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Overview of lecture

n What is Exchange? And correlation?
n LDA and GGA
n Van der Waals bonding
n Beyond GGA
n CASTEP details
n Examples 



The problem with DFT

n Difficulty comes from mapping the N-body 
QM problem onto Nx 1-body QM problem
n Mapping interacting electrons onto quasi-p

n “DFT cannot do...” : 
n This statement is usually wrong

n Should instead say: 
n “DFT using the ??? XC-functional can be used 

to calculate ???, but that particular functional 
introduces an error of ??? because of ??? 



XC introduction

n In KS-DFT we put all the unknown physics 
into the XC functional.

n Hence:

n T   = exact many-body KE 
n TKS= Kohn-Sham KE of KS orbitals
n Eee= exact electron-electron interaction
n EH = Hartree electron-electron interaction

Exc =T −TKS +Eee −EH



What is Exchange?



Exchange
n Electrons are Fermions and hence obey 

Pauli Exclusion Principle
n If exchange the coordinates of 2 identical 

particles then total wavefunction (space*spin) 
changes sign = antisymmetric

n This gives rise to the Exchange Energy:
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Alternative XC definition

• Exchange energy is defined as 
EX = − ψ i r1( )ψ j∫∫ r2( )

1
r12

ψ i r2( )ψ j r1( )dr1dr2
• Hartree-Fock energy is

EHF = KEHF + EEHF + ENHF + EX

Correlation energy is defined as the difference between the 
exact energy and the Hartree-Fock energy



Exchange in DFT

n In DFT we want to eliminate wavefunctions
n Can we derive a suitable approximation 

from something we can solve analytically?
n Preferably using a density?

n Homogenous Electron Gas (HEG)
n Put N electrons into a volume V with a 

uniform positive background charge
n No PE, just KE and exchange-correlation
n Exchange energy density exc[n](r) ~ n1/3



HEG results

n Analytic result for exchange in HEG

n Can then use this as an approximation for 
the exchange energy in any system of the 
same density – the Local Density 
Approximation (LDA)

n But not for correlation …
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What is Correlation?



Correlation
n Much harder to define!
n Usually defined as difference between exact 

many-body QM and Hartree-Fock answer:

n Cannot derive analytically even for HEG 
except in certain limits

n Use of QMC (Ceperly-Alder 1981) to 
derive values of Exc for varying densities 
n Different authors then fit to produce LDA

Ex = E
HF
tot −T

HF−EHF
ee −E

HF
eN



XC in DFT

n Formally, we can write

n But we do not know nxc!
n This is the Coulomb energy of an electron 

at r interacting with its XC hole at r’
n The XC hole is the displaced charge around 

an electron – should integrate to 1 e-
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Introduction
Exact XC interaction is unknown

∫∫ −
= '

|'|
)',(

)(
2
1

][ drdr
rr
rrn

rnnE xc
xc

This would be excellent if only we knew what nxc was!

This relation defines the XC energy.

It is simply the Coulomb interaction between an electron an r and the value 
of its XC hole nxc(r,r’) at r’.

Within DFT we can write the exact XC interaction as



XC hole

n We know from the Pauli 
Exclusion Principle that

n This is known as the sum rule
n But we do not know the shape 

of the hole! 
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The XC hole
• From the Pauli 

exclusion principle we 
have for a given r

∫ −= 1')',( drrrnxc

Which is known as the sum 
rule.
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The XC hole
• From the Pauli 

exclusion principle we 
have for a given r

∫ −= 1')',( drrrnxc

Which is known as the sum 
rule.



LDA and GGA



Shape of XC hole

n The simplest approximation, the LDA, 
assumes that the hole is spherical
n DOES obey the sum rule
n Reasonably effective
n Good for many simple systems
n Tends to over-bind atoms – makes the 

bonds too short and strong, lattice 
parameters too small, etc.
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Approximations to Exc

∫= drrnrnrnE xc
LDA
xc )]([)()]([ homε

∫ ∇= drrnrnrnrnE GGA
xc

GGA
xc )](),([)()]([ ε

As we have already seen a simple, but effective 
approximation to the exchange-correlation interaction is

The generalised gradient approximation contains the 
next term in a derivative expansion of the charge 
density:



Improving the LDA

n Generalized Gradient Approximation 
n Include value of density AND its derivative
n A semi-local approximation so still very quick 

to calculate
n Parameterized from QMC calculations of HEG 

+ cosine perturbation
n Tends to under-bind – makes bonds too weak 

– but better for surfaces etc.
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Approximations to Exc

∫= drrnrnrnE xc
LDA
xc )]([)()]([ homε

∫ ∇= drrnrnrnrnE GGA
xc

GGA
xc )](),([)()]([ ε

As we have already seen a simple, but effective 
approximation to the exchange-correlation interaction is

The generalised gradient approximation contains the 
next term in a derivative expansion of the charge 
density:



How good is the GGA?

n Which GGA?
n There are many! Different ways of 

parameterizing the same data
n Not possible to obey all the known analytical 

limits with any given functional form
n Discretion in choosing which rules to obey 

and which functional form to choose
n NOT a silver bullet – does NOT improve all 

the things that LDA does not do well – and 
does some things worse!



Common GGAs

n PW91: J P Perdew & Y Wang, “Accurate and 
simple analytic representation of the electron-gas correlation 
energy”, Phys. Rev. B 45 13244 (1992). 

n PBE: JP Perdew, K Burke & M Ernzerhof, 
“Generalised gradient approximation made simple”, Phys. 
Rev. Lett. 77 3865 (1996). 

n RPBE: B Hammer, LB Hansen and JK 
Norskov, “Improved adsorption energies within DFT using 
revised PBE functionals”, Phys. Rev. B 59 7413 (1999). 

n WC: Z Wu and RE Cohen, “More accurate gradient 
approximation for solids”, Phys. Rev. B 73, 235116 (2006) 



Properties of true XC functional

n Although exact form of XC functional is not 
known, we DO know certain rules/limits:
n Sum rule: hole integrates to -1
n Self-interaction correction: 

n The Hartree energy is Coulomb interaction 
of classical charge and so contains 
interactions between electron and itself! 

n True XC functional should correct this.
n Long-range decay:

n Should decay as r -1 at long distances



More properties

n And it is non-analytic: 
n There should be a discontinuous jump when 

add an infinitesimal charge to an integer 
number of electrons

∂

Properties of XC functional

Castep Workshop: Frankfurt 2012 

•  *Only for occupied orbitals. 

Property LDA GG
A 

HF 

Sum rule for XC hole. ✔ ✔ ✔ 

Self-interaction correction. ✗ ✗ ✔* 

Derivative discontinuity. ✗ ✗ ✔ 

Correct 1/r potential decay. ✗ ✗ ✔* 

Derivative discontinuity. ✗ ✗ ✔ 

  XC potential should jump 
discontinuously when infinitesimal 
amount of charge added to 
system with integer electrons.  



Comparison

n How well do the LDA, GGA and HF do?

* Only for occupied orbitals
n Why not use HF? VERY poor band gaps 

and vibrational properties, more expensive

Property LDA GGA HF
Sum rule Y Y Y
Self-interaction correction N N Y*
r -1 long-range decay N N Y*
Derivative discontinuity N N Y



Lattice Parameters

n Semiconductor lattice parameters (in Å)
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Lattice Parameters

 LDA  PW91 PBE RPBE  Expt.
C   3.53 3.57 3.54 3.54 3.57
Si  5.38 5.46 5.47 5.47 5.43
Ge  5.54 5.71 5.72 5.72 5.66
SiC 4.3 4.36 4.36 4.36 4.35
AlN 4.31 4.39 4.4 4.4 4.37
AlP 5.41 5.49 5.5 5.5 5.45
AlAs 5.6 5.69 5.71 5.71 5.66
GaN 4.46 4.55 4.55 4.55 4.5
GaP 5.38 5.49 5.5 5.5 5.45
GaAs 5.57 5.7 5.71 5.71 5.65

Lattice parameters of various semiconducting materials (in 
Angstroms) for the GGA functionals considered here.



Bulk Modulus

n Bulk modulus (in GPa)
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Bulk Modulus

 LDA  PW91 PBE RPBE  Expt
C   457 425 426 425 442
Si  97 88 84 84 98.8
Ge  78 62 63 62 76.8
SiC 227 215 211 210  - 
AlN 206 192 189 187 202
AlP 89 82 81 80  -
AlAs 75 71 69 69  -
GaN 199 173 171 170 190
GaP 89 77 76 75 88.7
GaAs 75 65 63 63 74.8

Bulk modulus of various semiconducting materials (in GPA) 
for the GGA functionals considered here.



Charge Difference

n Bulk Si: r(LDA)-r(GGA)
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Charge Differences (LDA-PW91)



General comments

n LDA
n Nice covalent systems & simple metals 

n GGA:
n Molecules, surfaces, H-bonded materials
n Highly varying densities (d and f states)
n Some nasty metals
n Most magnetic systems 

n Missing?
n Van der Waals bonded materials, localized 

electrons, strongly correlated materials …



Van der Waals bonding



VdW

n VdW (or dispersion bonding) is a non-local 
effect
n A fluctuation in the electron density on atom 

1 causes a temporary electric dipole
n This dipole causes an electric field which 

decays as r -3

n E-field induces dipole on atom 2
n Dipole on atom 2 causes interaction with 

atom 1 as r -6 
n Long range, non-local, NOT in any local or 

semi-local XC functional



VdW in practice

n A special-purpose functional
n E.g. Dion functional – lacking theoretical 

foundation and not very good in practice
n Semi-empirical dispersion correction (SEDC)

n All based on simple r -6 form with pair-wise 
interaction:

n Different schemes have different forms for 
interaction strength Cij and short-range damping
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Beyond GGA



Jacob’s Ladder

n LDA – only depends on 
n GGA – depends on 
n Meta-GGA – depends on
n … could continue to higher derivatives BUT 

always semi-local and more expensive and 
diminishing returns

n Alternative – go non-local …
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LDA vs QMC?

n XC hole in simple cosine potential
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Some pictures: XC hole for a simple cosine potential

Accurate XC hole

LDA



LDA vs QMC?

n XC hole in silicon
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Exchange-correlation holes in silicon:



More?

n Non-local functionals
n Screened exchange, WDA etc

n Can go beyond DFT:
n DFT+U 

n A way of treating very localized (e.g. f 
electrons) with a Hubbard U parameter

n Hybrid functionals – mix HF and DFT
n GW theory, RPA, etc.

n See advanced course for more details!



CASTEP details



CASTEP

n LDA:  xc_functional = LDA
n GGA: xc_functional = PW91/ PBE/ 
RPBE/ WC/ PBEsol …
n All functionality supported by LDA and GGA

n SEDC: sedc_scheme = G06/ OBS/ 
JCHS/ TS/ MBD …
n Not all elements supported and not all GGA

n MetaGGA: xc_functional = RSCAN …
n Non-local: xc_functional = sX/ 
PBE0/ B3LYP/ HSE03/ HSE06 …



Examples



Silicon with LDA and sX

∂

Castep Workshop: Frankfurt 2012 

Why bother with this expense? 



AFM FeO with PBE and LDA+U

∂

Example of non-local functionals: 
Antiferromagnetic FeO

Castep Workshop: Frankfurt 2012 



AFM FeO with PBE0 and sX

∂

Example of non-local functionals: 
Antiferromagnetic FeO

Castep Workshop: Frankfurt 2012 



Summary



Summary
n DFT is formally exact but in practice has one 

key approximation – XC functional
n LDA is quick & simple, tends to over-bind
n GGA is almost as fast, tends to under-bind

n Both leave out vdW – a non-local interaction
n SEDC is quick & simple fix for vdW BUT is 

empirical and not universal
n Non-local XC is expensive

n See advanced course for sX and hybrids etc
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