
Using the BMP085/180 with Raspberry Pi or Beaglebone Black
Created by Kevin Townsend

Last updated on 2014-06-28 08:31:07 PM EDT

2
3
4
5
7
7
7
9

12
12
13
13
15
15

Guide Contents

Guide Contents
Overview
A Note on Distributions
Configuring the Pi for I2C
Hooking Everything Up
Raspberry Pi
Beaglebone Black
Using the Adafruit BMP Python Library (Updated)
Using the Adafruit BMP085 Python Library
Downloading the Code from Github
Testing the Library
Modifying the Code
FAQs
Can I use multiple BMP sensors on the same board?

© Adafruit Industries https://learn.adafruit.com/using-the-bmp085-with-raspberry-pi Page 2 of 15

Overview

The Raspberry Pi and Beaglebone Black include support for Python, which makes it easy to
get access to a lot of low-level hardware and software stacks -- USB, TCP/IP, multiple file
systems etc. This is a good thing since it means you don't need to wrap your head around all
the obscure details that go along with these complex stacks or the implementation details
of various serial buses: you can focus on getting your data off your sensor and into your
project as quickly as possible. Hurray for abstraction!

Most sensors tend to communicate with other devices based on one of three well-defined
mechanisms: I2C, SPI or good old analog output. There are dozens of other serial buses
and communication protocols out there (CAN, 1-Wire, etc.), and they all have their strengths
and weaknesses, but I2C, SPI and analog cover the overwhelming majority of sensors you're
likely to hook up to your development board.

I2C is a particularly useful bus with the for two main reasons:

It only requires two shared lines: SCL for the clock signal, and SDA for the bi-direction
data transfers.
Each I2C device uses a unique 7-bit address, meaning you can have more than 120

© Adafruit Industries https://learn.adafruit.com/using-the-bmp085-with-raspberry-pi Page 3 of 15

unique I2C devices sharing the bus, and you can freely communicate with them one at
a time on an as-needed basis.

This tutorial will show you how you can read data from the I2C-based BMP085 or BMP180
Barometric Pressure Sensor using Python on a Raspberry Pi or Beaglebone Black.

A Note on Distributions
Please note for the Raspberry Pi that this tutorial is based on
Occidentalis (http://adafru.it/aNv), Adafruit's own educational Linux distro for Pi. It should
work just as well with the latest Wheezy distro, etc., but it hasn't yet been tested on
anything else.

For the Beaglebone Black this tutorial is based on the Debian
distribution (http://adafru.it/dvh) that's shipping with recent Beaglebone Black boards. If
you're using an older Beaglebone Black with the Angstrom distribution it's highly
recommended that you grab a micro SD card and load it with Debian!

© Adafruit Industries https://learn.adafruit.com/using-the-bmp085-with-raspberry-pi Page 4 of 15

http://learn.adafruit.com/adafruit-raspberry-pi-educational-linux-distro/overview
http://beagleboard.org/project/debian/

Configuring the Pi for I2C
If you're using a Raspberry Pi, follow the steps below to configure it to use
the I2C interface. If you're using a Beaglebone Black with its standard
Debian distribution, you can skip this page and move on to the next step.

Before you can get started with I2C on the Pi, you'll need to run through a couple quick steps
from the console.
Check out this tutorial for more details and follow it completely

http://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-
i2c (http://adafru.it/aTI)

When you're done, run

This will search /dev/i2c-0 or /dev/i2c-1 for all address, and if an Adafruit BMP085 Breakout is
properly connected it should show up at 0x77 as follows:

sudo i2cdetect -y 0 (if you are using a version 1 Raspberry Pi)

sudo i2cdetect -y 1 (if you are using a version 2 Raspberry Pi)

© Adafruit Industries https://learn.adafruit.com/using-the-bmp085-with-raspberry-pi Page 5 of 15

http://learn.adafruit.com/adafruits-raspberry-pi-lesson-4-gpio-setup/configuring-i2c

Once both of these packages have been installed, you have everything you need to get
started accessing I2C and SMBus devices in Python.

© Adafruit Industries https://learn.adafruit.com/using-the-bmp085-with-raspberry-pi Page 6 of 15

Hooking Everything Up
Raspberry Pi
To hook your Adafruit BMP085/BMP180 Breakout up to the Pi, you can use a Pi Cobbler as
seen in the following wiring diagram:

Beaglebone Black
To connect the BMP sensor to a Beaglebone Black you can use any of the available I2C
buses (http://adafru.it/dvk), but the library will default to using I2C bus 1 with pin P9_19 as
SCL and P9_20 as SDA as shown below:

Make sure that you connect the VIN pin on the BMP sensor to 3V3, NOT 5V0!
Connecting VIN to the 5V supply will cause the board to use 5V logic, which is perfect
for the Arduino, but may damage the sensitive 3.3V inputs on the Raspberry Pi.

© Adafruit Industries https://learn.adafruit.com/using-the-bmp085-with-raspberry-pi Page 7 of 15

http://beagleboard.org/Support/bone101

Make sure you aren't using any device tree overlays (http://adafru.it/dp6) which might
interfere with the I2C pins. By default the standard device tree setup of the Debian
distribution should expose the I2C bus 1 connections above without any extra work required.

Make sure you connect the VIN pin of the BMP sensor to the Beaglebone Black's 3.3
volt power rail, NOT the 5 volt power rail!

© Adafruit Industries https://learn.adafruit.com/using-the-bmp085-with-raspberry-pi Page 8 of 15

https://learn.adafruit.com/introduction-to-the-beaglebone-black-device-tree/overview

Using the Adafruit BMP Python Library (Updated)
Using the BMP sensor with a Raspberry Pi or Beaglebone Black is easy with the Adafruit
Python BMP sensor library (http://adafru.it/dCL). First make sure your device is powered on
and has access to the internet (through a wired or wireless connection). Then connect to
your device in a terminal and navigate to a directory where you want to download the library
(like /home/pi on a Raspberry Pi or /root on a Beaglebone Black). Finally execute the
following commands to download dependencies and install the library:

If you already have git or python-smbus installed you can ignore the message about the
package already being installed.

Once the library is installed it will be accessible to any Python script on your device. You can
see a few example scripts included in the library source's examples folder. Try running the
simpletest.py example which grabs a single reading from the BMP sensor and displays it
by executing:

If you receive an error message, carefully check that the library was installed correctly in the
previous steps and try again. Note that the command needs to be run as root with sudo so
that it can access the hardware's I2C bus.

After running the script you should see an output such as:

Temp = 20.20 *C
Pressure = 101667.00 Pa
Altitude = -28.27 m
Sealevel Pressure = 101665.00 Pa

Open the simpletest.py code in a text editor to see how to use the library to read the BMP
sensor. First the library is imported with this command:

sudo apt-get update

sudo apt-get install git build-essential python-dev python-smbus

git clone https://github.com/adafruit/Adafruit_Python_BMP.git

cd Adafruit_Python_BMP

sudo python setup.py install

cd examples

sudo python simpletest.py

import Adafruit_BMP.BMP085 as BMP085

© Adafruit Industries https://learn.adafruit.com/using-the-bmp085-with-raspberry-pi Page 9 of 15

https://github.com/adafruit/Adafruit_Python_BMP

Next a BMP085 sensor instance is created with this command:

You can see from the comments there are a few ways to create the sensor instance. By
default if you pass no parameters the library will try to find the right I2C bus for your device.
For a Raspberry Pi the library will detect the revision number and use the appropriate bus (0
or 1). For a Beaglebone Black there are multiple I2C buses so the library defaults to bus 1,
which is exposed with pin P9_19 as SCL clock and P9_20 as SDA data. You can explicitly set
the bus number by passing it in the busnum parameter.

The library will also choose by default to use the BMP sensor's standard operation mode.
You can override this by passing a mode parameter with an explicit mode value--check the
BMP datasheet (http://adafru.it/aKE) for more information on its modes.

Once the BMP sensor instance is created, you can read its values by calling the
read_temperature, read_pressure, read_altitude, and read_sealevel_pressure
functions like below:

That's all you need to do to read BMP sensor values using the Adafruit Python BMP library!

Default constructor will pick a default I2C bus.

#

For the Raspberry Pi this means you should hook up to the only exposed I2C bus

from the main GPIO header and the library will figure out the bus number based

on the Pi's revision.

#

For the Beaglebone Black the library will assume bus 1 by default, which is

exposed with SCL = P9_19 and SDA = P9_20.

sensor = BMP085.BMP085()

Optionally you can override the bus number:

#sensor = BMP085.BMP085(busnum=2)

You can also optionally change the BMP085 mode to one of BMP085_ULTRALOWPOWER,

BMP085_STANDARD, BMP085_HIGHRES, or BMP085_ULTRAHIGHRES. See the BMP085

datasheet for more details on the meanings of each mode (accuracy and power

consumption are primarily the differences). The default mode is STANDARD.

#sensor = BMP085.BMP085(mode=BMP085.BMP085_ULTRAHIGHRES)

print 'Temp = {0:0.2f} *C'.format(sensor.read_temperature())

print 'Pressure = {0:0.2f} Pa'.format(sensor.read_pressure())

print 'Altitude = {0:0.2f} m'.format(sensor.read_altitude())

print 'Sealevel Pressure = {0:0.2f} Pa'.format(sensor.read_sealevel_pressure())

© Adafruit Industries https://learn.adafruit.com/using-the-bmp085-with-raspberry-pi Page 10 of 15

http://www.adafruit.com/datasheets/BMP085_DataSheet_Rev.1.0_01July2008.pdf

For another example of using the BMP library, check out the google_spreadsheet.py
example. This code is similar to the DHT sensor Google Docs spreadsheet logging
code (http://adafru.it/dCM), but is modified to use the BMP sensor and write the
temperature, pressure, and altitude to a Google Docs spreadsheet. Check out the page on
configuring Google Docs (http://adafru.it/dCN) to see more details on how to create the
spreadsheet and configure the username, password, and spreadsheet name.

© Adafruit Industries https://learn.adafruit.com/using-the-bmp085-with-raspberry-pi Page 11 of 15

https://learn.adafruit.com/dht-humidity-sensing-on-raspberry-pi-with-gdocs-logging/overview
https://learn.adafruit.com/dht-humidity-sensing-on-raspberry-pi-with-gdocs-logging/connecting-to-googles-docs-updated

Using the Adafruit BMP085 Python Library

The BMP085 Python code for Pi is available on Github at https://github.com/adafruit/Adafruit-
Raspberry-Pi-Python-Code (http://adafru.it/aOg)

While many of these drivers and classes are works in progress -- we're still trying to figure
out how we can make accessing HW as painless as possible on the Pi -- the current code
should serve as a good starting point to understanding how you can access SMBus/I2C
devices with your Pi, and getting some basic data out of your BMP085.

Downloading the Code from Github
The easiest way to get the code onto your Pi is to hook up an Ethernet cable, and clone it
directly using 'git', which is installed by default on most distros. Simply run the following
commands from an appropriate location (ex. "/home/pi"):

Note this page shows how to use an older version of the BMP Python code and is only
for historical purposes!

$ git clone https://github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code.git

$ cd Adafruit-Raspberry-Pi-Python-Code

$ cd Adafruit_BMP085

© Adafruit Industries https://learn.adafruit.com/using-the-bmp085-with-raspberry-pi Page 12 of 15

https://github.com/adafruit/Adafruit-Raspberry-Pi-Python-Code

Testing the Library
If you're using a version 2 Pi (512 M) then you'll have to change the I2C bus as it flipped from
#0 to #1 in the version 2.
Edit Adafruit_I2C.py with nano Adafruit_I2C.py and change this line

 def __init__(self, address, bus=smbus.SMBus(0), debug=False):

to

def __init__(self, address, bus=smbus.SMBus(1), debug=False)

Once the code has be downloaded to an appropriate folder, and you have your BMP085
properly connected, you can start reading some data via the following command (the driver
includes a simple demo program):

Which should give you something similar to the following:

Modifying the Code
The BMP085 library is organized as two seperate classes. There is one class to handle the
low-level SMBus/I2C calls (Adafruit_I2C), and another class that handles the BMP085-specific
functionality.

The library includes the basic example shown above, but you can also customize the code a
bit to provide full debug output if you're having any problems, change the address, or use
the BMP085 in one of it's four different modes (ULTRALOWPOWER, STANDARD, HIRES, and
ULTRAHIRES), as seen in the commented out initializors in the sample code below:

sudo python Adafruit_BMP085_example.py

#!/usr/bin/python

from Adafruit_BMP085 import BMP085

© Adafruit Industries https://learn.adafruit.com/using-the-bmp085-with-raspberry-pi Page 13 of 15

===

Example Code

===

Initialise the BMP085 and use STANDARD mode (default value)

bmp = BMP085(0x77, debug=True)

bmp = BMP085(0x77)

To specify a different operating mode, uncomment one of the following:

bmp = BMP085(0x77, 0) # ULTRALOWPOWER Mode

bmp = BMP085(0x77, 1) # STANDARD Mode

bmp = BMP085(0x77, 2) # HIRES Mode

bmp = BMP085(0x77, 3) # ULTRAHIRES Mode

temp = bmp.readTemperature()

pressure = bmp.readPressure()

altitude = bmp.readAltitude()

print "Temperature: %.2f C" % temp

print "Pressure: %.2f hPa" % (pressure / 100.0)

print "Altitude: %.2f" % altitude

© Adafruit Industries https://learn.adafruit.com/using-the-bmp085-with-raspberry-pi Page 14 of 15

FAQs
Can I use multiple BMP sensors on the same board?
Because each I2C device on the bus needs to have it's own unique address, you normally
can only have one device at address 0x77 (etc.). If you require several I2C devices at the
same address, and if the devices have a reset pin (like the BMP085 does), then you CAN use
multiple devices at the same address ... but at the expense of one GPIO pin per device.
What you can do is hold the other devices in reset by pulling the XCLR (Reset) pin low, and
letting XCLR go high on the one device that you do want to read, releasing it from reset and
causing it to respond to any request on the I2C bus.

Note that on the Beaglebone Black there are 2 I2C buses, so you can in theory run one
sensor on each bus.

© Adafruit Industries Last Updated: 2014-06-28 08:31:09 PM EDT Page 15 of 15

	Guide Contents
	Overview
	A Note on Distributions
	Configuring the Pi for I2C
	Hooking Everything Up
	Raspberry Pi
	Beaglebone Black
	Using the Adafruit BMP Python Library (Updated)
	Using the Adafruit BMP085 Python Library
	Downloading the Code from Github
	Testing the Library
	Modifying the Code
	FAQs
	Can I use multiple BMP sensors on the same board?

