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m \What is a Fourier Transform?

m \What is the Fast Fourier Transform??
s Maths & Scaling

m Data layout

m Handling real data
m Extensions to 2D, 3D ...

s How to parallelize the FFT
m FFT in parallel vs FFT of parallel data

® Summary
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Fourier Transform Basics
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m A linear transform that maps a function from
time <> frequency domain

m Or from space < —-> reciprocal space, etc

H(w) = /OQ h(t)exp (iwt)dt, w=2nf

— O
m Very useful in many areas, for signal
processing, spectral analysis, etc.

m In DFT the KE is simple in reciprocal space
and the PE is simple in real space

m Different conventions on 2x factors etc
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Animation from Wikipedia ‘Fourier Analysis’ article
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Numerical
Fourier Transforms
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s How can we do it computationally?
m Need to sample data at discrete intervals:

hy =h(ty), t, =Fk.ot, k=0,1,2,3,...N —1
s And then do Discrete Fourier Transform:

H(f,) = /OO h (t) exp (2mi f,t) dt

N—1 N—1
~ hi exp (2mi f,ty) 0t = Ot Z hy exp (2mikn/N)
k=0 k=0
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m Hence define DFT:
N—1

H, = Z hi exp (2mikn/N)

k=0

m And Iinverse DFT:

N—1
1 .
h, = N ,;:O H, exp (—2mikn/N)
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m Data is sampled with time interval of ot

s Hence only finite range of frequencies
present: —f. < [ < f. and f.=

m Hence can have aliasing — where two
different signals appear to be the same
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m Can also have problems when sampling
periodic functions

m \What happens if sample interval is not an
integer number of periods?

m Can get apparent discontinuities in signal
m Filtering the data can help

m Lots of different filters available

m [rade-off between broadening central peak
vs power into side lobes, etc.
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s Matrix multiplication:

N—1
H, = Z W™ h,

k=0

m Input data is vector h of length N
s Output data is vector H of length N

s Wis a matrix of size NxN whose (n, k)
element is the constant |V = exp (27i/N)
raised to the power n x k
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m Each element of H, requires N multiplications
hence overall ~O(N?)

= Which is true of the general transform

m BUT if Nis even then can split h into two parts,
h, = even indices hy and h, = odd indices hy;,,

s Whereupon find H,= H¢, + Wk Ho,
m Hence cost is now ~O(2(N/2)?)

m Repeat ... Fast Fourier Transform ~O(N-log,N)
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Fast
Fourier Transforms
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m The FFT algorithm was independently
discovered a number of times in past

s Major breakthrough came with computational
discovery/ implementation by Cooley & Tukey

m VVoted one of the “Top 10 algorithms of C20"!
m E.g. key part of JPEG and MP3 encoding

m Now extended to not just even N, but to N
which has prime factors of 2, 3, 5, ...

m Difference in speed wrt DFT ~N/log,(N) so pad
data with zeroes until N fits and then use FFT!
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m The recursive nature of the halving of the
FFT means internal data layout is complex:

000 > 000

001 \ / 001
010 > 010

011 011

100 100
101 > 101
110 / \ 110
111 > 111
m Need bit reversal of indices for output data
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m In general, the input data has type=complex
and so Is output

s \What if input data has type=real?
m E£.g. real-space charge density?
m E.9. I'-point calculations?

m Could either code up separate real <>
complex transforms => messy & inefficient

m Or pack 2 real vectors into 1 complex
vector (1=real, 2=imaginary) and do both at
same time => fast and saves memory



THE UNIVERSITY o7k Multidimensional FFT

s What about 2D or 3D data”
m E.g. image manipulations or charge density ...

m Easy to generalize analytical formulae and
DFT/FFT to 2D and 3D and beyond

s Computationally see that each dimension is
independent

m Simplest to implement using row-column
approach — e.g. 2D = set of 1D transforms

m In 3D best to do 2D planes for fixed z and then
iterate over z to get best cache reuse
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m | WO cases:

m Doing a big FFT in parallel

m Can exploit the recursive nature of FFT to
split up long FFT into a sequence of shorter
independent FFTs and hence parallelize

» Useful for multi-core approach to handling
few big FFTs e.g. in digital camera

m Or doing FFT on data that is already parallel
distributed

= Which is what we have in CASTEP ...



FFT in
parallel CASTEP
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s \We need to do 3D real <> recip FFT at
various points in CASTEP

m E.g. calculations involving wavefunction,
density, band overlap matrix, etc.

s And with G-vector parallelism we have the
basic G-vectors and all associated data
distributed across cores

m How best to arrange the data?
m Dictated by the FFT algorithm!
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m Distributed data:

m Each core has some G-vectors

m Each core has some r-space data

m Time reversal symmetry: p(G)=p(-G)
m Fourier transform:

m ALL G-vectors contribute to ALL points In
r-space and vice versa

m Hence requires a lot of data movement
m FFT is a key communications bottleneck
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m Do 3D transform as set of 1D transforms

m Give each core all G-vectors in a z column
m Each core does transform in z with own data

m All cores swap data so they have y columns
m Each core does transform in y with own data
m All cores swap data so they have x columns
m Each core does transform in x with own data

m Each core starts with G-space data in z and
ends up with r-space data in x
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Core 1
Core 2

Core 4

Start: G-vectors inside cut-off sphere — put on grid.
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Now perform FFT in z-direction...
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Transpose (swap) data into y-columns.
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Now perform FFT in y-direction...
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Transpose data into x-columns.
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Now perform FFT in x-direction...
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Now have real-space data in x-columns.
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m Each FFT is relatively fast and scales well

m But requires an all-to-all communication at
each step to do the data transposition

m Hence time scales as N?,,,,

m As N, Increases the FFT process will take
longer due to increasing comms time

s \When comms time ~ calculation time then
have reached the limit of scaling

m More cores will make the calculation go slower!
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Summary
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m FFT is a key algorithm in many areas of
science and technology

m Good to understand how it works, and
implications of aliasing, filtering etc

m Key to efficient plane wave DFT
m KE is diagonal in reciprocal space
m PE is local in real space

m But FFT on distributed data requires lots of
communications

» Ultimate limit to CASTEP scaling
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