
Parallel matrix multiplication
and diagonalization

Matt Probert
August-Wilhelm Scheer Visiting Prof TUM 2015
Condensed Matter Dynamics Group
Department of Physics,
University of York, U.K.
http://www-users.york.ac.uk/~mijp1

Overview

n  Matrix multiplication
n  Serial optimization
n  Blocking and caching
n  Parallel matrix multiplication

n  Matrix diagonalization
n  Serial algorithm
n  Parallel algorithm

n  Summary

Coding for Speed

Modern PC Hardware

n  Modern CPU cores have hardware features
such as pipelines and superscalar architecture
so can do a number of FLOP per clock cycle
n  Works well as long as uninterrupted flow of

data
n  But main memory DRAM is slow to access

n  Hence introduction of CPU caches – small but
fast memory near CPU

n  And read-ahead with cache lines to fill caches
n  Helps bridge gap between CPU and DRAM

Implications for programming

n  Need to make efficient use of cache
n  Memory access patterns should be

predictable so cache re-ahead helps
n  Simplest if use unit stride
n  Avoid pointers
n  Need to re-use data in cache as much as

possible before ejecting it
n  Maximize vectorization potential of code

n  Avoid conditionals & dependencies in loops
n  Allows CPU to use SIMD instructions

Multi-Dimensional Arrays

n  In FORTRAN, A(m,n) is stored as

n  But in C, A[m][n] is stored as

n  And want stride-1 access through arrays
for spatial locality, hence THIS IS AWFUL:

do i=1,n
 do j=1,m
 A(i,j)=B(i,j)+C(i,j)
 end do
end do

This is accessing memory with stride-m,
hence unless entire A,B,C fit into cache this
will run very slowly.

Worse still, can get cache thrashing if each
line read into cache replaces the existing
one – hence beware 2n array sizes.

MUST reorder these loops – gives x17 speedup on 2.4 GHz P4!

A(1,1) A(2,1) A(3,1) A(m,1) A(1,2)

A[0][0] A[0][1] A[0][2] A[0][n] A[1][0]

Memory Stride and Performance

2.4 GHz P4 with 8kB L1 and 512 kB L2 caches ...

Matrix Multiplication

Matrix multiplication

n  A simple computational kernel
n  Used in many different places within

CASTEP and other codes

n  What coding and hardware factors effect
how fast this goes?

Matrix Multiplication

n  F77 version
n  Number of FLOPS is 2n3 yet

performance is appalling:
n  Timings on my 2.26 GHz

Macbook (9.04 GFLOP peak):
gfortran –O0, n=100 results in

241 MFLOPS – only 2.7% of
peak!

kjikij bac =

!Std F77 version

do j=1,n
 do i=1,n
 t=0.0
 do k=1,n
 t=t+a(i,k)*b(k,j)
 end do
 c(i,j)=t
 end do
end do

Why? The inner loop contains 1 FP-add, 1 FP-multiply, 1 FP-load with unit
stride (b) and 1 FP-load with stride-n (a).

Each array is 100*100*8 bytes = 78kB. Core 2 Duo has a 3 MB L2 cache
so all arrays should fit in L2 cache. Why is the code so slow then?

Fast Matrix Multiplication

n  Reorder operations so all
memory access now unit
stride
n  Timings on my 2.26 GHz

Macbook (9.04 GFLOP peak) :
n  gfortran –O0, n=100, results in

200 MFLOPS?!

!Fast F77 version

c=0
do j=1,n
 do k=1,n
 t=b(k,j)
 do i=1,n
 c(i,j)=c(i,j)+a(i,k)*t
 end do
 end do
end do

Why? This new routine now has unit stride for all arrays – good – but one
extra store. As all the arrays fit into cache there is no speedup due to the
stride, no saving in FLOPS and one extra store => small extra cost.

BUT this approach should be better as N increases and go out of cache
…

F90 matmul?

n  Would seem to be the no-brainer solution
 n=100, 1302 MFLOPS!

n  Now up to 15% of peak
n  Better but still pretty poor, particularly as

everything is in cache
n  What are we missing?
n  Compiler flags ...

!F90 form
c=matmul(a,b)

BLAS version

n  dgemm is part of BLAS and can evaluate

where A is of size MxK, B is KxN and C is MxN , and
A,B,C, alpha & beta are all declared as double precision
n  Now have gfortran –O0, n=100 resulting in 4194

MFLOPS ~ 46% peak
n  And pretty insensitive to compiler optimisation – as it

should be!
NB This is with generic BLAS – using a more optimized

BLAS e.g. ATLAS or OpenBLAS should be better.
NB an Mrows x Ncolumns array is declared in Fortran as

A(1:M,1:N) but consecutive memory locations are rows

!BLAS form
call dgemm(’N’,’N’,m,n,k,alpha,A,m,B,k,beta,C,m)

ijkjikij cbac ⋅+⋅= βα

Effect of Problem Size

n  The n=100 matrix multiplication is not a
good test of different algorithms
n  On modern CPUs the arrays fit in cache.
n  But it does show superiority of BLAS

n  What happens as increase problem size
and start to go out of cache?

n  What is BLAS doing better?
n  Uses blocking to get better access pattern

Blocking Approach

Cache Blocking

n  Do as much as possible with data in cache
before returning it to main memory
n  Can be useful with non-unit stride too:

!simple non-blocked code
do j=1,n
 do i=1,n
 s=s+a(j,i)+b(i,j)
 end do
end do

!blocked-style code
do ii=1,n,nb
 do j=1,n
 do i=ii,ii+nb-1
 s=s+a(j,i)+b(i,j)
 end do
 end do
end do

a is accessed with stride n – bad!

a still accessed with stride n but only
within blocks of size nb x n. Fast if
block fits in cache.

N.B. If compile at –03
then time = 0.012s
without blocking.

Compiler does a
much better job than
manual blocking in
this simple case.

Best benefits from
manual
blocking occur at
much higher level.

Runs with
N=100, 200,
500 & 1000

NB n=500
has 1.9 MB
per matrix
and Core 2
Duo has 3MB
of L2 cache

Can now
clearly see
the effects of
non-unit
stride on
performance.

As before
but now
including
n=128,
256, 512
and 1024

What is
going on?

Cache Thrashing

n  Problems with powers-of-2 array sizes
n  Cache thrashing – successive memory

accesses actually go to same line in cache.

n  Core 2 Duo has a 8-way set associative L1
and L2 cache made up of 64 byte lines
n  so 8 possible locations in cache for each

memory address which reduces thrashing.

n  Older CPUs had 2-way set associative or
even direct-mapped caches – made effects
of cache thrashing much worse!

Alpha has
2-way set
associative
2MB L2
cache.

Hence
thrashing
more
obvious –
benefit of
cache policy
clear!

Parallel Matrix
Multiplication

Parallel Matrix Multiplication

n  Can we speed up matrix multiplication by
using multiple cores?

n  Yes – use block matrix approach and then
divide and conquer:

n  Here have split into 8 smaller matrices
n  Now have 8 independent products
n  Can also repeat at finer levels …
n  Repeat until smallest block matrix is 1/3 of

cache size – result is ~O(N2) in parallel

Cost of Parallel MatMul

n  Serial MatMul time ~O(N3) and storage ~O(N2)
n  Parallel MatMul with P cores can reduce

storage to ~O(N2/P) by using 2D mesh
n  Comms: general data sent ~O(N2/√P) per

message with P messages per core
n  P=4: need to send 2 block matrices to 2

neighbours and receive from 2 neighbours
n  Sweet spot depends on comms bandwidth,

latency, number of cores & cache sizes
n  Could use BLACS but not helpful in CASTEP

Other Optimizations

n  Matrix multiplication ~O(N3) if square matrices
n  ~O(MNP) for rectangular MxP with PxN

n  Strassen’s algorithm is faster ~O(Nlog2(7))
n  Uses block matrices recursively as before:

M1=(A11+A22)(B11+B22), M2=(A21+A22)B11 ….
M7=(A12-A22)(B21+B22)
 C11=M1+M4-M5+M7 … C22=M1-M2+M3+M6

 => Result in 7 multiplications not 8
n  With small caches this was faster for N>100

but on modern machines need N>1000

Matrix Orthogonalization

Matrix Orthogonalization

n  In CASTEP we want to ensure that all the
bands are orthogonal
n  Important to get the right states occupied!
n  Construct the band overlap matrix S
n  Then do a sub-space rotation to find new

set of orthogonal bands
n  A key step, computationally costly, as saw

yesterday.
n  How is it actually done?

Orthogonal Matrix Basics

n  We have a set of linearly independent vectors
{vi } that span the solution space

n  Then orthogonalization makes a new set {ui }
where each pair is orthogonal and normalized
and so ui.uj=δij (Kronecker delta)

n  Write vectors as columns in a matrix U :
 UT U=UUT = I i.e. UT = U -1

n  Then U represents a rotation
n  Is unitary as does not change length of vectors

Orthogonalizing

n  How to construct U?
n  Could do Gram-Schmidt projection
n  Or Householder rotation
n  And/or Givens reflection

n  Or do matrix factorization
n  Any matrix A can be factorized into LU form:

Matrix Factorization

n  LU decomposition very useful in solving linear
equations: A.x=b
n  As can rewrite as L.y=b and U.x=y and then

solve triangular equations by back substitution
n  Cholesky: iff A is square positive definite then

can also use A = L.LT or L.D.LT
n  2x faster than LU but less general

n  QR decomposition: A=Q.R where R is upper
triangular and QTQ=I
n  2x slower than LU but good for orthogonal’n

Matrix Eigenvalues

n  But the matrix we want to orthogonalize is
Hermitian => special form & properties
n  H = (H*)T = H+

n  Hermitian => real eigenvectors & e-values
n  H.x = λx
n  And the eigenvectors form an orthogonal basis
n  So can put e-vecs as columns in matrix U
n  So finding the eigenvectors ~ orthogonalization

Matrix Diagonalization

n  How to do diagonalization?
n  Sequence of similarity transforms:

H 1 = U1
T.H.U1 ; H 2 = U2.H.U2 …

n  where U is chosen as Jacobi or
Householder transformation etc

n  And similarity transform does not change
det|H| or eigenvalues of H

n  And/or QR factorization
n  H=Q.R => Q-1.H=R => Q.R=Q-1.H.Q
n  i.e. QR factorization ~ similarity transform

Practical Serial Diagonalization

n  LAPACK routines
n  zheev – all the eigenvalues & eigenvectors

of Hermitian matrix
n Uses LU decomposition

n  Also zheevr – uses LDLT so faster than LU
n  And zheevd – uses divide and conquer

Practical Parallel Diagonalization

n  ScaLAPACK does not have right parallel
data layout for CASTEP usage

n  Hard to parallelize most approaches
n  Threaded LAPACK:
Crambin benchmark
small protein
1284 atoms!

Current Methods

provided in LAPACK

- ZHEEV

- ZHEEVR

- ZHEEVD

Very well optimised in serial

Poor parallel performance 10 20
0

200

400

600

of threads

T
im

e
(s
)

12

Parallel Diagonalization

n  Need a different approach in parallel
n  Recent project – implement block-factored

Jacobi (BFJ) for diagonalization
n  Jacobi largely forgotten in serial as slow

n At least x10 slower than QR etc
n But block-factored Jacobi 2x faster than Jacobi

n  BUT much easier to parallelize
n No pivoting
n And iterative – can reuse previous guess at

eigenvalues to kick-start next matrix

Jacobi eigenvalue algorithm

n  Solving H.V = λV
n  Each off-diagonal

element is zero’d
every iteration

n  Zeroing an element
un-zeros previous
elements

n  Magnitude of off-
diagonals reduces
rapidly each iteration

V=I
Do until converged:

 for each off-diagonal element H(i,j):
 find the matrix U that zero’s H(i,j)
 H’=conjg(U)*H*U
 V’= V*U
 end for
End do

BFJ eigenvalue algorithm

n  Solving G.V = λ
and G=V +H

n  By storing cols of VT
can operate on cols
of V and G – caching

n  Parallelize over cols

V=I, G=H
Do until converged:
 for each pair of cols G(:,i), G(:,j):

 H(i,j) = V(i,:) .dot. G(:,j)

 find the matrix U that zero’s H(i,j)

 G’= G*U
 V’= V*U

 end for
End do
Eigenvalues(i)=V(i,:) .dot. G(:,i)

Advantages of BFJ

n  Parallel, iterative, controllable accuracy
n  Beats best LAPACK if N>700 and Ncores>24

BFJ performance

10 20 30 40 50 60 70 80 90
0

20

40

of processes

S
p
ee
du

p
ov
er

se
ri
al

BFJ

LAPACK

15

Implementation

n  Challenge to get eigenvectors to machine
precision
n  Found that for a random matrix LAPACK

was failing to converge accurately too
n  Had to rework numerics by smart use of trig

n  Practical speed advantage: 4096 Silicon
test case: LAPACK orthogonalization time ~
30 minutes, BFJ <20 secs on >500 cores

n  Only notice on big systems as ~O(N3)
n  Finished last week, going into CASTEP v9

Summary

Summary

n  Matrix multiplication a great case study
n  Serial optimization, need to understand

modern hardware, choice of algorithms
n  Parallel algorithms use recursive blocking

and divide & conquer approach
n  Matrix orthogonalization / diagonalization

n  Well known in serial – choice of approaches
n  Exploit matrix properties if Hermitian etc
n  Much harder to parallelize …

References

n  MC Payne et al., Rev. Mod. Phys 64, 1045
(1992)

n  WH Press et al, “Numerical Recipes: The
Art of Scientific Computing”, Cambridge
University Press (1989 – 2007)

n  RJ Littlefield and KJ Maschoff, Theor.
Chim. Acta 84, 457 (1993)

