

Parallel Fast Fourier Transform

Matt Probert

August-Wilhelm Scheer Visiting Prof TUM 2015

Condensed Matter Dynamics Group

Department of Physics,

University of York, U.K.

http://www-users.york.ac.uk/~mijp1

- What is a Fourier Transform?
- What is the Fast Fourier Transform?
 - Maths & Scaling
 - Data layout
 - Handling real data
 - Extensions to 2D, 3D ...
- How to parallelize the FFT
 - FFT in parallel vs FFT of parallel data
- Summary

Fourier Transform Basics

- A linear transform that maps a function from time ← → frequency domain
 - Or from space $\leftarrow \rightarrow$ reciprocal space, etc

$$H(\omega) = \int_{-\infty}^{\infty} h(t) \exp(i\omega t) dt, \ \omega = 2\pi f$$

- Very useful in many areas, for signal processing, spectral analysis, etc.
- In DFT the KE is simple in reciprocal space and the PE is simple in real space
- Different conventions on 2π factors etc

Fourier Analysis

Animation from Wikipedia 'Fourier Analysis' article

Numerical Fourier Transforms

- How can we do it computationally?
- Need to sample data at discrete intervals:

$$h_k = h(t_k), t_k = k.\delta t, k = 0, 1, 2, 3, \dots N - 1$$

And then do Discrete Fourier Transform:

$$H(f_n) = \int_{-\infty}^{\infty} h(t) \exp(2\pi i f_n t) dt$$

 $\simeq \sum_{k=0}^{N-1} h_k \exp\left(2\pi i f_n t_k\right) \delta t = \delta t \sum_{k=0}^{N-1} h_k \exp\left(2\pi i k n/N\right)$

DFT continued

Hence define DFT:

$$H_n = \sum_{k=0}^{N-1} h_k \exp\left(2\pi i kn/N\right)$$

And inverse DFT:

$$h_{k} = \frac{1}{N} \sum_{k=0}^{N-1} H_{n} \exp\left(-2\pi i k n/N\right)$$

Data is sampled with time interval of δt

THE UNIVERSITY of fork

- Hence only finite range of frequencies present: $-f_c < f < f_c$ and $f_c = \frac{1}{2.\delta t}$
 - Hence can have aliasing where two different signals appear to be the same

- Can also have problems when sampling periodic functions
 - What happens if sample interval is not an integer number of periods?
 - Can get apparent discontinuities in signal
- Filtering the data can help
 - Lots of different filters available
 - Trade-off between broadening central peak vs power into side lobes, etc.

Matrix multiplication:

$$H_n = \sum_{k=0}^{N-1} W^{nk} h_k$$

- Input data is vector *h* of length N
- Output data is vector *H* of length *N*
- W is a matrix of size NxN whose $(n,k)^{\text{th}}$ element is the constant $W = \exp(2\pi i/N)$ raised to the power $n \ge k$

- Each element of H_k requires N multiplications hence overall ~ $O(N^2)$
 - which is true of the general transform
- BUT if *N* is even then can split *h* into two parts, $h_e =$ even indices h_{2j} and $h_o =$ odd indices h_{2j+1}
- Whereupon find $H_k = H^e_k + W^k H^o_k$
 - Hence cost is now $\sim O(2(N/2)^2)$
- Repeat ... Fast Fourier Transform ~O(N·log₂N)

Fast Fourier Transforms

- The FFT algorithm was independently discovered a number of times in past
- Major breakthrough came with computational discovery/ implementation by Cooley & Tukey
 - Voted one of the "Top 10 algorithms of C20"!
 - E.g. key part of JPEG and MP3 encoding
 - Now extended to not just even N, but to N which has prime factors of 2, 3, 5, ...
 - Difference in speed wrt DFT ~N/log₂(N) so pad data with zeroes until N fits and then use FFT!

THE UNIVERSITY of York

FFT data layout

The recursive nature of the halving of the FFT means internal data layout is complex:

THE UNIVERSITY of York

FFT data layout

Input data $t=0 \rightarrow (N-1)\delta$

Output data f: $-(N/2\delta) \rightarrow +(N/2\delta)$

- In general, the input data has type=complex and so is output
- What if input data has type=real?
 - E.g. real-space charge density?
 - E.g. Γ-point calculations?
- Could either code up separate real ← → complex transforms => messy & inefficient
- Or pack 2 real vectors into 1 complex vector (1=real, 2=imaginary) and do both at same time => fast and saves memory

- What about 2D or 3D data?
 - E.g. image manipulations or charge density ...
- Easy to generalize analytical formulae and DFT/FFT to 2D and 3D and beyond
- Computationally see that each dimension is independent
 - Simplest to implement using row-column approach – e.g. 2D = set of 1D transforms
 - In 3D best to do 2D planes for fixed z and then iterate over z to get best cache reuse

Two cases:

- Doing a big FFT in parallel
 - Can exploit the recursive nature of FFT to split up long FFT into a sequence of shorter independent FFTs and hence parallelize
 - Useful for multi-core approach to handling few big FFTs e.g. in digital camera
- Or doing FFT on data that is already parallel distributed
 - Which is what we have in CASTEP ...

FFT in parallel CASTEP

- We need to do 3D real ← → recip FFT at various points in CASTEP
 - E.g. calculations involving wavefunction, density, band overlap matrix, etc.
- And with G-vector parallelism we have the basic G-vectors and all associated data distributed across cores
 - How best to arrange the data?
 - Dictated by the FFT algorithm!

- Distributed data:
 - Each core has some **G**-vectors
 - Each core has some r-space data
 - Time reversal symmetry: $\rho(\mathbf{G})=\rho(-\mathbf{G})$
- Fourier transform:
 - ALL G-vectors contribute to ALL points in r-space and vice versa
 - Hence requires a lot of data movement
 - FFT is a key communications bottleneck

- Do 3D transform as set of 1D transforms
- Give each core all G-vectors in a z column
 Each core does transform in a with own data
 - Each core does transform in z with own data
- All cores swap data so they have y columns
 Each core does transform in y with own data
- All cores swap data so they have x columns
 - Each core does transform in x with own data
- Each core starts with G-space data in z and ends up with r-space data in x

Start: **G**-vectors inside cut-off sphere \longrightarrow put on grid.

Now perform FFT in z-direction...

Transpose (swap) data into y-columns.

Now perform FFT in y-direction...

Transpose data into x-columns.

Now perform FFT in x-direction...

Now have real-space data in x-columns.

- Each FFT is relatively fast and scales well
- But requires an *all-to-all* communication at each step to do the data transposition

Hence time scales as N²_{core}

- As N_{core} increases the FFT process will take longer due to increasing comms time
- When comms time ~ calculation time then have reached the limit of scaling
 - More cores will make the calculation go slower!

Summary

Summary

FFT is a key algorithm in many areas of science and technology

- Good to understand how it works, and implications of aliasing, filtering etc
- Key to efficient plane wave DFT
 - KE is diagonal in reciprocal space
 - PE is local in real space
- But FFT on distributed data requires lots of communications
 - Ultimate limit to CASTEP scaling

MC Payne et al., Rev. Mod. Phys 64, 1045 (1992)

 WH Press et al, "Numerical Recipes: The Art of Scientific Computing", Cambridge University Press (1989 – 2007)

JW Cooley and JW Tukey, Math. Comput.
 19, 297 (1965)