Exchange and Correlation – cause and effects

Matt Probert
Condensed Matter Dynamics Group
Department of Physics,
University of York, U.K.
http://www-users.york.ac.uk/~mijp1
Overview of lecture

- What is Exchange? And correlation?
- LDA and GGA
- Van der Waals bonding
- Beyond GGA
- CASTEP details
- Examples
The problem with DFT

- Difficulty comes from mapping the N-body QM problem onto Nx 1-body QM problem
 - Mapping interacting electrons onto quasi-p
- “DFT cannot do...” :
 - This statement is usually wrong
- Should instead say:
 - “DFT using the ??? XC-functional can be used to calculate ???, but that particular functional introduces an error of ??? because of ???”
In KS-DFT we put all the unknown physics into the XC functional.

Hence: \(E_{xc} = T - T_{KS} + E_{ee} - E_H \)

- \(T \) = exact many-body KE
- \(T_{KS} \) = Kohn-Sham KE of KS orbitals
- \(E_{ee} \) = exact electron-electron interaction
- \(E_H \) = Hartree electron-electron interaction
What is Exchange?
Electrons are Fermions and hence obey Pauli Exclusion Principle

- If exchange the coordinates of 2 identical particles then total wavefunction (space*spin) changes sign = antisymmetric

- This gives rise to the Exchange Energy:

\[E_X = -\int\int \psi_i(r_1)\psi_j(r_2) \frac{1}{r_{12}} \psi_i(r_2)\psi_j(r_1) dr_1 dr_2 \]
In DFT we want to eliminate wavefunctions

Can we derive a suitable approximation from something we can solve analytically?

Preferably using a density?

Homogenous Electron Gas (HEG)

Put N electrons into a volume V with a uniform positive background charge

No PE, just KE and exchange-correlation

Exchange energy density $\varepsilon_{xc}[n(r)] \sim n^{1/3}$
HEG results

- Analytic result for exchange in HEG

\[
E_{x}^{LDA}[n] = -\frac{3}{4} \left(\frac{3}{\pi}\right)^{1/3} \int n(r) \frac{4}{3} dr
\]

- Can then use this as an approximation for the exchange energy in any system of the same density – the Local Density Approximation (LDA)

- But not for correlation …
What is Correlation?
Correlation

- Much harder to define!
- Usually defined as difference between exact many-body QM and Hartree-Fock answer:

\[E_x = E_{tot}^{HF} - T^{HF} - E_{ee}^{HF} - E_{eN}^{HF} \]

- Cannot derive analytically even for HEG except in certain limits
- Use of QMC (Ceperly-Alder 1981) to derive values of \(E_{xc} \) for varying densities
 - Different authors then fit to produce LDA
Formally, we can write

$$E_{xc}[n] = \frac{1}{2} \iiint n(r) \frac{n_{xc}(r, r')}{|r - r'|} drdr'$$

But we do not know n_{xc}!

This is the Coulomb energy of an electron at r interacting with its XC hole at r'

The XC hole is the displaced charge around an electron – should integrate to 1 e⁻
- We know from the Pauli Exclusion Principle that
 \[\int n_{xc} (r, r') dr' = -1 \]

- This is known as the *sum rule*

- But we do not know the shape of the hole!
LDA and GGA
The simplest approximation, the LDA, assumes that the hole is spherical:

- DOES obey the sum rule
- Reasonably effective
- Good for many simple systems
- Tends to over-bind atoms – makes the bonds too short and strong, lattice parameters too small, etc.

\[
E_{xc}^{LDA} [n(r)] = \int n(r) \varepsilon_{xc}^{\text{hom}} [n(r)] dr
\]
Generalized Gradient Approximation

- Include value of density AND its derivative
- A *semi-local* approximation so still very quick to calculate
- Parameterized from QMC calculations of HEG + cosine perturbation
- Tends to under-bind – makes bonds too weak – but better for surfaces etc.

\[
E_{xc}^{GGA} [n(r)] = \int n(r) \varepsilon_{xc}^{GGA} [n(r), \nabla n(r)] dr
\]
How good is the GGA?

- Which GGA?
 - There are many! Different ways of parameterizing the same data
 - Not possible to obey all the known analytical limits with any given functional form
 - Discretion in choosing which rules to obey and which functional form to choose
 - NOT a silver bullet – does NOT improve all the things that LDA does not do well – and does some things worse!
Common GGAs

Although exact form of XC functional is not known, we DO know certain rules/limits:

- **Sum rule**: hole integrates to -1
- **Self-interaction correction**:
 - The Hartree energy is Coulomb interaction of classical charge and so contains interactions between electron and itself!
 - True XC functional should correct this.
- **Long-range decay**:
 - Should decay as r^{-1} at long distances
And it is non-analytic:

- There should be a discontinuous jump when add an infinitesimal charge to an integer number of electrons.
How well do the LDA, GGA and HF do?

- Why not use HF? VERY poor band gaps and vibrational properties, more expensive

<table>
<thead>
<tr>
<th>Property</th>
<th>LDA</th>
<th>GGA</th>
<th>HF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sum rule</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Self-interaction correction</td>
<td>N</td>
<td>N</td>
<td>Y*</td>
</tr>
<tr>
<td>r^{-1} long-range decay</td>
<td>N</td>
<td>N</td>
<td>Y*</td>
</tr>
<tr>
<td>Derivative discontinuity</td>
<td>N</td>
<td>N</td>
<td>Y</td>
</tr>
</tbody>
</table>

* Only for occupied orbitals
Lattice Parameters

Semiconductor lattice parameters (in Å)

<table>
<thead>
<tr>
<th>Material</th>
<th>LDA</th>
<th>PW91</th>
<th>PBE</th>
<th>RPBE</th>
<th>Expt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>3.53</td>
<td>3.57</td>
<td>3.54</td>
<td>3.54</td>
<td>3.57</td>
</tr>
<tr>
<td>Si</td>
<td>5.38</td>
<td>5.46</td>
<td>5.47</td>
<td>5.47</td>
<td>5.43</td>
</tr>
<tr>
<td>Ge</td>
<td>5.54</td>
<td>5.71</td>
<td>5.72</td>
<td>5.72</td>
<td>5.66</td>
</tr>
<tr>
<td>SiC</td>
<td>4.3</td>
<td>4.36</td>
<td>4.36</td>
<td>4.36</td>
<td>4.35</td>
</tr>
<tr>
<td>AlN</td>
<td>4.31</td>
<td>4.39</td>
<td>4.4</td>
<td>4.4</td>
<td>4.37</td>
</tr>
<tr>
<td>AlP</td>
<td>5.41</td>
<td>5.49</td>
<td>5.5</td>
<td>5.5</td>
<td>5.45</td>
</tr>
<tr>
<td>AlAs</td>
<td>5.6</td>
<td>5.69</td>
<td>5.71</td>
<td>5.71</td>
<td>5.66</td>
</tr>
<tr>
<td>GaN</td>
<td>4.46</td>
<td>4.55</td>
<td>4.55</td>
<td>4.55</td>
<td>4.5</td>
</tr>
<tr>
<td>GaP</td>
<td>5.38</td>
<td>5.49</td>
<td>5.5</td>
<td>5.5</td>
<td>5.45</td>
</tr>
<tr>
<td>GaAs</td>
<td>5.57</td>
<td>5.7</td>
<td>5.71</td>
<td>5.71</td>
<td>5.65</td>
</tr>
</tbody>
</table>
Bulk Modulus

Bulk modulus (in GPa)

<table>
<thead>
<tr>
<th></th>
<th>LDA</th>
<th>PW91</th>
<th>PBE</th>
<th>RPBE</th>
<th>Expt</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>457</td>
<td>425</td>
<td>426</td>
<td>425</td>
<td>442</td>
</tr>
<tr>
<td>Si</td>
<td>97</td>
<td>88</td>
<td>84</td>
<td>84</td>
<td>98.8</td>
</tr>
<tr>
<td>Ge</td>
<td>78</td>
<td>62</td>
<td>63</td>
<td>62</td>
<td>76.8</td>
</tr>
<tr>
<td>SiC</td>
<td>227</td>
<td>215</td>
<td>211</td>
<td>210</td>
<td>-</td>
</tr>
<tr>
<td>AlN</td>
<td>206</td>
<td>192</td>
<td>189</td>
<td>187</td>
<td>202</td>
</tr>
<tr>
<td>AlP</td>
<td>89</td>
<td>82</td>
<td>81</td>
<td>80</td>
<td>-</td>
</tr>
<tr>
<td>AlAs</td>
<td>75</td>
<td>71</td>
<td>69</td>
<td>69</td>
<td>-</td>
</tr>
<tr>
<td>GaN</td>
<td>199</td>
<td>173</td>
<td>171</td>
<td>170</td>
<td>190</td>
</tr>
<tr>
<td>GaP</td>
<td>89</td>
<td>77</td>
<td>76</td>
<td>75</td>
<td>88.7</td>
</tr>
<tr>
<td>GaAs</td>
<td>75</td>
<td>65</td>
<td>63</td>
<td>63</td>
<td>74.8</td>
</tr>
</tbody>
</table>
- Bulk Si: $\rho(\text{LDA}) - \rho(\text{GGA})$
General comments

- **LDA**
 - Nice covalent systems & simple metals

- **GGA:**
 - Molecules, surfaces, H-bonded materials
 - Highly varying densities (d and f states)
 - Some nasty metals
 - Most magnetic systems

- **Missing?**
 - Van der Waals bonded materials, localized electrons, strongly correlated materials …
Van der Waals bonding
VdW (or dispersion bonding) is a non-local effect

- A fluctuation in the electron density on atom 1 causes a temporary electric dipole
- This dipole causes an electric field which decays as r^{-3}
- E-field induces dipole on atom 2
- Dipole on atom 2 causes interaction with atom 1 as r^{-6}
- Long range, non-local, NOT in any local or semi-local XC functional
A special-purpose functional

- E.g. Dion functional – lacking theoretical foundation and not very good in practice

Semi-empirical dispersion correction (SEDC)

- All based on simple r^{-6} form with pair-wise interaction:

$$E_{vdW} = C_{ij} \frac{f_{damp}(r_{ij})}{r_{ij}^6}$$

- Different schemes have different forms for interaction strength C_{ij} and short-range damping
Beyond GGA
- LDA – only depends on $n(r)$
- GGA – depends on $n(r), \nabla n(r)$
- Meta-GGA – depends on $n(r), \nabla n(r), \nabla^2 n(r)$
- … could continue to higher derivatives BUT always semi-local and more expensive and diminishing returns

- Alternative – go non-local …
- XC hole in simple cosine potential

Accurate XC hole

LDA vs QMC?

Some pictures: XC hole for a simple cosine potential

LDA
XC hole in silicon

Change density of Si in the [111] plane.

The XC-hole associated with an electron at the interstitial site.
- Non-local functionals
 - Screened exchange, WDA etc

- Can go beyond DFT:
 - DFT+U
 - A way of treating very localized (e.g. f electrons) with a Hubbard U parameter
 - Hybrid functionals – mix HF and DFT
 - GW theory, RPA, etc.

- See next week for more details!
CASTEP details
CASTEP

- **LDA**: \texttt{xc_functional} = LDA
- **GGA**: \texttt{xc_functional} = PW91/ PBE/ RPBE/ WC/ PBEsol ...
 - All functionality supported by LDA and GGA
- **SEDC**: \texttt{sedc_scheme} = G06/ OBS/ JCHS/ TS ...
 - Not all elements supported and not all GGA
 - No dispersion corrected phonons (yet)
- **Non-local**: \texttt{xc_functional} = sX/ PBE/ PBE0/ B3LYP/ HSE03/ HSE06 ...
Examples
Silicon with LDA and sX
AFM FeO with PBE and LDA+U
AFM FeO with PBE0 and sX
Summary
Summary

- DFT is formally exact but in practice has one key approximation – XC functional
 - LDA is quick & simple, tends to over-bind
 - GGA is almost as fast, tends to under-bind
- Both leave out vdW – a non-local interaction
 - SEDC is quick & simple fix for vdW BUT is empirical and not universal
- Non-local XC is expensive
 - See next week for sX and hybrids etc
References
