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m Bottlenecks

m How to parallelize a plane-wave DFT code
m K-points, G-vectors and bands

m Parallel efficiency

® Summary



e Unversitofrk - Before you parallelize anything

s Do you know where is the code spending
its time?

m Do you know what are the key data
structures / algorithms?

s Have you got good serial performance?

m Are you limited by run time and/or available
memory etc?

m Only if answer is ‘yes’ to all these questions
Is it worth going further ...
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THE UNIVERSITY 0F /7K CASTEP bottlenecks

s We saw in last lecture that the key
algorithms in CASTEP are:

m Applying H — and with smart use of real/
reciprocal space cost ~O(N;Ng)

m Cost of FFT ~O(NzNgInNg )

= Orthogonalization of bands ~O(Ng?)
s Where

s Number of plane waves = N

s Number of bands = Ny

m And N;>>Ngand in general N; o Ng



THE UNIVERSITYW DFT recap

s The above simplification misses some
Important details

s Remember what we are trying to do — solve
the K-S equations in periodic system, i.e.

Hlpln = Eptp

h2
2m

Hlp] = VZ + Vixclpl + Vext
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m [he potential must be periodic:
V(r+L)= V(r)
m S0 the wavefunction is ‘quasi-periodic’:
Pr(r) = e Tuk(r)

» where Uk(F+ L) = uk(r)is periodic and e’k
IS an arbitrary phase factor.

m k is also a wave-vector and represents a
point in the Brillouin Zone



THE UNIVERSITYW 3D Plane Waves

m Since Upk(F)is periodic we can express it as
a Fourier Series too:

Upk(r) = ) Capk€ ™"

m Where c,, are complex coefficients
m Hence we have

wbk Z Capk e/(G+k)
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m \What is the value of k ?

m Need to cover all values within the Brillouin Zone
— the reciprocal space dual of the unit cell

m Need to integrate over all k to calculate density
m But bands vary slowly so can replace integral by

sampling:
o0 = 3 [ ek
b
> k()2
bk

&
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m SO0 In CASTEP we need to make sure have
got correct k-point sampling

m A user controlled convergence parameter

m And the bands at each k-point are
independent of each other:

Hi[p]ok = Epktnk

m But it means that to do a solid requires more
work — summing over k — that is not
necessary in aperiodic system (e.g. molecule)
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Key Algorithms
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Trial bands (cg,)

Apply Construct search
Hamiltonian direction
tYES l
Update bands Orthogonalise
Large change? search direction

NO
Found
solution
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m |In a bit more detall ...

m To apply Hwe need to 3D FFT from real to
reciprocal space & v.v.

m [Ime to transform 1 band ¢bk(G) N ¢bk(r)
IS ~O(NgInNg)

s But we need to do this for every k-point and
band

= Hence FFT time ~O(NgNgN, InN )



THE UNIVERSITYW Orthogonallzatlon

m We construct the band overlap matrix at

each k-point: Spmi = (¥nk | Ymk)
= Time to construct ~O(N; Ng°N, )

m Then we invert S matrix at each k to
construct orthogonalizing transformation

= Time to invert ~O(Ng3N, )
= Then apply S-7 to get orthogonal bands
= Time to apply ~O(N;Ng°N, )
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m For a small system, we have N; and N
small, N, big

m All bottlenecks ~ N, so parallelize over k

m For big system, we have N, small, N; and
Njg big, so orthogonalization ~N; Ng? wins

m Key cost in large systems
m Parallelize over N; and/or Ng

m Different parallel strategies depending on
problem size ...
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Key Data Structures
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m Key data structures are wavefunction and
density — in both real and reciprocal space

s Functions of plane waves, bands and k-points

m Need to distribute data across compute cores
to reduce memory required per core

s And choose distribution to fit the key
algorithms: matrix orthogonalization,
multiplications and FFTs



THE UNIVERSITYW

k-point parallelism



THE UNIVERSITY of Jlork k-point parallelism

s Simplest approach is k-point parallelism

m Bands at different k-points are almost
entirely independent

m Only need to communicate when
constructing density as

p(r) = > |vmk(r)P
bk

m Hence give each core a subset of k-points
and solve a subset of K-S equations ...



THE UNIVERSITY of o7k Example — small benchmark

m [IN Is a standard small benchmark:
m 33 atoms

8

m 8 k-points
m 164 bands
m 10962 Gv *

o
1
=
O
O
o
n

Ideal
o=0 Castep| —
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m k-parallelism is almost perfect

m Puts very little demand on communication
infrastructure so scales well over ethernet

m BUT as go to bigger system sizes, have
bigger unit cell -> smaller BZ -> need less
k-points -> |less scope for parallelism!

m The bigger the system the less cores we
can use!

m In limit of very big systems N, = 1
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m Large systems dominated by cost of band
orthogonalization with S matrix:

Snmk — <¢nk| wmk>

>*
— Z CGnk CGmk
G

m Distribute G-vectors over cores
m Contributions to S summed over cores
m N increases with system size
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G-vector parallelism in action

= TIN again

m 1 core o4
faster due ,,|

o non- :
parallel °f
FFT 3z o f
n Effect of ea
o=0 Castep|
comms
2 |
11 E|3 1|6 3|2 64

No. cores
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m G-vector parallelism requires much more
fine-grain communications than k-point

m Hence more sensitive to interconnect
m Need low latency network (ethernet bad)

m But working on different part of data
structures to k-point parallelism so can
combine them ...



THE UNIVERSITYW k+G parallellsm

m Independent parallelisation schemes

s E.g.if N =2, N,=9000 and N__,=6:
G-vecs 1-3000 Core 1 Core 4
G-vecs 3001-6000 Core 2 Core 5
G-vecs 6001-9000 Core 3 Core 6

m For any k-point the G-vector data is split
across 3 cores, i.e. 3-way G-vector parallel

m For any subset of G-vectors the data is split
across 2 cores, i.e. 2-way k-point parallel
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= TIN again

m Scaling 5% ]
limited by s
comms at 128 :
high core |
counts £

Speed-up

16F

Ideal | -
o=0 Castep|

| | | | |
1 2 4 8 16 32 64 128 256 512
No. cores
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m Always use k-point parallelism if it is there
= Nk

m Or if that is not practical/feasible choose a high
common factor (e.g. if N,=35 choose N, =5 or
[ for good scaling)

m Hencerunon N

core

m And then use G-vector

m E.g. with N, =35 can runon N_,.=70 (but 2-way
G-vector is not best) or N =105, 140 ...

core
m Can also work with N_,..=20 and having multiple

. core
k-points per core
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THE UNIVERSITYW More parallellsm

m Is there anything else we can parallelise
over?

ek (r) =) capke€ &
G

m Done G and k so what about b ?
m Nz grows with system size
m Same H for different bands at same k

m Fourier transforms of different bands
independent —> perfect scaling here?



e Unversityofrk - Band-parallel orthogonalization

s Need to construct S matrix at each k-point

Snm — <¢n| ¢m>

m Inner product is between all pairs of bands
m Need all-to-all communication
= Need high-bandwidth interconnect
= Will limit scaling at high core counts
m Distribute S matrix rows over cores
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m k-point, G-vector and band-parallelism are
all independent -> can combine all 3

m k-point scales perfectly, OK on poor
interconnect

m G-vector dominated by comms in FFT,
needs low latency interconnect

m Band-parallel dominated by comms in
orthogonalization, needs high bandwidth
interconnect



THE UNIVERSITY of /071K A b|gger benChmal’k

m Al,O;-3x3 surface slab:
m 270 atoms
m 2 k-points
m /78 bands
m 88184 G-vectors
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40004 e=e No band-parallelism
B e=e 8-way band
3000 -
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S
= 2000 -
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1024

512

256

128

Speed-up

64 Ideal 7

o=e No band parallelism| |

32

| | | | 1
32 64 128 256 512 1024
No. cores

Use 16 core reference as too big to run on anything smaller!
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10241 g
512 s
256 :

- B ]
0 B )
B 128
O L
o,
& i
64 Ideal B
- o=e No band parallelism| |
o= 8-way band
32 -
| |

| | |
32 64 128 256 512 1024
No. cores

Use 16 core reference as too big to run on anything smaller!
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m For isolated systems, or very large unit cells,
only need 1 k-point

m Can choose to be k= (0,0,0) = I'-point of BZ
_ Why?
m At I" the bands are real in real-space
m Fourier coefficient at ¢(—G) = c*(+G)
m S0 only need % the Fourier transforms

m And inner products are real so no need to
compute imaginary parts

m X2 speed on FFT and x8 on orthogonalization
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s CASTEP can automatically detect I'-point
calculations and switch internally

m Saving in memory and time

m Orthogonalization gain bigger than FFT so
may look like scaling worse but still faster!

m Need to be careful on science — is I'-point
really good enough?

s Sometimes the speed gain means it is
better to go to a larger cell to exploit I'-point
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m Plane-wave DFT in CASTEP has lots of
parallelism potential

m Can parallelise over k-points, G-vectors and
bands

s Choose which scheme depending on
material system size / features

m Also depends on interconnect in computer

s BEWARE: you can over-parallelize a
calculation — can go slower if put in too
many cores as comms cost will dominate



