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s The Kohn-Sham equations

m Nalve approach — exact diagonalization

s Smart approach — iterative solver
m Car-Parrinello vs Conjugate Gradients

= Summary
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s Rewrite the many-body Schrodinger equation
for N electrons into N 1-particle equations:

2m

h2
{372+ VIA W) + Vie o ()| 46 (1) = cov (1)

N
p(r) = |yp(r))?
=1

s And occupy each band b with 2 electrons
m This looks like a set of eigenvalue equations ...
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s How can we represent a wavefunction in a
computer?

m Real-space grid will require very dense
mesh to get required resolution

m Alternatively could write it in terms of
coefficients of known basis functions ...

m Obvious basis set for periodic system is 3D
sine and cosine functions -> Fourier series
and so can combine with Bloch’s theorem:



THE UNIVERSITY of /071K Plane waves and FOurler Serles

m 3D Fourier basis (also known as plane waves):
Pr(r) = ) care/GTT
G

m Where cg, are unknown complex coefficients

m [he sum is over all wavevectors G which fit the
unit cell and k comes from Bloch’s theorem

m Hence ), Is a vector of coefficients cg,

m And can truncate sum at a finite Gmax as
G| = oo, |Cgk| = O
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m The K-S equations can be written in simple
form using the Hamiltonian operator:

N K2 5
— V
H = —5_VE+VIpl(r)

s Hence the set of K-S equations can be
rewritten as an eigenvalue problem:

H[p]vYpk = €pktVpk

m \Where the Hamiltonian H|[p] is an Hermitian
matrix of size NoxN; and Yok is a vector of
N Fourier coefficients
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m SO we want to solve

H[p|vpk = €pktpk

= to find the eigenenergies €bk and Vpk ()
eigenfunctions which we represent in terms
of the coefficients cg,

m For a simple matrix problem Hx=Ax we can
solve by diagonalizing H

m BUT unlike simple problems we do not know
the matrix elements of H before we start!
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= Note that H depends on V
m And V is a functional V|[p]
= And p depends on vy
m And we are trying to diagonalize H to find !

s Hence we must solve iteratively:
m Guess an initial y ->p -> V[p] -> H
m Solve Hy=¢ey to get new approximate vy
= Repeat to convergence ...
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m Given the above, we can make an NzxN
matrix H and diagonalize it

m Standard linear algebra packages can do this
in O(N;3) operations and O(N?) storage

s And must repeat for each k-point k
m And iterate to self-consistency
m How big is N7

= Consider a 10A3 box and cut-off energy of
500 eV then N;~ 50600

m Estimate time ~12 hrs/iteration at 3 GFLOPs
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m Exact diagonalization is VERY expensive
m And an NzxNg; matrix has N eigenvalues

m But typically only want the lowest few
eigenvalues ~ N

electrons

m And takes a lot of computer power to get
machine precision in all eigenvalues which
have to do for every iteration even when far
from self-consistency

m State of the art up until 1985
m Limited DFT to a max of ~10 electrons!
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Iterative Diagonalization
- iIndirect approach
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m Car and Parrinello (1985)

m Inspired by extended Lagrangian methods
iIn Molecular Dynamics

m Introduced fictitious ‘mass’ and ‘kinetic
energy’ for each cg,

E({c})

Do MD with damping in the space of
Csy SO as system ‘cools’ it converges to
ground state value of ¢z, and hence
electron density etc.
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s Major algorithmic break through!

m Cost ~O(Ns°N, ) to apply H to all bands

m And explicit orthogonalization step costs
~O(NGNy?)

a BUT N,<<N, ...

= And once got to ground state can combine
with conventional MD of ions to get ab initio
MD for the first time

m Still requires ~O(N;?) storage
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m But to ensure adiabatic separation of
electrons and ions need mass separation

m Choose very small ‘mass’ for cg,

s Hence need very small time step to
integrate the equations of motion

= Hence not actually that much faster than
exact diagonalization in ‘time to science’

m And cannot handle metals due to adiabatic
ISSues
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s One view of the C-P approach was that it
could be seen as indirect energy minimization

» But simulated annealing is VERY inefficient —
better for global than local optimization

m S0 why not use a more efficient direct function
minimization approach?

m Conjugate-gradients introduced by Teter,
Payne & Allan (1989) along with an efficient
pre-conditioner

m Objective: energy eigenvalues
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Iterative Diagonalization
- direct approach
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m [he groundstate energy E, is the lowest
possible energy of the system

= Any wavefunction has energy E 2 E, so
m Guess a trial wavefunction vy
a Compute E = YT THy
m Tweak c; to lower E

x When we cannot lower E any more then vy is
the groundstate!

m Variational principle in action
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m Efficient minimization methods need both
objective function and its derivative

m Functional calculus time:

P
ebk - 1.
wbkwbk
~ Sepk (?ﬁzkwbk) Hibpk — (%kHwbk) Yok
t 2
OV (Vheten

= Hupk — €pk¥pk

m And so gradient vanishes at minimum ...
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m Start with ¢); and compute €;

O€;

i

5,

m This is the change to c; that increases ¢

s Compute the gradient

m \We want to decrease €; so use negative
: J€;
= Guess new eigenstate /™" = 9); — Aﬁ
j
m Vary A until found min €; in this direction
m This is called the line minimization step

s Update, recompute gradient, repeat ...
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m If apply this procedure then will quickly find
lowest eigenstate 11

m Repeating it for ¥ will give same answer!
m [he solution is to explicitly orthogonalize so

w% =0

s S0 need good matrix algebra package/code
for multiplication, orthogonalization ....
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N\

Ho= — 924+ V[ (1

m SO can split into two terms:

s Remember: 52

m Kinetic energy — trivial to apply in reciprocal
space: VZpk(G) = —|G + K|*¢p(G)

m Potential energy — trivial to apply in real
space: V' [p] (r)¢p«(r)

m Hence use Fast Fourier Transforms to
switch spaces ...
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FFT

Y l
[ VP=V(r)¥(r) } E&Wh{!%(}?\y{cﬂ
FFT
—»{ HY(G)=-%V¥(G )+ V¥(G)
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Guess initial
wavefunction
Compute Compute
density Hamiltonian
t YES l
Has energy Improve
changed much? wavefunction
Found

NO
ground state
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m Steepest descents works — robust but slow
m Conjugate gradients is more efficient

m Both schemes have similar advantages:
m Never need to store H explicitly
m Hence storage ~O(N )

s Smart use of real/reciprocal space means
cost of applying H ~O(N;Ng)

= Orthogonalization of bands ~O(Ng3)
m Cost of FFT ~O(N;NgInNg)
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STEEPEST DESCENTS

m More details on SD
and CG tomorrow ...

m CG makes better
choice of search
direction

= Pre-conditioned CG - ,
better still CONJUGATE GRADIENT

m CASTEP uses p-CG
and more recent )
advances ... |
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O Na'
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m Direct minimization does not need adiabatic
separation of electrons and ions

m Hence handles metallic states easily

s Once got ground state can use Hellman-
Feynman theorem to get forces and hence
do Born-Oppenheimer MD

s With a much bigger time step than C-P

s Traditionally had worse energy conservation
than C-P but no longer true with recent
developments such as XL-BOMD
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s DFT reduces QM to a matrix eigenvalue
problem

m \Where number of useful eigenstates is
SMALL compared to size of matrix

m Hence iterative diagonalization is best

= No need to converge each band robustly
until near to ground state

s Need efficient implementations of matrix
multiplication, orthogonalization and FFTs
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