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Overview 

n  The Kohn-Sham equations 

n  Naïve approach – exact diagonalization 

n  Smart approach – iterative solver 
n  Car-Parrinello vs Conjugate Gradients 

n  Summary 



The Kohn-Sham equations 



Kohn-Sham Equations 

n  Rewrite the many-body Schrödinger equation 
for N electrons into N 1-particle equations: 

 
n  And occupy each band b with 2 electrons 
n  This looks like a set of eigenvalue equations … 
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Density Functional Theory

Solve N non-interacting Schrödinger equations
(the Kohn-Sham equations):

⇢

� ~2

2m
r2 + V [⇢] (r) + Vxc [⇢] (r)

�

 b (r) = ✏b b (r)

⇢(r) =
N
X

j=1

| b(r)|2

V [⇢] and Vxc [⇢] are density functionals. Unfortunately we
don’t know Vxc [⇢]! Fortunately even crude approximations
tend to give reasonable answers.



Periodicity and Basis Sets 

n  How can we represent a wavefunction in a 
computer? 
n  Real-space grid will require very dense 

mesh to get required resolution 
n  Alternatively could write it in terms of 

coefficients of known basis functions … 
n  Obvious basis set for periodic system is 3D 

sine and cosine functions -> Fourier series 
and so can combine with Bloch’s theorem: 



Plane waves and Fourier Series 

n  3D Fourier basis (also known as plane waves): 

n  where cGk are unknown complex coefficients 
n  The sum is over all wavevectors G which fit the 

unit cell and k comes from Bloch’s theorem 
n  Hence       is a vector of coefficients cGk  
n  And can truncate sum at a finite Gmax as    
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Plane-waves

Since  k (r) is periodic, we express it as a 3D Fourier series

 k (r) =
X

G

cGkei(G+k).r

where cGk are complex Fourier coefficients, and the sum is
over all wavevectors with the right periodicity.

Each  k is now a vector of coefficients cGk .
There are an infinite number of allowed G
Fortunately as |G| ! 1, |cGk | ! 0
) can truncate the Fourier expansion safely
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Plane-waves
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X

G

cGkei(G+k).r

where cGk are complex Fourier coefficients, and the sum is
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There are an infinite number of allowed G
Fortunately as |G| ! 1, |cGk | ! 0
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Eigenvalue Equation 

n  The K-S equations can be written in simple 
form using the Hamiltonian operator: 

n  Hence the set of K-S equations can be 
rewritten as an eigenvalue problem: 

n  Where the Hamiltonian         is an Hermitian 
matrix of size NGxNG and         is a vector of 
NG Fourier coefficients 
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An Eigenvalue Problem

⇢

� ~2

2m
r2 + V [⇢] (r)

�

 bk (r) = ✏bk bk (r)

 bk is a vector of NG Fourier coefficients
The Hamiltonian is a NG ⇥ NG mixed type (1,1) tensor
�! just an eigenvalue problem!

H[⇢] bk = ✏bk bk
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An Eigenvalue Problem

⇢

� ~2

2m
r2 + V [⇢] (r)

�
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An Eigenvalue Problem

Now we just need to apply our Hamiltonian efficiently. Recall

Ĥ = � ~2

2m
r2 + V [⇢] (r)

Kinetic energy: r2 bk (G) = �|G + k|2 bk (G)
Trivial to apply in reciprocal-space
Potential energy: V [⇢] (r) bk (r)
Trivial to apply in real-space

Need Fourier transforms!



Exact Diagonalization 



Exact Diagonalization 

n  So we want to solve 

n  to find the eigenenergies       and 
eigenfunctions which we represent in terms 
of the coefficients cGk 

n  For a simple matrix problem Hx=λx we can 
solve by diagonalizing H 
n  BUT unlike simple problems we do not know 

the matrix elements of H before we start! 
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An Eigenvalue Problem
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⇢
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�
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The trouble with H 

n  Note that H depends on V 
n  And V is a functional V[ρ] 
n  And ρ depends on ψ
n  And we are trying to diagonalize H to find ψ! 

n  Hence we must solve iteratively: 
n  Guess an initial ψ -> ρ -> V[ρ] -> H 
n  Solve Hψ=εψ to get new approximate ψ
n  Repeat to convergence … 



Cost of Exact Diagonalization 

n  Given the above, we can make an NGxNG 
matrix H and diagonalize it 
n  Standard linear algebra packages can do this 

in O(NG
3) operations and O(NG

2) storage 
n  And must repeat for each k-point k 
n  And iterate to self-consistency 

n  How big is NG? 
n  Consider a 10Å3 box and cut-off energy of 

500 eV then NG ~ 50600 
n  Estimate time ~12 hrs/iteration at 3 GFLOPs  



Trouble 

n  Exact diagonalization is VERY expensive 
n  And an NGxNG matrix has NG eigenvalues 
n  But typically only want the lowest few 

eigenvalues ~ Nelectrons 

n  And takes a lot of computer power to get 
machine precision in all eigenvalues which 
have to do for every iteration even when far 
from self-consistency 

n  State of the art up until 1985 
n   Limited DFT to a max of ~10 electrons! 



Iterative Diagonalization 
- indirect approach 



Revolutionary new approach 

n  Car and Parrinello (1985) 
n  Inspired by extended Lagrangian methods 

in Molecular Dynamics 
n  Introduced fictitious ‘mass’ and ‘kinetic 

energy’ for each cGk 

Do MD with damping in the space of 
cGk so as system ‘cools’ it converges to 
ground state value of cGk and hence 
electron density etc. 

 



Car-Parrinello approach 

n  Major algorithmic break through! 
n  Cost ~O(NG

2Nb ) to apply H to all bands 
n  And explicit orthogonalization step costs 

~O(NGNb
2)  

n  BUT Nb<<NG … 
n  And once got to ground state can combine 

with conventional MD of ions to get ab initio 
MD for the first time 

n  Still requires ~O(NG
2) storage 



Car-Parrinello Drawbacks 

n  But to ensure adiabatic separation of 
electrons and ions need mass separation 
n  Choose very small ‘mass’ for cGk 

n  Hence need very small time step to 
integrate the equations of motion 
n  Hence not actually that much faster than 

exact diagonalization in ‘time to science’ 
n  And cannot handle metals due to adiabatic 

issues  



Energy Minimization 

n  One view of the C-P approach was that it 
could be seen as indirect energy minimization 
n  But simulated annealing is VERY inefficient – 

better for global than local optimization 
n  So why not use a more efficient direct function 

minimization approach? 
n  Conjugate-gradients introduced by Teter, 

Payne & Allan (1989) along with an efficient 
pre-conditioner 

n  Objective: energy eigenvalues  



Iterative Diagonalization 
- direct approach 



Direct minimization basics 

n  The groundstate energy E0 is the lowest 
possible energy of the system 

n  Any wavefunction has energy E ≥ E0 so 
n  Guess a trial wavefunction ψ  
n  Compute 
n  Tweak cG to lower E 
n  When we cannot lower E any more then ψ is 

the groundstate!  
n  Variational principle in action 
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Iterative Diagonalisation

The groundstate energy E0 is the lowest possible
energy
Any wavefunction has energy E � E0
�! guess a wavefunction  (cG)
�! compute E =  †H 
�! tweak cG to lower E
When we can’t lower E any more,
 is the groundstate!



Iterative Diagonalization 

n  Efficient minimization methods need both 
objective function and its derivative 

n  Functional calculus time: 

n  And so gradient vanishes at minimum … 
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Iterative Diagonalisation

Objective function: energy eigenvalue ✏bk

Use iterative methods, e.g. steepest descents, so we
require the gradient of the objective function.

Time for a little functional calculus:

✏bk =
 †

bk H bk

 †
bk bk

) �✏bk

� †
bk

=

⇣

 †
bk bk

⌘

H bk �
⇣

 †
bk H bk

⌘

 bk
⇣

 †
bk bk

⌘2

= H bk � ✏bk bk

where on the last line we’ve assumed  bk is normalised.



Steepest Descents 

n  Start with     and compute 
n  Compute the gradient 

n  This is the change to cG that increases 
n  We want to decrease     so use negative 

n  Guess new eigenstate 
  

n  Vary λ until found min     in this direction 
n  This is called the line minimization step 

n  Update, recompute gradient, repeat …  
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Steepest Descent Diagonalisation

Starting with  j , compute ✏j
Compute the gradient �✏j

� †
j

This is the change to cG that increases ✏j quickest

We want to decrease ✏j , so use � �✏j

� †
j
.

Make a new guess eigenstate,  new
j =  j � �

�✏j

� †
j

Vary � until we’ve found the lowest ✏j in this direction.
This procedure is often called a line search.

There are better methods than steepest descent, e.g.
conjugate gradients.
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Multiple eigenstates 

n  If apply this procedure then will quickly find 
lowest eigenstate  

n  Repeating it for      will give same answer!  
n  The solution is to explicitly orthogonalize so  

n  So need good matrix algebra package/code 
for multiplication, orthogonalization …. 
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Multiple Eigenstates

Can find lowest eigenstate  1

What about next lowest  2?

If we just repeat method, we’ll find lowest again!
Need to explicitly orthogonalise so  †

2 1 = 0
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Efficient application of H 

n  Remember: 

n  So can split into two terms: 
n  Kinetic energy – trivial to apply in reciprocal 

space: 
n  Potential energy – trivial to apply in real 

space: 
n  Hence use Fast Fourier Transforms to 

switch spaces … 
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An Eigenvalue Problem

Now we just need to apply our Hamiltonian efficiently. Recall

Ĥ = � ~2

2m
r2 + V [⇢] (r)

Kinetic energy: r2 bk (G) = �|G + k|2 bk (G)
Trivial to apply in reciprocal-space
Potential energy: V [⇢] (r) bk (r)
Trivial to apply in real-space

Need Fourier transforms!
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Applying the Hamiltonian 
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Applying the Hamiltonian



Finding the Groundstate 
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Finding the Groundstate



Conjugate Gradients 

n  Steepest descents works – robust but slow 
n  Conjugate gradients is more efficient 
n  Both schemes have similar advantages: 

n  Never need to store H explicitly 
n Hence storage ~O(NG ) 

n  Smart use of real/reciprocal space means 
cost of applying H ~O(NGNB ) 

n  Orthogonalization of bands ~O(NB
3) 

n  Cost of FFT ~O(NGNB lnNG ) 



SD vs CG 

n  More details on SD 
and CG tomorrow … 

n  CG makes better 
choice of search 
direction 

n  Pre-conditioned CG 
better still 

n  CASTEP uses p-CG 
and more recent 
advances … 
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Minimization in action 



Direct Minimization Advantages 

n  Direct minimization does not need adiabatic 
separation of electrons and ions 
n  Hence handles metallic states easily 

n  Once got ground state can use Hellman-
Feynman theorem to get forces and hence 
do Born-Oppenheimer MD 
n  With a much bigger time step than C-P 
n  Traditionally had worse energy conservation 

than C-P but no longer true with recent 
developments such as XL-BOMD 



Summary 



Summary 

n  DFT reduces QM to a matrix eigenvalue 
problem 
n  Where number of useful eigenstates is 

SMALL compared to size of matrix 
n  Hence iterative diagonalization is best 
n  No need to converge each band robustly 

until near to ground state 
n  Need efficient implementations of matrix 

multiplication, orthogonalization and FFTs 
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