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Overview 

n  Bottlenecks 

n  How to parallelize a plane-wave DFT code 
n  K-points, G-vectors and bands 

n  Parallel efficiency 

n  Summary 



Before you parallelize anything 

n  Do you know where is the code spending 
its time? 

n  Do you know what are the key data 
structures / algorithms? 

n  Have you got good serial performance? 
n  Are you limited by run time and/or available 

memory etc? 
n  Only if answer is ‘yes’ to all these questions 

is it worth going further … 



The Bottlenecks 



CASTEP bottlenecks 

n  We saw in last lecture that the key 
algorithms in CASTEP are: 
n  Applying H – and with smart use of real/

reciprocal space cost ~O(NGNB ) 
n  Cost of FFT ~O(NGNB lnNG ) 
n  Orthogonalization of bands ~O(NB

3) 

n  Where 
n  Number of plane waves = NG 

n  Number of bands = NB 

n  And NG>>NB and in general NG α NB 



DFT recap 

n  The above simplification misses some 
important details 

n  Remember what we are trying to do – solve 
the K-S equations in periodic system, i.e. 
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What does CASTEP do?

CASTEP solves the Kohn-Sham equations for electrons in a
periodic array of nuclei:

Ĥ[⇢] b = Eb b

where particle b has the bth solution (“band”), and

Ĥ[⇢] = � ~2

2m
r2 + V̂HXC [⇢] + V̂ext .
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Ĥ[⇢] = � ~2

2m
r2 + V̂HXC [⇢] + V̂ext .



n  The potential must be periodic: 

n  So the wavefunction is ‘quasi-periodic’: 

n  where                                is periodic and        
is an arbitrary phase factor. 

n  k is also a wave-vector and represents a 
point in the Brillouin Zone 

Bloch’s Theorem 
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Bloch’s Theorem

If the nuclei are arranged in a periodically repeating pattern,
their potential acting on the electrons must also be periodic.

V (r + L) = V (r)

Bloch’s theorem: in a periodic potential, the density has the
same periodicity. The possible wavefunctions are all
‘quasi-periodic’:

 k (r) = eik.ruk (r),

where uk (r + L) = uk (r), and eik.r is an arbitrary phase
factor.
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3D Plane Waves 

n  Since           is periodic we can express it as 
a Fourier Series too:  

n  where cGbk are complex coefficients 
n  Hence we have 
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Plane-waves

Since ubk (r) is periodic, we express it as a 3D Fourier series

ubk (r) =
X

G

cGbkeiG.r

where cGbk are complex Fourier coefficients, and the sum is
over all the reciprocal lattice vectors, or G-vectors.

Putting all this together we have:

 bk (r) = eik.r
X

G

cGbkeiG.r

=
X

G

cGbkei(G+k).r

CASTEP in
Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

Plane-waves

Since ubk (r) is periodic, we express it as a 3D Fourier series

ubk (r) =
X

G

cGbkeiG.r

where cGbk are complex Fourier coefficients, and the sum is
over all the reciprocal lattice vectors, or G-vectors.

Putting all this together we have:

 bk (r) = eik.r
X

G

cGbkeiG.r

=
X

G

cGbkei(G+k).r

CASTEP in
Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

Plane-waves

Since ubk (r) is periodic, we express it as a 3D Fourier series

ubk (r) =
X

G

cGbkeiG.r

where cGbk are complex Fourier coefficients, and the sum is
over all the reciprocal lattice vectors, or G-vectors.

Putting all this together we have:

 bk (r) = eik.r
X

G

cGbkeiG.r

=
X

G

cGbkei(G+k).r

CASTEP in
Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

Plane-waves

Since ubk (r) is periodic, we express it as a 3D Fourier series

ubk (r) =
X

G

cGbkeiG.r

where cGbk are complex Fourier coefficients, and the sum is
over all the reciprocal lattice vectors, or G-vectors.

Putting all this together we have:

 bk (r) = eik.r
X

G

cGbkeiG.r

=
X

G

cGbkei(G+k).r



Brillouin Zone 

n  What is the value of k ?  
n  Need to cover all values within the Brillouin Zone 

– the reciprocal space dual of the unit cell 
n  Need to integrate over all k  to calculate density 
n  But bands vary slowly so can replace integral by 

sampling: 
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k-point sampling

In principle we need to integrate over all possible k when
constructing the density. Fortunately the bands change
fairly slowly as we vary k, so we can approximate the
integral with a summation:

⇢(r) =
X

b

Z
| bk (r)|2d3k

⇡
X

bk

| bk (r)|2

We need to make sure we use enough k-points to get
accurate results.



k-point sampling 

n  So in CASTEP we need to make sure have 
got correct k-point sampling 
n  A user controlled convergence parameter 

n  And the bands at each k-point are 
independent of each other: 

n  But it means that to do a solid requires more 
work – summing over k – that is not 
necessary in aperiodic system (e.g. molecule) 
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k-point sampling

The bands for different k-points are independent of each
other, so we get a different set of Kohn-Sham equations at
each:

Ĥk [⇢] bk = Ebk nk

where
⇢(r) =

X

bk

| bk (r)|2

So to find  bk we need Ĥk , which depends on ⇢, which
depends on  bk ...

We have to solve the equations iteratively.



Key Algorithms 



Solving the K-S Equations 
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Solving the Kohn-Sham equations



CASTEP and FFTs 

n  In a bit more detail … 
n  To apply H we need to 3D FFT from real to 

reciprocal space & v.v. 
n  Time to transform 1 band                                 

is ~O(NG lnNG )  
n  But we need to do this for every k-point and 

band 
n  Hence FFT time ~O(NGNBNk lnNG )  

CASTEP in
Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

Fourier transforms

A 3D Fourier transform can be performed as 3 separate
1D transformations – one in each direction (x, y and z).
Time to transform  bk (G) !  bk (r) scales as
NG log(NG).
Every band at every k-point has to be transformed, so
total time is ⇠ NGNbNk log(NG).



Orthogonalization 

n  We construct the band overlap matrix at 
each k-point: 
n  Time to construct ~O(NG NB

2Nk )  
n  Then we invert S matrix at each k to 

construct orthogonalizing transformation 
n  Time to invert ~O(NB

3Nk )  
n  Then apply S-1 to get orthogonal bands 

n  Time to apply ~O(NGNB
2Nk ) 
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Orthogonalisation

We construct the band-overlap matrix for each k-point
Snmk = h nk |  mk i. Total time scales as NGN2

b Nk .
Invert Sk to find an orthogonalising transformation at
each k-point. Total time scales as N3

b Nk .
Apply transformation to get orthogonal bands. Total
time scales as NGN2

b Nk .



Computational Bottlenecks 

n  For a small system, we have NG and NB 
small, Nk big 

n  All bottlenecks ∼ Nk so parallelize over k 
n  For big system, we have Nk small, NG and 

NB big, so orthogonalization ~NG NB
2  wins 

n  Key cost in large systems 
n  Parallelize over NG and/or NB 

n  Different parallel strategies depending on 
problem size … 



Key Data Structures 



Data Structures 

n  Key data structures are wavefunction and 
density – in both real and reciprocal space 
n  Functions of plane waves, bands and k-points 

n  Need to distribute data across compute cores 
to reduce memory required per core 

n  And choose distribution to fit the key 
algorithms: matrix orthogonalization, 
multiplications and FFTs 



k-point parallelism 



k-point parallelism 

n  Simplest approach is k-point parallelism 
n  Bands at different k-points are almost 

entirely independent 
n  Only need to communicate when 

constructing density as  

n  Hence give each core a subset of k-points 
and solve a subset of K-S equations … 
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k-point parallelism

Bands at different k-points are almost entirely
independent of each other
�! give each core a subset of the k-points.
�! each core solves a subset of Kohn-Sham equations
Cores only communicate when constructing the density

⇢(r) =
X

bk

| bk (r)|2



Example – small benchmark 

n  TiN is a standard small benchmark: 
n  33 atoms 
n  8 k-points 
n  164 bands 
n  10962 Gv 
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k-point parallelism in action



k-parallel and big systems 

n  k-parallelism is almost perfect 
n  Puts very little demand on communication 

infrastructure so scales well over ethernet 
n  BUT as go to bigger system sizes, have 

bigger unit cell -> smaller BZ -> need less 
k-points -> less scope for parallelism! 
n  The bigger the system the less cores we 

can use! 
n  In limit of very big systems Nk = 1 



G-vector parallelism 



G-vector parallelism 

n  Large systems dominated by cost of band 
orthogonalization with S matrix: 

n  Distribute G-vectors over cores 
n  Contributions to S summed over cores 
n  NG increases with system size  
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G-vector parallelism

Snmk = h nk |  mk i
=

X

G

c?
GnkcGmk

�! give each core a subset of G-vectors.
Contributions to S are summed over cores.
NG is large so can use lots of cores.
As simulation size increases, NG also increases.
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G-vector parallelism in actionG-vector parallelism in action 

n  TiN again 
n  1 core 

faster due 
to non-
parallel 
FFT 

n  Effect of 
comms 

 



Analysis of G-vector parallelism 

n  G-vector parallelism requires much more 
fine-grain communications than k-point 
n  Hence more sensitive to interconnect 
n  Need low latency network (ethernet bad) 

n  But working on different part of data 
structures to k-point parallelism so can 
combine them … 



k+G parallelism 

n  Independent parallelisation schemes 
n  E.g. if Nk=2, NG=9000 and Ncore=6: 

n  For any k-point the G-vector data is split 
across 3 cores, i.e. 3-way G-vector parallel 

n  For any subset of G-vectors the data is split 
across 2 cores, i.e. 2-way k-point parallel 

Data k-point 1 k-point 2 
G-vecs 1-3000 Core 1 Core 4 
G-vecs 3001-6000 Core 2 Core 5 
G-vecs 6001-9000 Core 3 Core 6 
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k+G parallelism in actionk+G parallelism in action 

n  TiN again 
n  Scaling 

limited by 
comms at 
high core 
counts 



CASTEP optimal performance 

n  Always use k-point parallelism if it is there 
n  Hence run on Ncore = Nk 

n  Or if that is not practical/feasible choose a high 
common factor (e.g. if Nk=35 choose Ncore = 5 or 
7 for good scaling) 

n  And then use G-vector 
n  E.g. with Nk=35 can run on Ncore=70 (but 2-way 

G-vector is not best) or Ncore=105, 140 … 
n  Can also work with Ncore=20 and having multiple 

k-points per core 



More parallelism 



More parallelism 

n  Is there anything else we can parallelise 
over? 

n  Done G and k so what about b ? 
n  NB grows with system size 
n  Same H for different bands at same k 
n  Fourier transforms of different bands 

independent –> perfect scaling here? 
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Band Parallelism

 bk (r) =
X

G

cGbkei(G+k).r

Distribute data and workload over the bands
Nb is moderately large, and increases with system size
On HPC machines Nb might be O(1000)



Band-parallel orthogonalization 

n  Need to construct S matrix at each k-point 

n  Inner product is between all pairs of bands 
n  Need all-to-all communication 
n  Need high-bandwidth interconnect 
n  Will limit scaling at high core counts 
n  Distribute S matrix rows over cores 
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Orthogonalisation

Need to construct overlap matrix S at each k-point
Snm = h n |  mi
Inner product is between all pairs of bands
Need all-to-all communications
�! as band-parallelism increases, communication
dominates



Mixing k, G and B parallelism 

n  k-point, G-vector and band-parallelism are 
all independent -> can combine all 3 
n  k-point scales perfectly, OK on poor 

interconnect 
n  G-vector dominated by comms in FFT, 

needs low latency interconnect 
n  Band-parallel dominated by comms in 

orthogonalization, needs high bandwidth 
interconnect 



A bigger benchmark 

n  Al2O3-3x3 surface slab: 
n  270 atoms 
n  2 k-points 
n  778 bands 
n  88184 G-vectors 



Al2O3 time 
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Al2O3-3x3 time



Al2O3 parallel speedup 
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Al2O3-3x3 time

Use 16 core reference as too big to run on anything smaller! 



Al2O3 parallel speedup 

Use 16 core reference as too big to run on anything smaller! 
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Γ-point optimization 



Very large system sizes 

n  For isolated systems, or very large unit cells, 
only need 1 k-point 
n  Can choose to be k = (0,0,0) = Γ-point of BZ 

n  Why? 
n  At Γ the bands are real in real-space 

n Fourier coefficient at c(–G) = c*(+G) 
n So only need ½ the Fourier transforms 

n  And inner products are real so no need to 
compute imaginary parts 

n  x2 speed on FFT and x8 on orthogonalization 



Γ-point calculations 

n  CASTEP can automatically detect Γ-point 
calculations and switch internally 
n  Saving in memory and time 
n  Orthogonalization gain bigger than FFT so 

may look like scaling worse but still faster! 
n  Need to be careful on science – is Γ-point 

really good enough? 
n  Sometimes the speed gain means it is 

better to go to a larger cell to exploit Γ-point 



Summary 



Summary 

n  Plane-wave DFT in CASTEP has lots of 
parallelism potential 
n  Can parallelise over k-points, G-vectors and 

bands 
n  Choose which scheme depending on 

material system size / features 
n  Also depends on interconnect in computer 
n  BEWARE: you can over-parallelize a 

calculation – can go slower if put in too 
many cores as comms cost will dominate  


