THE UNIVERSITY of York

Parallelization in CASTEP

Matt Probert *August-Wilhelm Scheer Visiting Prof TUM 2015* Condensed Matter Dynamics Group Department of Physics, University of York, U.K. http://www-users.york.ac.uk/~mijp1

Bottlenecks

- How to parallelize a plane-wave DFT code
 K-points, G-vectors and bands
- Parallel efficiency

Summary

- Do you know where is the code spending its time?
- Do you know what are the key data structures / algorithms?
- Have you got good serial performance?
- Are you limited by run time and/or available memory etc?
- Only if answer is 'yes' to all these questions is it worth going further ...

The Bottlenecks

- We saw in last lecture that the key algorithms in CASTEP are:
 - Applying H and with smart use of real/ reciprocal space cost ~O(N_GN_B)
 - Cost of FFT ~ $O(N_G N_B \ln N_G)$
 - Orthogonalization of bands $\sim O(N_B^3)$

Where

- Number of plane waves = N_G
- Number of bands = N_B
- And $N_G >> N_B$ and in general $N_G \alpha N_B$

- The above simplification misses some important details
- Remember what we are trying to do solve the K-S equations in periodic system, i.e.

$$\hat{H}[
ho]\psi_{b}=E_{b}\psi_{b}$$

$$\hat{H}[\rho] = -\frac{\hbar^2}{2m}\nabla^2 + \hat{V}_{HXC}[\rho] + \hat{V}_{ext}.$$

The potential must be periodic:

$$V(\mathbf{r} + \mathbf{L}) = V(\mathbf{r})$$

So the wavefunction is 'quasi-periodic':

$$\psi_k(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}}u_k(\mathbf{r})$$

• where $U_k(\mathbf{r} + \mathbf{L}) = U_k(\mathbf{r})$ is periodic and $e^{i\mathbf{k}\cdot\mathbf{r}}$ is an arbitrary phase factor.

k is also a wave-vector and represents a point in the Brillouin Zone

Since U_{bk}(r) is periodic we can express it as a Fourier Series too:

$$U_{bk}(\mathbf{r}) = \sum_{G} c_{Gbk} e^{i\mathbf{G}\cdot\mathbf{r}}$$

where c_{Gbk} are complex coefficients
 Hence we have

$$\psi_{bk}(\mathbf{r}) = \sum_{G} c_{Gbk} e^{i(\mathbf{G}+\mathbf{k}).\mathbf{r}}$$

- What is the value of **k**?
 - Need to cover all values within the Brillouin Zone
 the reciprocal space dual of the unit cell
 - Need to integrate over all k to calculate density
 - But bands vary slowly so can replace integral by sampling:

$$ho(\mathbf{r}) = \sum_{b} \int |\psi_{bk}(\mathbf{r})|^2 d^3 \mathbf{k}$$
 $pprox \sum_{bk} |\psi_{bk}(\mathbf{r})|^2$

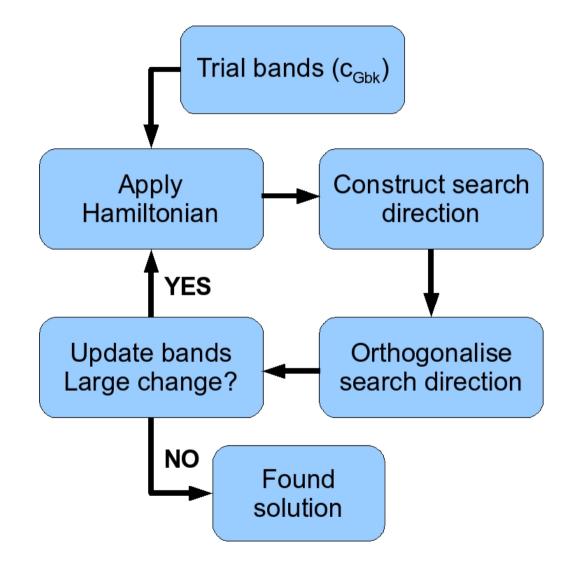
- So in CASTEP we need to make sure have got correct k-point sampling
 - A user controlled convergence parameter
- And the bands at each k-point are independent of each other:

$$\hat{H}_{k}[
ho]\psi_{bk}=E_{bk}\psi_{nk}$$

 But it means that to do a solid requires more work – summing over *k* – that is not necessary in aperiodic system (e.g. molecule)

Key Algorithms

Solving the K-S Equations



- In a bit more detail ...
- To apply H we need to 3D FFT from real to reciprocal space & v.v.
- Time to transform 1 band $\psi_{bk}(\mathbf{G}) \longleftrightarrow \psi_{bk}(\mathbf{r})$ is ~ $O(N_G \ln N_G)$
- But we need to do this for every k-point and band
- Hence FFT time $\sim O(N_G N_B N_k \ln N_G)$

- We construct the band overlap matrix at each *k*-point: S_{nmk} = (ψ_{nk} | ψ_{mk})
 Time to construct ~O(N_G N_B²N_k)
- Then we invert S matrix at each k to construct orthogonalizing transformation

• Time to invert ~ $O(N_B^3 N_k)$

- Then apply S^{-1} to get orthogonal bands
 - Time to apply $\sim O(N_G N_B^2 N_k)$

- For a small system, we have N_G and N_B small, N_k big
- All bottlenecks ~ N_k so parallelize over k
- For big system, we have N_k small, N_G and N_B big, so orthogonalization $\sim N_G N_B^2$ wins
 - Key cost in large systems
 - Parallelize over N_G and/or N_B
- Different parallel strategies depending on problem size …

Key Data Structures

- Key data structures are wavefunction and density – in both real and reciprocal space
 - Functions of plane waves, bands and k-points
- Need to distribute data across compute cores to reduce memory required per core
- And choose distribution to fit the key algorithms: matrix orthogonalization, multiplications and FFTs

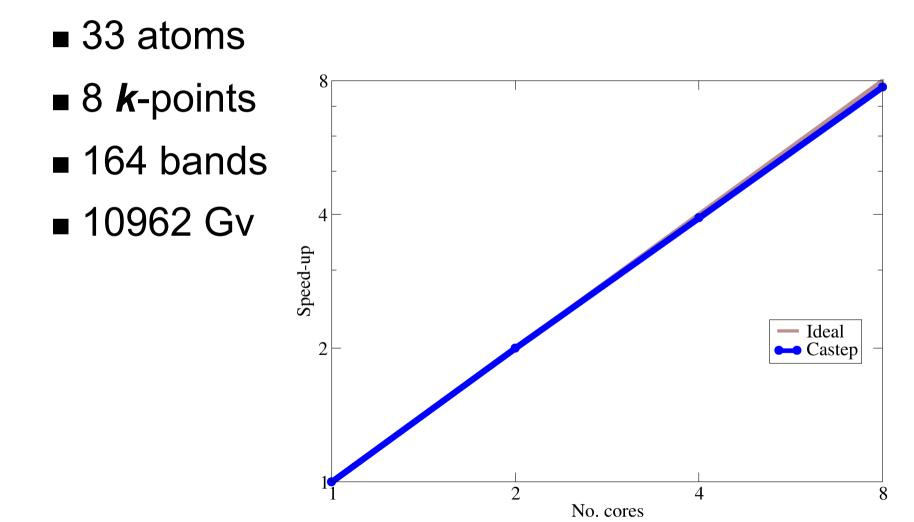
k-point parallelism

- Simplest approach is k-point parallelism
- Bands at different k-points are almost entirely independent
- Only need to communicate when constructing density as

$$\rho(\mathbf{r}) = \sum_{bk} |\psi_{bk}(\mathbf{r})|^2$$

Hence give each core a subset of k-points and solve a subset of K-S equations ... THE UNIVERSITY of York

TiN is a standard small benchmark:



- **k**-parallelism is almost perfect
 - Puts very little demand on communication infrastructure so scales well over ethernet
- BUT as go to bigger system sizes, have bigger unit cell -> smaller BZ -> need less *k*-points -> less scope for parallelism!
 - The bigger the system the less cores we can use!
 - In limit of very big systems $N_k = 1$

G-vector parallelism

Large systems dominated by cost of band orthogonalization with S matrix:

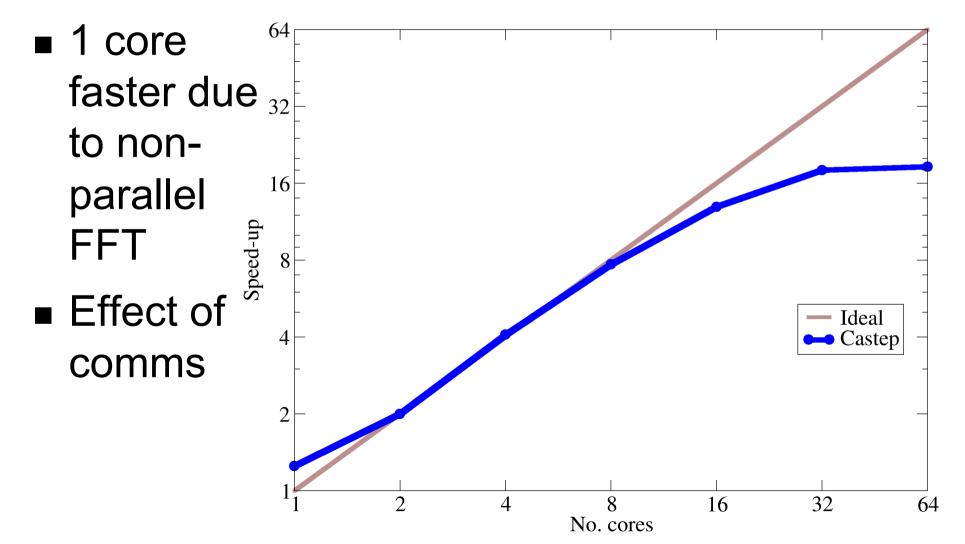
$$S_{nmk} = \langle \psi_{nk} | \psi_{mk} \rangle$$
$$= \sum_{G} C^{\star}_{Gnk} C_{Gmk}$$

- Distribute G-vectors over cores
- Contributions to S summed over cores
- N_G increases with system size

THE UNIVERSITY of York

G-vector parallelism in action

TiN again



- G-vector parallelism requires much more fine-grain communications than k-point
 - Hence more sensitive to interconnect
 - Need low latency network (ethernet bad)
- But working on different part of data structures to *k*-point parallelism so can combine them ...

- Independent parallelisation schemes
- E.g. if N_k =2, N_G =9000 and N_{core} =6:

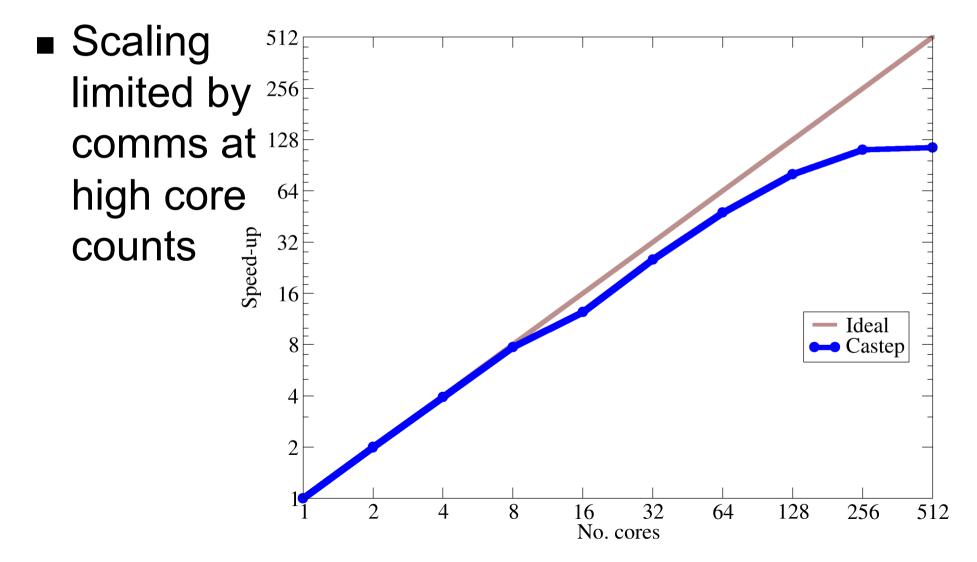
Data	<i>k</i> -point 1	<i>k</i> -point 2
G -vecs 1-3000	Core 1	Core 4
G -vecs 3001-6000	Core 2	Core 5
G -vecs 6001-9000	Core 3	Core 6

- For any k-point the G-vector data is split across 3 cores, i.e. 3-way G-vector parallel
- For any subset of G-vectors the data is split across 2 cores, i.e. 2-way k-point parallel

THE UNIVERSITY of York

k+G parallelism in action

TiN again



Always use k-point parallelism if it is there

• Hence run on $N_{core} = N_k$

- Or if that is not practical/feasible choose a high common factor (e.g. if N_k=35 choose N_{core} = 5 or 7 for good scaling)
- And then use *G*-vector
 - E.g. with N_k =35 can run on N_{core} =70 (but 2-way **G**-vector is not best) or N_{core} =105, 140 ...
 - Can also work with N_{core}=20 and having multiple
 k-points per core

More parallelism

Is there anything else we can parallelise over?

$$\psi_{bk}(\mathbf{r}) = \sum_{G} c_{Gbk} e^{i(\mathbf{G}+\mathbf{k}).\mathbf{r}}$$

- Done G and k so what about b?
 - N_B grows with system size
 - Same H for different bands at same k
 - Fourier transforms of different bands independent –> perfect scaling here?

Need to construct S matrix at each k-point

 $S_{nm} = \langle \psi_n | \psi_m \rangle$

Inner product is between all pairs of bands

- Need all-to-all communication
- Need high-bandwidth interconnect
- Will limit scaling at high core counts
- Distribute S matrix rows over cores

- k-point, G-vector and band-parallelism are all independent -> can combine all 3
 - k-point scales perfectly, OK on poor interconnect
 - G-vector dominated by comms in FFT, needs low latency interconnect
 - Band-parallel dominated by comms in orthogonalization, needs high bandwidth interconnect

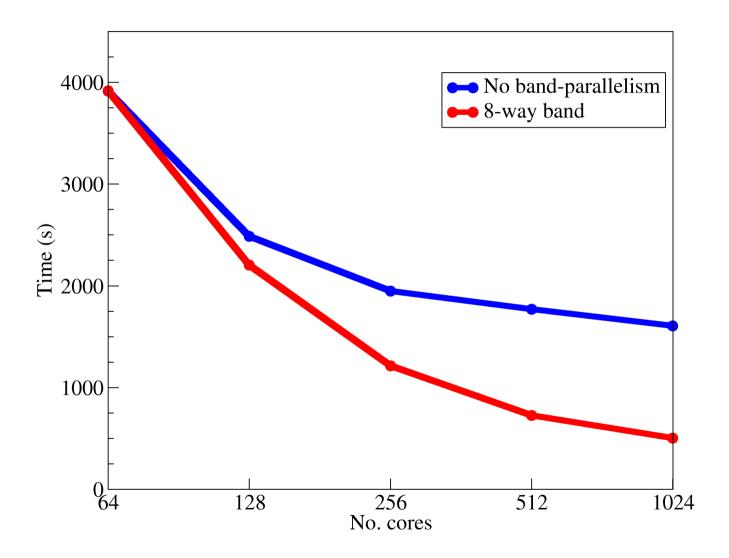
THE UNIVERSITY of York

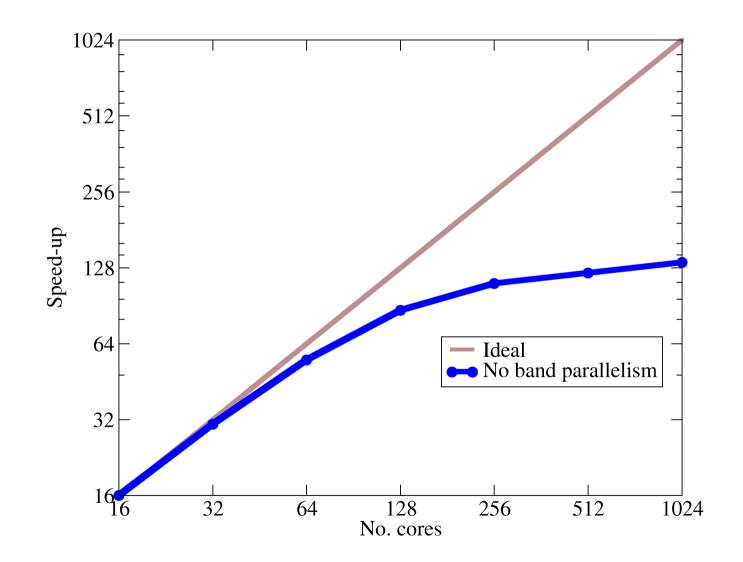
A bigger benchmark

- Al_2O_3 -3x3 surface slab:
 - 270 atoms
 - 2 *k*-points
 - 778 bands
 - 88184 *G*-vectors

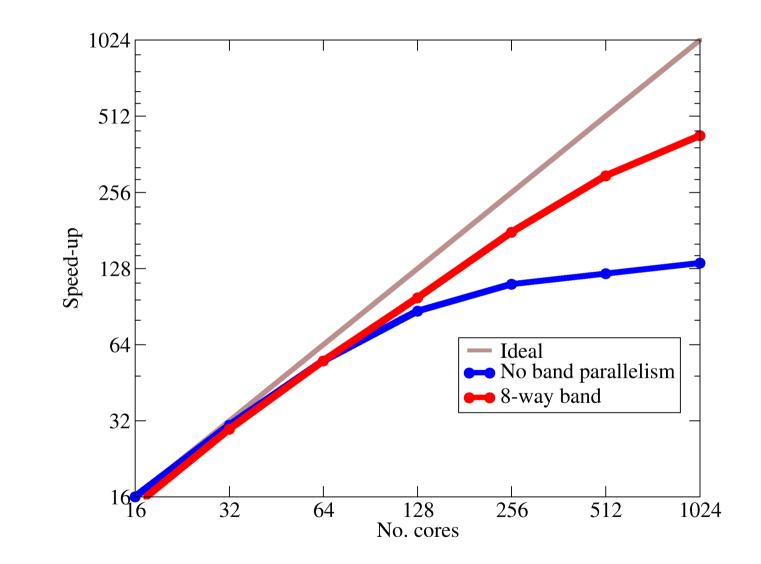
THE UNIVERSITY of York

AI_2O_3 time





Use 16 core reference as too big to run on anything smaller!



Use 16 core reference as too big to run on anything smaller!

Γ -point optimization

For isolated systems, or very large unit cells, only need 1 k-point

• Can choose to be $\mathbf{k} = (0,0,0) = \Gamma$ -point of BZ

Why?

- At Γ the bands are real in real-space
 - Fourier coefficient at $c(-G) = c^*(+G)$
 - So only need ½ the Fourier transforms
- And inner products are real so no need to compute imaginary parts
- x2 speed on FFT and x8 on orthogonalization

- CASTEP can automatically detect Γ-point calculations and switch internally
 - Saving in memory and time
 - Orthogonalization gain bigger than FFT so may look like scaling worse but still faster!
- Need to be careful on science is Γ-point really good enough?
 - Sometimes the speed gain means it is better to go to a larger cell to exploit Γ-point

Summary

- Plane-wave DFT in CASTEP has lots of parallelism potential
 - Can parallelise over k-points, G-vectors and bands
 - Choose which scheme depending on material system size / features
 - Also depends on interconnect in computer
 - BEWARE: you can over-parallelize a calculation – can go slower if put in too many cores as comms cost will dominate