
Parallel Fast Fourier
Transform

Matt Probert
August-Wilhelm Scheer Visiting Prof TUM 2015
Condensed Matter Dynamics Group
Department of Physics,
University of York, U.K.
http://www-users.york.ac.uk/~mijp1

Overview

n What is a Fourier Transform?
n What is the Fast Fourier Transform?

n Maths & Scaling
n Data layout
n Handling real data
n Extensions to 2D, 3D …

n How to parallelize the FFT
n FFT in parallel vs FFT of parallel data

n Summary

Fourier Transform Basics

Fourier Transforms

n A linear transform that maps a function from
time ßà frequency domain
n Or from space ßà reciprocal space, etc

n Very useful in many areas, for signal
processing, spectral analysis, etc.

n In DFT the KE is simple in reciprocal space
and the PE is simple in real space

n Different conventions on 2p factors etc

DEPARTMENT OF PHYSICS Y2 COMPUTATIONAL LABORATORY

Experiment 2.6: Signal/Image Processing and Fourier

Transforms

Introduction and Mathematical Background

There are many situations in which a signal h(t) or an image h(x, y) needs to be processed,
for example, to smooth out high-frequency noise, or to do image enhancements such as edge
detection or motion blur removal. One very powerful mathematical technique that underlies
many of these processes is the Fourier Transform. In the most common situation, the signal
is not continuous but is instead sampled at evenly spaced intervals, e.g.

h (t) ! hn = h (n.�t) , n = . . . ,�3,�2,�1, 0, 1, 2, 3, . . . (1)

where the time interval is �t or conversely the sampling rate is 1/�t. This gives rise to the
problem of aliasing - the sampled signal will only contain frequency components in the
range �fc < f < fcwhere the critical sampling frequency, is also known as the Nyquist
critical frequency, is

fc =
1

2.�t
. (2)

Any frequency outside of this range will be aliased, i.e. mapped onto this range, by the act of
sampling. Consider what would be the sampled value for two sine waves, one of frequency
f1 and the other f2 = f1 + n/�t - they would be indistinguishable! Hence the signal must be
sampled sufficiently frequently to capture all the information of interest so for example high
quality music recording often uses a sampling frequency of 44 kHz.
How then do we numerically perform a Fourier Transform of a discretized signal? The
answer is the Discrete Fourier Transform (DFT). Suppose we have N consecutive, uniformly
sampled points:

hk = h (tk) , tk = k.�t, k = 0, 1, 2, 3, . . . N � 1 (3)

and assume N is even, then instead of having to calculate the Fourier transform for all
frequencies,

H (!) =

Z 1

�1
h (t) exp (i!t) dt, ! = 2⇡f (4)

we only need to focus on those frequencies in the range �fc < f < fc and in particular, we
only need the discrete set of frequencies given by

fn =
n

N.�t
, n =

�N

2
, . . .

N

2
(5)

and so we have:

1

Fourier Analysis

Animation from Wikipedia ‘Fourier Analysis’ article

Numerical
Fourier Transforms

Discrete Fourier Transform

n How can we do it computationally?
n Need to sample data at discrete intervals:

n And then do Discrete Fourier Transform:

DEPARTMENT OF PHYSICS Y2 COMPUTATIONAL LABORATORY

Experiment 2.6: Signal/Image Processing and Fourier

Transforms

Introduction and Mathematical Background

There are many situations in which a signal h(t) or an image h(x, y) needs to be processed,
for example, to smooth out high-frequency noise, or to do image enhancements such as edge
detection or motion blur removal. One very powerful mathematical technique that underlies
many of these processes is the Fourier Transform. In the most common situation, the signal
is not continuous but is instead sampled at evenly spaced intervals, e.g.

h (t) ! hn = h (n.�t) , n = . . . ,�3,�2,�1, 0, 1, 2, 3, . . . (1)

where the time interval is �t or conversely the sampling rate is 1/�t. This gives rise to the
problem of aliasing - the sampled signal will only contain frequency components in the
range �fc < f < fcwhere the critical sampling frequency, is also known as the Nyquist
critical frequency, is

fc =
1

2.�t
. (2)

Any frequency outside of this range will be aliased, i.e. mapped onto this range, by the act of
sampling. Consider what would be the sampled value for two sine waves, one of frequency
f1 and the other f2 = f1 + n/�t - they would be indistinguishable! Hence the signal must be
sampled sufficiently frequently to capture all the information of interest so for example high
quality music recording often uses a sampling frequency of 44 kHz.
How then do we numerically perform a Fourier Transform of a discretized signal? The
answer is the Discrete Fourier Transform (DFT). Suppose we have N consecutive, uniformly
sampled points:

hk = h (tk) , tk = k.�t, k = 0, 1, 2, 3, . . . N � 1 (3)

and assume N is even, then instead of having to calculate the Fourier transform for all
frequencies,

H (!) =

Z 1

�1
h (t) exp (i!t) dt, ! = 2⇡f (4)

we only need to focus on those frequencies in the range �fc < f < fc and in particular, we
only need the discrete set of frequencies given by

fn =
n

N.�t
, n =

�N

2
, . . .

N

2
(5)

and so we have:

1

H (fn) =

Z 1

�1
h (t) exp (2⇡ifnt) dt '

N�1X

k=0

hk exp (2⇡ifntk) �t = �t
N�1X

k=0

hk exp (2⇡ikn/N)

(6)
and so finally the Discrete Fourier Transform is defined as:

Hn =
N�1X

k=0

hk exp (2⇡ikn/N) . (7)

NB The DFT maps N complex numbers (the hk) into N complex numbers (the Hn) and does
not depend on dimensional quantities such as �t. The DFT has many of the same properties
as the conventional Fourier Transform, including the inverse DFT:

hk =
1

N

N�1X

k=0

Hn exp (�2⇡ikn/N) . (8)

Whilst the DFT has been known about for many years, it was long thought to have a quadratic
scaling in the size of the problem, i.e. be an O (N2) operation as the obvious way to imple-
ment the technique is by a matrix multiplication:

Hn =
N�1X

k=0

W nkhk (9)

where the vector H (size N) is given by multiplying the vector h (size N) by a matrix (size
N ⇥N) whose (n, k)-th element W nk is given by the constant W = exp (2⇡i/N) raised to
the power of n⇥ k.
However, a major breakthrough came in the 1960’s with the publication of the Fast Fourier
Transform by Cooley & Tukey, which showed that the DFT could actually be calculated in
only O (N logN) operations. This is an immense saving - whilst the old approach would
take days, the new approach takes no more than a few seconds. This has transformed the
field of signal processing, and made many calculations trivial that would otherwise have
been effectively impossible. The Cooley & Tukey paper has been voted one of the seminal
maths papers of the century! A copy of the original paper has been put on the VLE.
The core idea of the FFT is to write the DFT of length N as the sum of 2 DFTs, each of
length N/2, where one sum is formed from the even numbered sample points in the original
DFT and the other the odd. This process can then be repeated recursively, and if the original
value of Nwas an integer power of 2, then the final DFT is of length one! The proof is
simple:

Hk =
PN�1

j=0 exp (2⇡ijk/N)hj

=
PN/2�1

j=0 exp (2⇡i (2j) k/N)h2j +
PN/2�1

j=0 exp (2⇡i (2j + 1) k/N)h2j+1

=
PN/2�1

j=0 exp (2⇡ijk/ (N/2))h2j +W k
PN/2�1

j=0 exp (2⇡ijk/ (N/2))h2j+1

= He
k +W kHo

k
(10)

2

H (fn) =

Z 1

�1
h (t) exp (2⇡ifnt) dt '

N�1X

k=0

hk exp (2⇡ifntk) �t = �t
N�1X

k=0

hk exp (2⇡ikn/N)

(6)
and so finally the Discrete Fourier Transform is defined as:

Hn =
N�1X

k=0

hk exp (2⇡ikn/N) . (7)

NB The DFT maps N complex numbers (the hk) into N complex numbers (the Hn) and does
not depend on dimensional quantities such as �t. The DFT has many of the same properties
as the conventional Fourier Transform, including the inverse DFT:

hk =
1

N

N�1X

k=0

Hn exp (�2⇡ikn/N) . (8)

Whilst the DFT has been known about for many years, it was long thought to have a quadratic
scaling in the size of the problem, i.e. be an O (N2) operation as the obvious way to imple-
ment the technique is by a matrix multiplication:

Hn =
N�1X

k=0

W nkhk (9)

where the vector H (size N) is given by multiplying the vector h (size N) by a matrix (size
N ⇥N) whose (n, k)-th element W nk is given by the constant W = exp (2⇡i/N) raised to
the power of n⇥ k.
However, a major breakthrough came in the 1960’s with the publication of the Fast Fourier
Transform by Cooley & Tukey, which showed that the DFT could actually be calculated in
only O (N logN) operations. This is an immense saving - whilst the old approach would
take days, the new approach takes no more than a few seconds. This has transformed the
field of signal processing, and made many calculations trivial that would otherwise have
been effectively impossible. The Cooley & Tukey paper has been voted one of the seminal
maths papers of the century! A copy of the original paper has been put on the VLE.
The core idea of the FFT is to write the DFT of length N as the sum of 2 DFTs, each of
length N/2, where one sum is formed from the even numbered sample points in the original
DFT and the other the odd. This process can then be repeated recursively, and if the original
value of Nwas an integer power of 2, then the final DFT is of length one! The proof is
simple:

Hk =
PN�1

j=0 exp (2⇡ijk/N)hj

=
PN/2�1

j=0 exp (2⇡i (2j) k/N)h2j +
PN/2�1

j=0 exp (2⇡i (2j + 1) k/N)h2j+1

=
PN/2�1

j=0 exp (2⇡ijk/ (N/2))h2j +W k
PN/2�1

j=0 exp (2⇡ijk/ (N/2))h2j+1

= He
k +W kHo

k
(10)

2

DFT continued

n Hence define DFT:

n And inverse DFT:

H (fn) =

Z 1

�1
h (t) exp (2⇡ifnt) dt '

N�1X

k=0

hk exp (2⇡ifntk) �t = �t
N�1X

k=0

hk exp (2⇡ikn/N)

(6)
and so finally the Discrete Fourier Transform is defined as:

Hn =
N�1X

k=0

hk exp (2⇡ikn/N) . (7)

NB The DFT maps N complex numbers (the hk) into N complex numbers (the Hn) and does
not depend on dimensional quantities such as �t. The DFT has many of the same properties
as the conventional Fourier Transform, including the inverse DFT:

hk =
1

N

N�1X

k=0

Hn exp (�2⇡ikn/N) . (8)

Whilst the DFT has been known about for many years, it was long thought to have a quadratic
scaling in the size of the problem, i.e. be an O (N2) operation as the obvious way to imple-
ment the technique is by a matrix multiplication:

Hn =
N�1X

k=0

W nkhk (9)

where the vector H (size N) is given by multiplying the vector h (size N) by a matrix (size
N ⇥N) whose (n, k)-th element W nk is given by the constant W = exp (2⇡i/N) raised to
the power of n⇥ k.
However, a major breakthrough came in the 1960’s with the publication of the Fast Fourier
Transform by Cooley & Tukey, which showed that the DFT could actually be calculated in
only O (N logN) operations. This is an immense saving - whilst the old approach would
take days, the new approach takes no more than a few seconds. This has transformed the
field of signal processing, and made many calculations trivial that would otherwise have
been effectively impossible. The Cooley & Tukey paper has been voted one of the seminal
maths papers of the century! A copy of the original paper has been put on the VLE.
The core idea of the FFT is to write the DFT of length N as the sum of 2 DFTs, each of
length N/2, where one sum is formed from the even numbered sample points in the original
DFT and the other the odd. This process can then be repeated recursively, and if the original
value of Nwas an integer power of 2, then the final DFT is of length one! The proof is
simple:

Hk =
PN�1

j=0 exp (2⇡ijk/N)hj

=
PN/2�1

j=0 exp (2⇡i (2j) k/N)h2j +
PN/2�1

j=0 exp (2⇡i (2j + 1) k/N)h2j+1

=
PN/2�1

j=0 exp (2⇡ijk/ (N/2))h2j +W k
PN/2�1

j=0 exp (2⇡ijk/ (N/2))h2j+1

= He
k +W kHo

k
(10)

2

H (fn) =

Z 1

�1
h (t) exp (2⇡ifnt) dt '

N�1X

k=0

hk exp (2⇡ifntk) �t = �t
N�1X

k=0

hk exp (2⇡ikn/N)

(6)
and so finally the Discrete Fourier Transform is defined as:

Hn =
N�1X

k=0

hk exp (2⇡ikn/N) . (7)

NB The DFT maps N complex numbers (the hk) into N complex numbers (the Hn) and does
not depend on dimensional quantities such as �t. The DFT has many of the same properties
as the conventional Fourier Transform, including the inverse DFT:

hk =
1

N

N�1X

k=0

Hn exp (�2⇡ikn/N) . (8)

Whilst the DFT has been known about for many years, it was long thought to have a quadratic
scaling in the size of the problem, i.e. be an O (N2) operation as the obvious way to imple-
ment the technique is by a matrix multiplication:

Hn =
N�1X

k=0

W nkhk (9)

where the vector H (size N) is given by multiplying the vector h (size N) by a matrix (size
N ⇥N) whose (n, k)-th element W nk is given by the constant W = exp (2⇡i/N) raised to
the power of n⇥ k.
However, a major breakthrough came in the 1960’s with the publication of the Fast Fourier
Transform by Cooley & Tukey, which showed that the DFT could actually be calculated in
only O (N logN) operations. This is an immense saving - whilst the old approach would
take days, the new approach takes no more than a few seconds. This has transformed the
field of signal processing, and made many calculations trivial that would otherwise have
been effectively impossible. The Cooley & Tukey paper has been voted one of the seminal
maths papers of the century! A copy of the original paper has been put on the VLE.
The core idea of the FFT is to write the DFT of length N as the sum of 2 DFTs, each of
length N/2, where one sum is formed from the even numbered sample points in the original
DFT and the other the odd. This process can then be repeated recursively, and if the original
value of Nwas an integer power of 2, then the final DFT is of length one! The proof is
simple:

Hk =
PN�1

j=0 exp (2⇡ijk/N)hj

=
PN/2�1

j=0 exp (2⇡i (2j) k/N)h2j +
PN/2�1

j=0 exp (2⇡i (2j + 1) k/N)h2j+1

=
PN/2�1

j=0 exp (2⇡ijk/ (N/2))h2j +W k
PN/2�1

j=0 exp (2⇡ijk/ (N/2))h2j+1

= He
k +W kHo

k
(10)

2

Consequences of sampling

n Data is sampled with time interval of dt
n Hence only finite range of frequencies

present: and
n Hence can have aliasing – where two

different signals appear to be the same

DEPARTMENT OF PHYSICS Y2 COMPUTATIONAL LABORATORY

Experiment 2.6: Signal/Image Processing and Fourier

Transforms

Introduction and Mathematical Background

There are many situations in which a signal h(t) or an image h(x, y) needs to be processed,
for example, to smooth out high-frequency noise, or to do image enhancements such as edge
detection or motion blur removal. One very powerful mathematical technique that underlies
many of these processes is the Fourier Transform. In the most common situation, the signal
is not continuous but is instead sampled at evenly spaced intervals, e.g.

h (t) ! hn = h (n.�t) , n = . . . ,�3,�2,�1, 0, 1, 2, 3, . . . (1)

where the time interval is �t or conversely the sampling rate is 1/�t. This gives rise to the
problem of aliasing - the sampled signal will only contain frequency components in the
range �fc < f < fcwhere the critical sampling frequency, is also known as the Nyquist
critical frequency, is

fc =
1

2.�t
. (2)

Any frequency outside of this range will be aliased, i.e. mapped onto this range, by the act of
sampling. Consider what would be the sampled value for two sine waves, one of frequency
f1 and the other f2 = f1 + n/�t - they would be indistinguishable! Hence the signal must be
sampled sufficiently frequently to capture all the information of interest so for example high
quality music recording often uses a sampling frequency of 44 kHz.
How then do we numerically perform a Fourier Transform of a discretized signal? The
answer is the Discrete Fourier Transform (DFT). Suppose we have N consecutive, uniformly
sampled points:

hk = h (tk) , tk = k.�t, k = 0, 1, 2, 3, . . . N � 1 (3)

and assume N is even, then instead of having to calculate the Fourier transform for all
frequencies,

H (!) =

Z 1

�1
h (t) exp (i!t) dt, ! = 2⇡f (4)

we only need to focus on those frequencies in the range �fc < f < fc and in particular, we
only need the discrete set of frequencies given by

fn =
n

N.�t
, n =

�N

2
, . . .

N

2
(5)

and so we have:

1

DEPARTMENT OF PHYSICS Y2 COMPUTATIONAL LABORATORY

Experiment 2.6: Signal/Image Processing and Fourier

Transforms

Introduction and Mathematical Background

There are many situations in which a signal h(t) or an image h(x, y) needs to be processed,
for example, to smooth out high-frequency noise, or to do image enhancements such as edge
detection or motion blur removal. One very powerful mathematical technique that underlies
many of these processes is the Fourier Transform. In the most common situation, the signal
is not continuous but is instead sampled at evenly spaced intervals, e.g.

h (t) ! hn = h (n.�t) , n = . . . ,�3,�2,�1, 0, 1, 2, 3, . . . (1)

where the time interval is �t or conversely the sampling rate is 1/�t. This gives rise to the
problem of aliasing - the sampled signal will only contain frequency components in the
range �fc < f < fcwhere the critical sampling frequency, is also known as the Nyquist
critical frequency, is

fc =
1

2.�t
. (2)

Any frequency outside of this range will be aliased, i.e. mapped onto this range, by the act of
sampling. Consider what would be the sampled value for two sine waves, one of frequency
f1 and the other f2 = f1 + n/�t - they would be indistinguishable! Hence the signal must be
sampled sufficiently frequently to capture all the information of interest so for example high
quality music recording often uses a sampling frequency of 44 kHz.
How then do we numerically perform a Fourier Transform of a discretized signal? The
answer is the Discrete Fourier Transform (DFT). Suppose we have N consecutive, uniformly
sampled points:

hk = h (tk) , tk = k.�t, k = 0, 1, 2, 3, . . . N � 1 (3)

and assume N is even, then instead of having to calculate the Fourier transform for all
frequencies,

H (!) =

Z 1

�1
h (t) exp (i!t) dt, ! = 2⇡f (4)

we only need to focus on those frequencies in the range �fc < f < fc and in particular, we
only need the discrete set of frequencies given by

fn =
n

N.�t
, n =

�N

2
, . . .

N

2
(5)

and so we have:

1

Other numerical issues

n Can also have problems when sampling
periodic functions
n What happens if sample interval is not an

integer number of periods?
n Can get apparent discontinuities in signal

n Filtering the data can help
n Lots of different filters available
n Trade-off between broadening central peak

vs power into side lobes, etc.

Implementing DFT

n Matrix multiplication:

n Input data is vector h of length N
n Output data is vector H of length N
n W is a matrix of size NxN whose (n,k)th

element is the constant
raised to the power n x k

H (fn) =

Z 1

�1
h (t) exp (2⇡ifnt) dt '

N�1X

k=0

hk exp (2⇡ifntk) �t = �t
N�1X

k=0

hk exp (2⇡ikn/N)

(6)
and so finally the Discrete Fourier Transform is defined as:

Hn =
N�1X

k=0

hk exp (2⇡ikn/N) . (7)

NB The DFT maps N complex numbers (the hk) into N complex numbers (the Hn) and does
not depend on dimensional quantities such as �t. The DFT has many of the same properties
as the conventional Fourier Transform, including the inverse DFT:

hk =
1

N

N�1X

k=0

Hn exp (�2⇡ikn/N) . (8)

Whilst the DFT has been known about for many years, it was long thought to have a quadratic
scaling in the size of the problem, i.e. be an O (N2) operation as the obvious way to imple-
ment the technique is by a matrix multiplication:

Hn =
N�1X

k=0

W nkhk (9)

where the vector H (size N) is given by multiplying the vector h (size N) by a matrix (size
N ⇥N) whose (n, k)-th element W nk is given by the constant W = exp (2⇡i/N) raised to
the power of n⇥ k.
However, a major breakthrough came in the 1960’s with the publication of the Fast Fourier
Transform by Cooley & Tukey, which showed that the DFT could actually be calculated in
only O (N logN) operations. This is an immense saving - whilst the old approach would
take days, the new approach takes no more than a few seconds. This has transformed the
field of signal processing, and made many calculations trivial that would otherwise have
been effectively impossible. The Cooley & Tukey paper has been voted one of the seminal
maths papers of the century! A copy of the original paper has been put on the VLE.
The core idea of the FFT is to write the DFT of length N as the sum of 2 DFTs, each of
length N/2, where one sum is formed from the even numbered sample points in the original
DFT and the other the odd. This process can then be repeated recursively, and if the original
value of Nwas an integer power of 2, then the final DFT is of length one! The proof is
simple:

Hk =
PN�1

j=0 exp (2⇡ijk/N)hj

=
PN/2�1

j=0 exp (2⇡i (2j) k/N)h2j +
PN/2�1

j=0 exp (2⇡i (2j + 1) k/N)h2j+1

=
PN/2�1

j=0 exp (2⇡ijk/ (N/2))h2j +W k
PN/2�1

j=0 exp (2⇡ijk/ (N/2))h2j+1

= He
k +W kHo

k
(10)

2

H (fn) =

Z 1

�1
h (t) exp (2⇡ifnt) dt '

N�1X

k=0

hk exp (2⇡ifntk) �t = �t
N�1X

k=0

hk exp (2⇡ikn/N)

(6)
and so finally the Discrete Fourier Transform is defined as:

Hn =
N�1X

k=0

hk exp (2⇡ikn/N) . (7)

NB The DFT maps N complex numbers (the hk) into N complex numbers (the Hn) and does
not depend on dimensional quantities such as �t. The DFT has many of the same properties
as the conventional Fourier Transform, including the inverse DFT:

hk =
1

N

N�1X

k=0

Hn exp (�2⇡ikn/N) . (8)

Whilst the DFT has been known about for many years, it was long thought to have a quadratic
scaling in the size of the problem, i.e. be an O (N2) operation as the obvious way to imple-
ment the technique is by a matrix multiplication:

Hn =
N�1X

k=0

W nkhk (9)

where the vector H (size N) is given by multiplying the vector h (size N) by a matrix (size
N ⇥N) whose (n, k)-th element W nk is given by the constant W = exp (2⇡i/N) raised to
the power of n⇥ k.
However, a major breakthrough came in the 1960’s with the publication of the Fast Fourier
Transform by Cooley & Tukey, which showed that the DFT could actually be calculated in
only O (N logN) operations. This is an immense saving - whilst the old approach would
take days, the new approach takes no more than a few seconds. This has transformed the
field of signal processing, and made many calculations trivial that would otherwise have
been effectively impossible. The Cooley & Tukey paper has been voted one of the seminal
maths papers of the century! A copy of the original paper has been put on the VLE.
The core idea of the FFT is to write the DFT of length N as the sum of 2 DFTs, each of
length N/2, where one sum is formed from the even numbered sample points in the original
DFT and the other the odd. This process can then be repeated recursively, and if the original
value of Nwas an integer power of 2, then the final DFT is of length one! The proof is
simple:

Hk =
PN�1

j=0 exp (2⇡ijk/N)hj

=
PN/2�1

j=0 exp (2⇡i (2j) k/N)h2j +
PN/2�1

j=0 exp (2⇡i (2j + 1) k/N)h2j+1

=
PN/2�1

j=0 exp (2⇡ijk/ (N/2))h2j +W k
PN/2�1

j=0 exp (2⇡ijk/ (N/2))h2j+1

= He
k +W kHo

k
(10)

2

Speed of DFT

n Each element of Hk requires N multiplications
hence overall ~O(N2)
n which is true of the general transform

n BUT if N is even then can split h into two parts,
he = even indices h2j and ho = odd indices h2j+1

n Whereupon find Hk = H e
k + W k H o

k

n Hence cost is now ~O(2(N/2)2)
n Repeat … Fast Fourier Transform ~O(N.log2N)

Fast
Fourier Transforms

Fast Fourier Transform

n The FFT algorithm was independently
discovered a number of times in past

n Major breakthrough came with computational
discovery/ implementation by Cooley & Tukey
n Voted one of the “Top 10 algorithms of C20”!
n E.g. key part of JPEG and MP3 encoding
n Now extended to not just even N, but to N

which has prime factors of 2, 3, 5, …
n Difference in speed wrt DFT ~N/log2(N) so pad

data with zeroes until N fits and then use FFT!

FFT data layout

n The recursive nature of the halving of the
FFT means internal data layout is complex:

n Need bit reversal of indices for output data

FFT data layout

Input data Output data
t=0 à (N-1)d f: -(N/2d) à +(N/2d)

Complex vs Real data

n In general, the input data has type=complex
and so is output

n What if input data has type=real?
n E.g. real-space charge density?
n E.g. G-point calculations?

n Could either code up separate real ßà
complex transforms => messy & inefficient

n Or pack 2 real vectors into 1 complex
vector (1=real, 2=imaginary) and do both at
same time => fast and saves memory

Multidimensional FFT

n What about 2D or 3D data?
n E.g. image manipulations or charge density …

n Easy to generalize analytical formulae and
DFT/FFT to 2D and 3D and beyond

n Computationally see that each dimension is
independent
n Simplest to implement using row-column

approach – e.g. 2D = set of 1D transforms
n In 3D best to do 2D planes for fixed z and then

iterate over z to get best cache reuse

Parallel FFT

n Two cases:
n Doing a big FFT in parallel

n Can exploit the recursive nature of FFT to
split up long FFT into a sequence of shorter
independent FFTs and hence parallelize

n Useful for multi-core approach to handling
few big FFTs e.g. in digital camera

n Or doing FFT on data that is already parallel
distributed
n Which is what we have in CASTEP …

FFT in
parallel CASTEP

Parallel FFT in CASTEP

n We need to do 3D real ßà recip FFT at
various points in CASTEP
n E.g. calculations involving wavefunction,

density, band overlap matrix, etc.
n And with G-vector parallelism we have the

basic G-vectors and all associated data
distributed across cores
n How best to arrange the data?
n Dictated by the FFT algorithm!

G-vector data distribution

n Distributed data:
n Each core has some G-vectors
n Each core has some r-space data
n Time reversal symmetry: r(G)=r(-G)

n Fourier transform:
n ALL G-vectors contribute to ALL points in
r-space and vice versa

n Hence requires a lot of data movement
n FFT is a key communications bottleneck

G-vector parallelism

n Do 3D transform as set of 1D transforms
n Give each core all G-vectors in a z column

n Each core does transform in z with own data
n All cores swap data so they have y columns

n Each core does transform in y with own data
n All cores swap data so they have x columns

n Each core does transform in x with own data
n Each core starts with G-space data in z and

ends up with r-space data in x

G-vector parallel FFT
CASTEP in

Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

G-vector parallelism

Start: G-vectors inside cut-off sphere �! put on grid.

Core 1
Core 2
Core 3
Core 4

G-vector parallel FFT
CASTEP in

Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

G-vector parallelism

Now perform FFT in z-direction...

G-vector parallel FFT
CASTEP in

Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

G-vector parallelism

Transpose (swap) data into y-columns.

G-vector parallel FFT
CASTEP in

Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

G-vector parallelism

Now perform FFT in y-direction...

G-vector parallel FFT
CASTEP in

Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

G-vector parallelism

Transpose data into x-columns.

G-vector parallel FFT
CASTEP in

Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

G-vector parallelism

Now perform FFT in x-direction...

G-vector parallel FFT
CASTEP in

Parallel

Introduction

Reciprocal-
Space
Sampling

Finding the
Groundstate

CASTEP in
Parallel

�-point

Summary

G-vector parallelism

Now have real-space data in x-columns.

G-vector parallel consequences

n Each FFT is relatively fast and scales well
n But requires an all-to-all communication at

each step to do the data transposition
n Hence time scales as N2

core

n As Ncore increases the FFT process will take
longer due to increasing comms time

n When comms time ~ calculation time then
have reached the limit of scaling
n More cores will make the calculation go slower!

Summary

Summary

n FFT is a key algorithm in many areas of
science and technology
n Good to understand how it works, and

implications of aliasing, filtering etc
n Key to efficient plane wave DFT

n KE is diagonal in reciprocal space
n PE is local in real space

n But FFT on distributed data requires lots of
communications
n Ultimate limit to CASTEP scaling

References

n MC Payne et al., Rev. Mod. Phys 64, 1045
(1992)

n WH Press et al, “Numerical Recipes: The
Art of Scientific Computing”, Cambridge
University Press (1989 – 2007)

n JW Cooley and JW Tukey, Math. Comput.
19, 297 (1965)

