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Overview 

n  Matrix multiplication 
n  Serial optimization 
n  Blocking and caching 
n  Parallel matrix multiplication 

n  Matrix diagonalization 
n  Serial algorithm 
n  Parallel algorithm 

n  Summary 



Coding for Speed 



Modern PC Hardware 

n  Modern CPU cores have hardware features 
such as pipelines and superscalar architecture 
so can do a number of FLOP per clock cycle 
n  Works well as long as uninterrupted flow of 

data 
n  But main memory DRAM is slow to access 

n  Hence introduction of CPU caches – small but 
fast memory near CPU 

n  And read-ahead with cache lines to fill caches 
n  Helps bridge gap between CPU and DRAM 



Implications for programming 

n  Need to make efficient use of cache 
n  Memory access patterns should be 

predictable so cache re-ahead helps 
n  Simplest if use unit stride 
n  Avoid pointers 
n  Need to re-use data in cache as much as 

possible before ejecting it 
n  Maximize vectorization potential of code 

n  Avoid conditionals & dependencies in loops 
n  Allows CPU to use SIMD instructions 



Multi-Dimensional Arrays 

n  In FORTRAN, A(m,n) is stored as 

n  But in C, A[m][n] is stored as 

n  And want stride-1 access through arrays 
for spatial locality, hence THIS IS AWFUL: 

do i=1,n 
 do j=1,m 
  A(i,j)=B(i,j)+C(i,j) 
 end do 
end do 

This is accessing memory with stride-m, 
hence unless entire A,B,C fit into cache this 
will run very slowly. 

Worse still, can get cache thrashing if each 
line read into cache replaces the existing 
one – hence beware 2n array sizes. 

MUST reorder these loops – gives x17 speedup on 2.4 GHz P4! 

A(1,1) A(2,1) A(3,1) A(m,1) A(1,2) 

A[0][0] A[0][1] A[0][2] A[0][n] A[1][0] 



Memory Stride and Performance 

2.4 GHz P4 with 8kB L1 and 512 kB L2 caches ... 



Matrix Multiplication 



Matrix multiplication 

n  A simple computational kernel 
n  Used in many different places within 

CASTEP and other codes 

n  What coding and hardware factors effect 
how fast this goes? 



Matrix Multiplication 

n  F77 version 
n  Number of FLOPS is 2n3 yet 

performance is appalling: 
n  Timings on my 2.26 GHz 

Macbook (9.04 GFLOP peak): 
gfortran –O0, n=100 results in 

241 MFLOPS – only 2.7% of 
peak! 

kjikij bac =

!Std F77 version 
 
do j=1,n 
   do i=1,n 
      t=0.0 
      do k=1,n 
         t=t+a(i,k)*b(k,j) 
      end do 
      c(i,j)=t 
   end do 
end do 

Why? The inner loop contains 1 FP-add, 1 FP-multiply, 1 FP-load with unit 
stride (b) and 1 FP-load with stride-n (a). 

Each array is 100*100*8 bytes = 78kB. Core 2 Duo has a 3 MB L2 cache 
so all arrays should fit in L2 cache. Why is the code so slow then? 



Fast Matrix Multiplication 

n  Reorder operations so all 
memory access now unit 
stride 
n  Timings on my 2.26 GHz 

Macbook (9.04 GFLOP peak) : 
n  gfortran –O0, n=100, results in 

200 MFLOPS?! 

!Fast F77 version 
 
c=0 
do j=1,n 
  do k=1,n 
    t=b(k,j) 
    do i=1,n 
      c(i,j)=c(i,j)+a(i,k)*t 
    end do 
  end do 
end do 

Why? This new routine now has unit stride for all arrays – good – but one 
extra store. As all the arrays fit into cache there is no speedup due to the 
stride, no saving in FLOPS and one extra store => small extra cost.  

BUT this approach should be better as N increases and go out of cache 
… 



F90 matmul? 

n  Would seem to be the no-brainer solution 
    n=100, 1302 MFLOPS!  

n  Now up to 15% of peak 
n  Better but still pretty poor, particularly as 

everything is in cache 
n  What are we missing? 
n  Compiler flags ... 

!F90 form 
c=matmul(a,b) 





BLAS version 

n  dgemm is part of BLAS and can evaluate 

where A is of size MxK, B is KxN and C is MxN , and 
A,B,C, alpha & beta are all declared as double precision 
n  Now have gfortran –O0, n=100 resulting in 4194 

MFLOPS ~ 46% peak 
n  And pretty insensitive to compiler optimisation – as it 

should be!  
NB This is with generic BLAS – using a more optimized 

BLAS e.g. ATLAS or OpenBLAS should be better. 
NB an Mrows x Ncolumns array is declared in Fortran as 

A(1:M,1:N) but consecutive memory locations are rows 

!BLAS form 
call dgemm(’N’,’N’,m,n,k,alpha,A,m,B,k,beta,C,m) 

ijkjikij cbac ⋅+⋅= βα





Effect of Problem Size 

n  The n=100 matrix multiplication is not a 
good test of different algorithms 
n  On modern CPUs the arrays fit in cache. 
n  But it does show superiority of BLAS 

n  What happens as increase problem size 
and start to go out of cache? 

n  What is BLAS doing better? 
n  Uses blocking to get better access pattern 



Blocking Approach 



Cache Blocking 

n  Do as much as possible with data in cache 
before returning it to main memory 
n  Can be useful with non-unit stride too:  

!simple non-blocked code 
do j=1,n 
   do i=1,n 
      s=s+a(j,i)+b(i,j) 
   end do 
end do 

!blocked-style code 
do ii=1,n,nb 
   do j=1,n 
      do i=ii,ii+nb-1 
         s=s+a(j,i)+b(i,j) 
      end do 
   end do 
end do 

a is accessed with stride n – bad! 

a still accessed with stride n but only 
within blocks of size nb x n. Fast if 
block fits in cache.  



N.B. If compile at –03 
then time = 0.012s  
without blocking. 
 
Compiler does a  
much better job than 
manual blocking in 
this simple case. 
 
Best benefits from 
manual 
blocking occur at 
much higher level. 
 
 



Runs with 
N=100, 200, 
500 & 1000 

NB n=500 
has 1.9 MB 
per matrix 
and Core 2 
Duo has 3MB 
of L2 cache 

Can now 
clearly see 
the effects of 
non-unit 
stride on 
performance. 



As before 
but now 
including 
n=128, 
256, 512 
and 1024 

What is 
going on? 



Cache Thrashing 

n  Problems with powers-of-2 array sizes 
n  Cache thrashing – successive memory 

accesses actually go to same line in cache. 

n  Core 2 Duo has a 8-way set associative L1 
and L2 cache made up of 64 byte lines 
n  so 8 possible locations in cache for each 

memory address which reduces thrashing. 

n  Older CPUs had 2-way set associative or 
even direct-mapped caches – made effects 
of cache thrashing much worse! 



Alpha has 
2-way set 
associative 
2MB L2 
cache. 

Hence 
thrashing 
more 
obvious – 
benefit of 
cache policy 
clear! 



Parallel Matrix 
Multiplication 



Parallel Matrix Multiplication 

n  Can we speed up matrix multiplication by 
using multiple cores? 

n  Yes – use block matrix approach and then 
divide and conquer: 

n  Here have split into 8 smaller matrices 
n  Now have 8 independent products 
n  Can also repeat at finer levels … 
n  Repeat until smallest block matrix is 1/3 of 

cache size – result is  ~O(N2) in parallel 



Cost of Parallel MatMul 

n  Serial MatMul time  ~O(N3) and storage ~O(N2)  
n  Parallel MatMul with P cores can reduce 

storage to ~O(N2/P) by using 2D mesh 
n  Comms: general data sent ~O(N2/√P) per 

message with P messages per core 
n  P=4: need to send 2 block matrices to 2 

neighbours and receive from 2 neighbours 
n  Sweet spot depends on comms bandwidth, 

latency, number of cores & cache sizes 
n  Could use BLACS but not helpful in CASTEP 



Other Optimizations 

n  Matrix multiplication ~O(N3) if square matrices 
n  ~O(MNP) for rectangular MxP with PxN 

n  Strassen’s algorithm is faster ~O(Nlog2(7))  
n  Uses block matrices recursively as before: 

M1=(A11+A22)(B11+B22), M2=(A21+A22)B11 …. 
M7=(A12-A22)(B21+B22) 
 C11=M1+M4-M5+M7 … C22=M1-M2+M3+M6 

 => Result in 7 multiplications not 8 
n  With small caches this was faster for N>100 

but on modern machines need N>1000 



Matrix Orthogonalization 



Matrix Orthogonalization 

n  In CASTEP we want to ensure that all the 
bands are orthogonal 
n  Important to get the right states occupied! 
n  Construct the band overlap matrix S 
n  Then do a sub-space rotation to find new 

set of orthogonal bands 
n  A key step, computationally costly, as saw 

yesterday. 
n  How is it actually done? 



Orthogonal Matrix Basics 

n  We have a set of linearly independent vectors 
{vi } that span the solution space 

n  Then orthogonalization makes a new set {ui } 
where each pair is orthogonal and normalized 
and so ui.uj=δij (Kronecker delta) 

n  Write vectors as columns in a matrix U : 
  UT U=UUT = I i.e. UT = U -1 

n  Then U represents a rotation 
n  Is unitary as does not change length of vectors 
 



Orthogonalizing 

n  How to construct U? 
n  Could do Gram-Schmidt projection 
n  Or Householder rotation 
n  And/or Givens reflection 

n  Or do matrix factorization 
n  Any matrix A can be factorized into LU form: 



Matrix Factorization 

n  LU decomposition very useful in solving linear 
equations: A.x=b  
n  As can rewrite as L.y=b and U.x=y and then 

solve triangular equations by back substitution 
n  Cholesky: iff A is square positive definite then 

can also use A = L.LT or L.D.LT  
n  2x faster than LU but less general 

n  QR decomposition: A=Q.R where R is upper 
triangular and QTQ=I  
n  2x slower than LU but good for orthogonal’n  



Matrix Eigenvalues 

n  But the matrix we want to orthogonalize is 
Hermitian => special form & properties 
n  H = (H*)T = H+ 

n  Hermitian => real eigenvectors & e-values 
n  H.x = λx 
n  And the eigenvectors form an orthogonal basis 
n  So can put e-vecs as columns in matrix U 
n  So finding the eigenvectors ~ orthogonalization 



Matrix Diagonalization 

n  How to do diagonalization? 
n  Sequence of similarity transforms: 

H 1  = U1
T.H.U1 ; H 2 = U2.H.U2 … 

n  where U is chosen as Jacobi or 
Householder transformation etc 

n  And similarity transform does not change 
det|H| or eigenvalues of H 

n  And/or QR factorization 
n  H=Q.R => Q-1.H=R => Q.R=Q-1.H.Q 
n  i.e. QR factorization ~ similarity transform 



Practical Serial Diagonalization 

n  LAPACK routines 
n  zheev – all the eigenvalues & eigenvectors 

of Hermitian matrix 
n Uses LU decomposition 

n  Also zheevr – uses LDLT so faster than LU 
n  And zheevd – uses divide and conquer 



Practical Parallel Diagonalization 

n  ScaLAPACK does not have right parallel 
data layout for CASTEP usage 

n  Hard to parallelize most approaches 
n  Threaded LAPACK: 
Crambin benchmark 
small protein 
1284 atoms! 
 

Current Methods

provided in LAPACK

- ZHEEV

- ZHEEVR

- ZHEEVD

Very well optimised in serial

Poor parallel performance 10 20
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Parallel Diagonalization 

n  Need a different approach in parallel 
n  Recent project – implement block-factored 

Jacobi (BFJ) for diagonalization 
n  Jacobi largely forgotten in serial as slow 

n At least x10 slower than QR etc 
n But block-factored Jacobi 2x faster than Jacobi 

n  BUT much easier to parallelize 
n No pivoting 
n And iterative – can reuse previous guess at 

eigenvalues to kick-start next matrix 



Jacobi eigenvalue algorithm 

n  Solving H.V = λV 
n  Each off-diagonal 

element is zero’d 
every iteration 

n  Zeroing an element 
un-zeros previous 
elements 

n  Magnitude of off-
diagonals reduces 
rapidly each iteration 

V=I
Do until converged:

   for each off-diagonal element H(i,j):
     find the matrix U that zero’s H(i,j)
     H’=conjg(U)*H*U
     V’=         V*U
   end for
End do



BFJ eigenvalue algorithm 

n  Solving G.V = λ 
and G=V +H 

 

n  By storing cols of VT 
can operate on cols 
of V and G – caching 

n  Parallelize over cols 

V=I, G=H
Do until converged:
   for each pair of cols G(:,i), G(:,j):

     H(i,j) = V(i,:) .dot. G(:,j)

     find the matrix U that zero’s H(i,j)

     G’= G*U
     V’= V*U

   end for
End do
Eigenvalues(i)=V(i,:) .dot. G(:,i)



Advantages of BFJ 

n  Parallel, iterative, controllable accuracy 
n  Beats best LAPACK if N>700 and Ncores>24 

BFJ performance
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Implementation 

n  Challenge to get eigenvectors to machine 
precision 
n  Found that for a random matrix LAPACK 

was failing to converge accurately too  
n  Had to rework numerics by smart use of trig 

n  Practical speed advantage: 4096 Silicon 
test case: LAPACK orthogonalization time ~ 
30 minutes, BFJ <20 secs on >500 cores 

n  Only notice on big systems as ~O(N3) 
n  Finished last week, going into CASTEP v9 



Summary 



Summary 

n  Matrix multiplication a great case study 
n  Serial optimization, need to understand 

modern hardware, choice of algorithms 
n  Parallel algorithms use recursive blocking 

and divide & conquer approach 
n  Matrix orthogonalization / diagonalization 

n  Well known in serial – choice of approaches 
n  Exploit matrix properties if Hermitian etc 
n  Much harder to parallelize … 
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