THE UNIVERSITY of York

Classical Molecular Dynamics

Matt Probert
Condensed Matter Dynamics Group
Department of Physics,
University of York, U.K.
http://www-users.york.ac.uk/~mijp1

Overview of lecture

- Motivation
- Types of MD
- N₂ example
- More advanced MD

Motivation

Atoms move!

- We may be interested in studying time dependent phenomena, such as molecular vibrations, phonons, diffusion, etc.
- We may be interested in studying temperature dependant phenomena, such as free energies, anharmonic effects, etc.

Ergodic Hypothesis

- One of the key principles behind the usefulness of MD for statistical mechanics studies
- Iff our MD trajectory is "good enough" then a time average over the trajectory is equivalent to an ensemble average – hence MD averages are useful.

Monte Carlo

- can do thermal averages
- hard to do time dependant things

Hybrid MD/MC

- bad MD as good MC
- generate configurations using poor/cheap/fast MD but then evaluate contribution to ensemble average using MC

Types of MD

Classical MD

- We use classical mechanics to move the atoms
 - Born-Oppenheimer approximation decouples nucleus and electrons
- But using forces and stresses derived from the electronic wavefunction
- No quantum fluctuations, tunneling, zero point motion, etc.

Quantum MD

- Can include ZPM etc using ab initio Path Integral MD
- Damped MD as a geometry optimizer
 - BFGS *ought* to be a lot better but not always see Probert, J. Comput. Phys. 191, 130 (2003)

Choice of Ensemble

NVE

- Micro-canonical ensemble
- Constant Number of atoms, Volume and Energy
- Corresponds to Newtonian mechanics
- Good for non-equilibrium situations, e.g. watching a bond vibrate or doing impact movies

NVT

- Canonical ensemble constant Temperature
- More physical as it allows energy exchange with a heat bath
- Good for simulating thermal equilibrium
- Choice of thermostating algorithms

Choice of Ensemble

NPH

- Constant pressure P and enthalpy H
- Choice of barostats to handle pressure:
- Andersen can allow cell to change size isotropically (liquids) whilst Parrinello-Rahman can allow changes in size and shape (solids)
- External pressure can be isotropic (hydrostatic) or anisotropic (shear stress etc).

NPT

- Most physically relevant as system is now connected to a piston and a heatbath.
- Again, choice of thermostats and barostats
- μVT constant chemical potential μ

- Integrate classical equations of motion
 - discretize time → time step
 - different integration algorithms, e.g. Velocity Verlet:

$$r(t+\delta t) = r(t) + v(t).\delta t + \frac{f(t)}{2m}.\delta t^2 + O(\delta t^3)$$

$$v(t+\delta t) = v(t) + \frac{f(t) + f(t+\delta t)}{2m}.\delta t + O(\delta t^2)$$

- trade-off time step vs. stability vs. accuracy
- need accurate forces (for ab initio, this means converged basis set and good k-point sampling)

Other Ensembles

- Other ensembles can be simulated by using appropriate equations of motion
 - Usually derived from an extended Lagrangian (e.g. Nosé-Hoover, Parrinello-Rahman)
 - Recent developments in Liouvillian formulation have been very successful in deriving new symplectic integration schemes
- Stochastic schemes (e.g. Langevin) need to be derived differently as non-Hamiltonian!
- Recent success in merging the two the Hoover-Langevin thermostat

CASTEP N₂ example

Naïve approach:

- put 2 N atoms in a 5 A box at (0.4,0.5,0.5) and (0.6,0.5,0.5)
- Use Gamma point for BZ sampling (it is an isolated molecule after all ②)
- Use cheap settings, e.g. "medium" Ecut.
- Run NVT dynamics at default T=273 K using Langevin thermostat with default "Langevin time" of 0.1 ps and default time step of 1.0 fs
- What do you see?

Simple N₂ Movie

Temperature ???

Constant of Motion ???

- Why is the temperature not constant if it is supposed to be NVT?
- The initial conditions were a long way from equilibrium. Doing a simple fixed-cell geometry optimisation relaxed > 2 eV.
- This excess PE is turned into KE by the MD hence the huge initial temperatures before the thermostat is able to control it.
- The 2 eV excess PE shows up in the change in "constant of motion"

- It depends on the ensemble
 - Essentially the closest thing to the "value of the Hamiltonian" which should be conserved:

```
NVE: E_{Ham} = E_{electrons} + KE_{ions}

NVT: E_{Ham} = E_{electrons} + KE_{ions} + PE_{NHC} + KE_{NHC}

NPH: E_{Ham} = E_{electrons} + KE_{ions} + p_{ext}V + KE_{cell}

NPT: E_{Ham} = E_{electrons} + KE_{ions} + p_{ext}V + KE_{cell} + PE_{NHC} + KE_{NHC}
```

- It certainly does not seem very constant ...
- May fluctuate on short times but no long-term drift!

Ignoring initial T transient

Ignoring initial T transient

- Better but still some wobble in T why?
- T is only strictly defined as a *macroscopic* quantity what you are seeing is the *instantaneous* KE of a 2-particle system!
- Hence it is the average T that is important and should be conserved: <T>=217± 140 K
- And that will have a stat. mech. finite size variation given by $\frac{\delta T}{T} \approx \frac{2}{2\sqrt{M}}$
- T*=273 ± 129 K

Taking control

```
Most set in the .param file, e.g.
  task=Molecular Dynamics
  md num iter=10000
  md delta t=1.0 fs
  md ensemble=NVE / NVT / NPH / NPT
  md temperature=300 K
  md thermostat=Langevin / Nose-Hoover
  md barostat=Andersen-Hoover /
   Parrinello-Rahman
should be obvious but what about things like
 md ion t? What do they do?
```

Nosé-Hoover keywords

- Nosé-Hoover chains are a standard deterministic way of thermostating system
 - Add an extra degree of freedom to the Lagrangian, to represent heat-bath with coupling depending on the instantaneous and target temperatures
 - But is not guaranteed to be ergodic
- One way to improve this is to add a thermostat to the thermostat etc ... resulting in a Nosé-Hoover chain
 - md_nhc_length = 5 sets the length of this chain
 - md_ion_t = 10 fs sets the characteristic time for the feedback – for most efficient thermostating you want to set this time to resonate with dominant period of your system

- Langevin dynamics are an alternative and stochastic way of thermostating system
 - Implements a heat bath via Fluctuation-Dissipation theorem
 - md_ion_t = 100 fs sets the characteristic time for the feedback - set this to be longer than the dominant period of your system
 - Typically 5*md_ion_t is sufficient to lose all trace of initial conditions and be in equilibrium
 - Guaranteed to be ergodic if run long enough

Hoover-Langevin thermostat

- Imagine a Nosé-Hoover variable connected to your physical system, and then have a Langevin heat-bath to thermostat that
- No need for any chains!
- Physical system is deterministic, and N-H variable is ergodic best of both worlds!
- md_thermostat = Hoover-Langevin
- md_ion_t works on the N-H variable so want it resonant with system
- MUCH LESS SENSITIVE than N-H to value

- What about the barostat? How is that controlled?
- In all MD schemes, the barostat is implemented by giving something a fictitious "mass"
 - Andersen-Hoover uses ½log(V/V₀) whilst Parrinello-Rahman uses the cell **h**-matrix
- In both cases, this "mass" is set by md_cell_t which sets the time scale for relaxations of the cell motion. Should be slow ...

Back to N₂

- 1) Do a proper convergence test for cutoff energy at fixed k-sampling → 400 eV
- 2) Check for finite size interactions

5x5x5 A, 0.01 charge

7x5x5 A, 0.001 charge isosurface

Now do geometry optimisation:

```
\delta E \sim 0.1 meV, final freq. est. = 2387.5 cm<sup>-1</sup> (this is automatic from BFGS analysis) \rightarrow \tau = 1/(100.\text{c.v}) \sim 15 fsec so \delta t = 1 fsec OK?
```

- Can change units of CASTEP input/output
 - e.g. energy_unit = kcal/mol
 - e.g. frequency_unit = THz, etc
- Now do NVE run best for testing quality of MD – using default T=273 K:

Doing N₂ "properly"

Doing N2 "properly"

- Problem is in the velocity initialisation:
 - assigning a temperature means a random velocity to each degree of freedom
 - this leads to motion in arbitrary directions
 - so molecule rotates
 - overlaps with small c

Solution is to use a 7x7x7 box or control the initial velocities

THE UNIVERSITY of York Default Nosé-Hoover in 7A3 box

More advanced MD

- If doing NVE or NPH then can set T=0 K
 - But not if doing NVT or NPT!
 - So any initial velocity comes from the initial strain w.r.t. equilibrium, or by user input
- Can set up any condition by editing the .cell file, e.g.

NB $\sqrt{3}$ *12.7 Ang/ps ~ speed of sound in silicon

Hence can simulate high velocity shock, non-equilibrium MD, etc

- Can set up arbitrary initial conditions and hence simulate non-equilibrium systems
 - E.g. temperature gradient to measure heat flux
 - E.g. atom hitting surface to measure sticking coefficient
 - E.g. shock wave supersonic impact and shock propagation useful tool for probing high Temperature and Pressure physics and useful to simulate as experiments can be hard to interpret and perform ...

NPT Statistical Mechanics

- •Phosphorus (II) iodide
- •soft molecular crystal with triclinic cell
- • $E_{\text{cut-off}} = 300 \text{ eV}$, 3x2x2 k-points
- •T=250 K, P=50 MPa
- •Highly flexible cell $b_T = 5.4 \pm 0.1$ GPa

- MD typically generates a LOT of data!
 - Interest in mean values + fluctuations + correlation functions + distribution functions, etc.
- Successive configurations are highly correlated so need to be careful with statistics
- Example CASTEP trajectory .md file:

```
1.19476569E+004
             -1.99707968E+001
                                   -1.99692125E+001
                                                          9.64993404E-004
                                                                            <-- E
               6.43328936E-04
                                                                            <-- T
              1.32280829E+001
                                    0.0000000E+000
                                                          0.0000000E+000
                                                                            <-- h
                                                          0.00000000E+000
              0.0000000E+000
                                    1.32280829E+001
                                                                           <-- h
              0.0000000E+000
                                    0.0000000E+000
                                                          1.32280829E+001
                                                                           <-- h
              4.83250673E+000
                                    3.95868000E+000
                                                         -3.95873877E+000
                                                                           <-- R
Ν
              4.61612393E+000
                                    5.48995066E+000
                                                         -5.48989189E+000
N
                                                                           <-- R
              1.15732344E-004
                                                         -1.10452023E-004
                                                                           <-- V
                                    1.10453835E-004
             -1.15732344E-004
                                                          1.10452023E-004
Ν
                                   -1.10453835E-004
                                                                           <-- V
             -1.83347496E-004
                                                         -1.53886170E-003
                                                                           <-- F
                                    1.53896599E-003
Ν
              1.83347496E-004
                                   -1.53896599E-003
                                                          1.53886170E-003
                                                                            <-- F
Ν
```

- Using the .md file as input you can easily write your own analysis codes
 - e.g. MDTEP designed as an example start
- MDTEP can calculate
 - radial distribution function, velocity autocorrelation function, mean-squared displacement, heat capacity, thermal expansion coefficient, bulk modulus, temperature and volume distributions
 - and generate .xmol and .axsf files for standard Linux visualisation programs

- The choice of time step should reflect the physics not the algorithm
 - e.g. smallest phonon period/10
 - effects the conservation and stability properties of system
 - Langevin: md_ion_t ~ 10*period
 - Nosé-Hoover: md_ion_t ~ period
 - NPH or NPT: md_cell_t ~ 100*period
 - equilibration time ~ 5*max(md_ion_t, md_cell_t)
 - BEWARE TRANSIENTS if sampling equilibrium properties
 - Can use fast equilibration schemes (eg Berendsen form of velocity rescaling) to save CPU time

- Can use to 'freeze' fast motions that are not of interest and so use larger time step
- Linear constraints, e.g. fix atom position
- Non-linear constraints using RATTLE can also fix *bond-length* $\sqrt{(r_x^1 r_x^2)^2 + \dots}$
 - e.g. H₂O can use 2-3x larger δt with 'rigid molecule' approach
 - Currently working on bond/torsion angle constraints for structure optimisation ...

- Can save time by only calculating expensive ab initio properties every md_sample_iter steps
- Useful as successive configurations very correlated and hence not so useful anyway!
 - E.g. Calculate pressure if calc_stress=true (useful for NVE and NVT ensembles), or
 - population analysis if popn_calculate=true
 - Or can customize code as required, e.g. to write out density to file for fancy movies, etc

- 4725 atoms (672 in flyer plate) for 2 ps
- Shock = 6 km/s ~ speed of sound in quartz

- MUST have good forces watch convergence!
- Beware Equilibration
 - sensitivity to initial conditions
 - depends on the quantity of interest
- Not all configurations are equal
 - sampling and correlation
 - statistical inefficiency
- Apply basic physics to the results
 - conservation laws, equipartition, etc

Summary

- MD is a useful general-purpose tool for computer experiments
 - Widely applicable
 - e.g. to study finite temperature or time dependant or non-equilibrium phenomena
 - Much more than shown here!
- CASTEP can do all the basic MD
 - Working on some more exotic features
 - See advanced course for PIMD ...

- "Understanding Molecular Simulation 2nd Ed."
 - D. Frenkel & B. Smit (2002). Very useful.
- "Molecular Dynamics Simulations"
 - J.M. Haile, (1992). Beginners guide.
- "Computer Simulation of Liquids 2nd Ed."
 - M.P Allen & D.J. Tildesley (2017). Updated!
- www.castep.org web site
 - Useful MD and geometry optimisation tutorials, plus FAQs, on-line keyword listing, MDTEP download, etc.