΔG = γ jAjj∑



Forces



Forces

n For a given set of atomic positions the 
atoms will feel a force if not at equilibrium:

n Rule of thumb: F>1.0 eV/Å is a large force.
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 *                                                    *

 *            Cartesian components (eV/A)             *

 * -------------------------------------------------- *

 *                   x            y            z      *

 *                                                    *

 * N         1      0.56342      0.00000      0.00000 *

 * N         2     -0.56342      0.00000      0.00000 *

 *                                                    *

 ******************************************************

For a given set of atomic positions the 
ions will experience a force

After minimising the energy of the electrons 
CASTEP will compute the ionic forces 

(v. cheap using Hellman-Feyman theorem)

Rule of Thumb Force>1.0 eV/Å is a large force
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 *                                                    *

 *            Cartesian components (eV/A)             *

 * -------------------------------------------------- *

 *                   x            y            z      *

 *                                                    *

 * N         1      0.56342      0.00000      0.00000 *

 * N         2     -0.56342      0.00000      0.00000 *

 *                                                    *

 ******************************************************

For a given set of atomic positions the 
ions will experience a force

After minimising the energy of the electrons 
CASTEP will compute the ionic forces 

(v. cheap using Hellman-Feyman theorem)

Rule of Thumb Force>1.0 eV/Å is a large force



Forces and Stresses

n Minimum energy configuration corresponds 
to zero force
n Using forces to find the minimum is much 

more efficient than just using energy alone
n Minimum enthalpy corresponds to zero 

force and stress
n Can therefore minimise enthalpy w.r.t. 

supercell shape due to internal stress and 
external pressure

n Can minimize under external pressure to 
find new structures



QM Forces

n Classically we have the force F at position R
is determined from the potential energy as

n Quantum mechanically we therefore expect

where

( )RF RU-Ñ=

ERF -Ñ=

YY
YY

=
H

E



Stresses



Stress

n Whilst force is a simple 3-vector, stress is a 
rank-2 tensor

n Symmetry reduces this to 6 independent 
components:
n Diagonal = sxx, syy, szz = compression
n Off-diagonal = sxy, syz, szx = shear 

n Convention: Pext+ s = 0 at equilibrium
n i.e. P>0 = compression, Pint=1/3 Tr(s)
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Stress in action

a

b

c

a

bg
ada+da

b

c

a

bg
sxx

sxy
a

b

c

a
b

g dg+dg

NB Much messier if 
non-orthogonal cell



QM Stresses
n If we write the three unit cell vectors a, b, c

as the columns of a matrix h then the effect 
of an applied strain e is to change the shape 
of the unit cell:

n We then have the stress tensor s related to 
the strain tensor e by:

where V is the volume of the unit cell.

σαβ =
1
V

∂E
∂εαβ

( )hεIh +=¢



Elastic Constants



Elastic Constants 
•  Elastic strain theory gives 

•  For a specific strain pattern one can extract individual 
elastic constants, e.g. (in a cubic crystal) 
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Elastic Constants

n In 1D you know 
where   = elastic constant 

n or in terms of dimensionless strain:

n In 3D, we have 4th rank elastic constants 
tensor but can write as 6x6 using Voigt:

n which has max 21 unique components
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Simple elastic constants

n For certain high-symmetry crystals there 
are only a few distinct components to cij
n Hence can efficiently calculate with the 

appropriate minimal pattern of strains
n E.g. in a cubic crystal there are only 3 

distinct terms: c11, c12 and c44

n E.g. can choose strain to just study c44 :

Elastic Constants 
•  Elastic strain theory gives 

•  For a specific strain pattern one can extract individual 
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Summary



Summary

n Total energy is VERY useful
n Changes can determine phase stability, lattice 

parameters, bond energies, defect energies, 
surface energies, etc.

n Can also calculate derivatives
n E.g. forces (change wrt ionic positions)
n E.g. stress (change wrt cell parameters)
n E.g. elastic constants (2nd order strain 

derivative)
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