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Accurate real-time evolution of electron densities and ground-state
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The exact static and time-dependent Kohn-Sham (KS) exchange-correlation potential is extremely challenging
to approximate as it is a local multiplicative potential that depends on the electron density everywhere in the
system. The KS approach can be generalized by allowing part of the potential to be spatially nonlocal. We take
this nonlocal part to be that of unrestricted Hartree-Fock theory. The additional local correlation potential in
principle ensures that the single-particle density exactly equals the many-body density. In our case, the local
correlation potential is predominantly nearsighted in its dependence on the density and hence an (adiabatic)
local-density approximation to this potential yields accurate ground-state properties and real-time densities for

one-dimensional test systems.
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I. INTRODUCTION

Models which reliably describe excited many-body sys-
tems for a low computational cost have remained elusive
within solid-state physics and quantum chemistry, despite
their importance. Density functional theory [1] (DFT), within
the Kohn-Sham (KS) approach [2], is an extremely popu-
lar method for ground-state electronic structure calculations
owing to its computational efficiency and accuracy for most
solids [3]. However, for modeling systems with strong elec-
tron localization, such as molecules, the exact multiplicative
exchange-correlation (xc) potential of KS theory has been
shown to exhibit important features which have a strong
nonlocal dependence on the density [4—10], which common
approximations fail to capture [11-18], e.g., sudden changes
in the level of the potential termed “steps” and “peaks” [19].
These missing features lead to an inaccurate description of
the system, e.g., when the atoms of a diatomic molecule
are dissociated [15]. Features of the exact KS potential
which are absent from approximations have a further ad-
verse affect on the reliable prediction of excitation properties,
such as excitation energies [20-23] and real-time densities
[10,24-26].

Accurate dynamic densities are crucial for predicting cur-
rents and the electronic properties of molecules which are
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perturbed by an external field. In particular, when acting as
a molecular junction, the system is well beyond the linear-
response and steady-state regimes. Hence commonly used
approximations within DFT predict current-voltage charac-
teristics within molecular electronic systems which are incor-
rect by orders of magnitude [27]. Time-dependent DFT [28]
(TDDFT) is in principle a powerful method for describing
excited systems. Standard approximations, e.g., the adiabatic
local-density approximation (LDA) and adiabatic generalized
gradient approximation [29], have proved successful within
KS TDDFT [30], e.g., within linear response for predicting
photoabsorption spectra [31], although they are less reliable
in the presence of charge transfer [32-35] or when strong
currents flow [25,36—41] owing to the absence of features
which have a nonlocal dependence on the density [42—45].
Novel functionals [36,40,46] or spin symmetry breaking [47]
have been employed in order to improve the reliability of
these calculations. However, advanced approximations are
required for real-time TDDFT to become as generally reliable
as ground-state DFT [48].

The use of hybrid functionals [49] within (TD)DFT has
overcome some of the issues which face approximations
within standard KS theory owing to the inclusion of a spatially
nonlocal potential within the auxiliary KS system [50-55],
e.g., the calculation of the fundamental gap [56,57]. Hybrid
functionals offer a balance between accuracy and compu-
tational efficiency, e.g., for calculating quasiparticle ener-
gies and ground-state densities [58]. They have also been
employed to tackle the challenging task of modeling dy-
namic systems [59], however they usually require empirical
parameters. Hybrid functionals exist within the framework
of generalized Kohn-Sham (GKS) theory [60]. GKS the-
ory establishes that for a given spatially nonlocal potential
there exists a unique spatially local (multiplicative) potential
which ensures the single-particle density exactly equals the
many-body density [60]. The form of this multiplicative

Published by the American Physical Society


https://orcid.org/0000-0002-2256-6860
https://orcid.org/0000-0003-1190-3830
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.101.032502&domain=pdf&date_stamp=2020-03-02
https://doi.org/10.1103/PhysRevA.101.032502
http://www-users.york.ac.uk/~mjph501/
https://jw1294.github.io/
https://creativecommons.org/licenses/by/4.0/

M. J. P. HODGSON AND J. WETHERELL

PHYSICAL REVIEW A 101, 032502 (2020)

potential thus depends on the choice of nonlocal potential.
Our aim is to obtain a multiplicative potential which possesses
Kohn’s concept of “nearsightedness” [61,62]. The standard
KS potential does not have this advantageous property as it
depends on the density everywhere in the system [63]. A
nearsighted potential is concerned only with the properties of
the system in its local vicinity, and hence is in principle more
accurately approximated on the basis of the local and semilo-
cal density. This principle of nearsightedness may also be
applied to time-dependent systems—GKS theory has recently
been extended to systems undergoing excitations [53,64].

In this paper we consider two choices for the nonlocal
potential. The first is that of restricted Hartree-Fock (RHF)
theory, which leads to a set of RHF-Kohn-Sham (RHFKS)
equations within GKS theory, derived in Ref. [60]. The second
is that of unrestricted Hartree-Fock (UHF) theory [65], which
leads to a set of UHF-Kohn-Sham (UHFKS) equations, which
we derive below.

II. UNRESTRICTED HARTREE-FOCK-KOHN-SHAM
THEORY

Within GKS theory the electrons must be described by a
single Slater determinant (SD). We employ an “unrestricted
SD,” @, in which electrons with different spins occupy differ-
ent single-particle orbitals, i.e., Y (x, o) = ¢ (x)yi (o) where
y. = « for up-spin electrons and y. = $ for down-spin elec-
trons [66]. This is in contrast to the SD of RHF in which two
electrons with opposite spins occupy the same orbital. We then
define the functional

S[P] = (@|T + U(x,x)|®P), (1)

where 7 is the kinetic-energy operator and U is the electron-
electron interaction operator. From Eq. (1) a unique density
functional can be defined via the constrained search formalism
of DFT [67]:

0%[n] = min S[®], 2)

where the minimization searches over all SDs that yield the
electron density n. This then allows us to define our corre-
lation energy functional as the difference between Q5[n] and
the Hohenberg-Kohn functional (which exactly captures all xc
effects) [1]:

E.[n] = (Y[nl|T + U|¥[nl) — Q°[n], 3)

where W[n] is the ground-state many-body wave function
which yields the electron density n. Because UHF captures
exchange and static correlation effects [68], the correlation
energy defined by Eq. (3) approximately corresponds to “dy-
namic correlation.”

The exact total ground-state many-body energy can be
written in terms of these functionals; as such,

Ey = min {S[{¢k}]+Ec[n[{¢k}]]

(o} =N

+ / dx vm<x>n([{¢k}1;x)}, 4

where vey 1S the external potential of the many-body system.
Finally the set of single-particle UHFKS equations can be
derived via a minimization of this energy employing La-
grangian multipliers to ensure orthogonality of the single-
particle orbitals, {¢}:

1 d? 14
(_5E + Vexe (%) + v (x) + vc[n](x))d)i (x)

+ / dx'FY (x, X)) () = &] ¢} (x) )

(atomic units are used throughout: 1 = e = m, = 4mweg = 1),
where the spatially nonlocal Fock operator is

occ

EY (e, x') ==Y (¢7 (1)) ¢} (¢ ulx, x'), 6)

J
where u(x, x') is the electron-electron interaction and

SEc[n]

ve[n](x) = o)’

(7

which is a unique functional of the density. All electrons
experience the same multiplicative Hartree potential, vy, and
multiplicative local correlation potential, v.. In principle the
single-particle density given by Zi,y |7 (x)|* exactly equals
the many-body density, n(x); however, in practice the local
correlation potential, to which we now turn our attention, must
be approximated.

III. MODEL SYSTEMS

We model ground-state and time-dependent one-
dimensional (1D) systems consisting of two opposite-spin
electrons. As a result, our examples do not illustrate the
exchange interaction between pairs of like-spin electrons,
which would be captured by our exchange potential, but
instead focus on the more challenging aspect of accurately
approximating correlation. Nonetheless, our use of a nonlocal
exchange potential is necessary as it induces nearsightedness
in the corresponding multiplicative potential when the system
is composed of like-spin electrons, demonstrated in Ref. [63],
e.g., when the system consists of more than two electrons.

We focus on these small yet challenging model systems as
all the exact quantities can be numerically determined, includ-
ing the fully correlated many-body wave function, by solving
the ground-state or time-dependent many-body Schrédinger
equation for any external potential, vey(x,?), with the
appropriately softened 1D Coulomb interaction u(x,x’) =
(Ix = x'| + 1)~! [69] by employing our iDEA code [39].

First we use our exact solutions to the Schrédinger equa-
tion to find the exact local correlation potential of RHFKS
and UHFKS theory. We then develop an LDA to each of
these correlation potentials, termed RLDA+ and ULDA+
to distinguish them from the usual LDA employed within
standard KS theory. We assess their accuracy for various
ground-state and time-dependent systems. We also model our
systems with (time-dependent) RHF and UHF theory as a
benchmark.
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FIG. 1. (a) The correlation potential of RHFKS and UHFKS at
the bonding length (atomic separation ~1.4 a.u.)—they are indistin-
guishable. (b) The same potentials when the atoms are dissociated
(atomic separation = 7.2 a.u.). The correlation potential of RHFKS
has a nonlocal dependence on the density—there is a peak between
the electrons in a region of very low density; see Fig. 4(b). The
correlation potential of UHFKS tends to a constant as the atoms are
separated and has a more local dependence on the density.

A. The exact local correlation potentials

We calculate the exact v.(x) of RHFKS theory and that of
UHFKS theory for ground-state 1D models of the hydrogen
molecule (Hy). As we have access to the exact many-body
density we can “reverse engineer’ the RHFKS and UHFKS
equations in order to find the corresponding exact correlation
potentials for each system.

Figure 1(a) shows the exact correlation potential of
RHFKS and UHFKS for H, at the bonding length (atomic
separation ~1.4 a.u.—calculated via the bonding energy; see
Fig. 3). The two potentials are indistinguishable, indicating
the lack of static correlation at this atomic separation. As the
atoms are dissociated these two correlation potentials diverge
starting at the point where UHF breaks the spin symmetry (the
Coulson-Fischer point).

The form of the exact v.(x) of RHFKS has a nonlocal
dependence on the density. This multiplicative potential dis-
tributes the electron density throughout the system in a similar
fashion to the xc potential of standard KS theory [for an
asymmetric system the peak in the center would be a step
[10]; see Fig. 1(b) and Supplemental Material [70]]. These
features are notoriously difficult to capture in approximate

methods. Dreissigacker and Lein demonstrated that by break-
ing spin symmetry, as we have done here, one may capture
some of these features in a multiplicative potential, but such
an approach requires a spin-DFT calculation and then an
expensive numerical inversion of the yielded density [71]. Our
goal is to find a local correlation potential which is accurately
represented by a local or semilocal approximation, and hence
our ideal multiplicative potential should be free from features
with a strong nonlocal dependence on the density.

Figure 1 shows that the exact correlation potential of
UHFKS does not contain prominent features with a strong
nonlocal dependence on the density. This stems from the use
of different orbitals for different spins: Because each electron
is free to independently experience the Hartree potential of the
other electron without experiencing its own Hartree potential,
there is no need for the peak (or step) in the multiplicative
potential in order to correctly distribute the density throughout
the system when the atoms are dissociated. In effect each
electron is able to experience its own effective potential which
renders the need for a peak or step in the local correlation
potential unnecessary. This is demonstrated for like-spin elec-
trons in Ref. [63].
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FIG. 2. (a) The range of “slab densities” used to construct our
RLDA+ and ULDA+-. (b) The correlation energy per electron, which
corresponds to UHFKS and RHFKS, of each slab against the density
height of the corresponding slab density.
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B. Constructing an LDA for each local correlation potential

Next we construct an LDA to the correlation potential of
RHFKS and UHFKS, termed RLDA+ and ULDA+, respec-
tively. We use a set of “slab systems” [72] which are homo-
geneous in the center of the system and tend to zero towards
the edge, as in Ref. [72]. We vary the height of the slabs (n)
and calculate the correlation energy (Eexact — Enp) for each
system [70]; see Fig. 2. Once an LDA for each correlation
energy is constructed we apply it to its own training systems
and find small errors in E, (AE.) owing to the inhomogeneity
of the slab systems. We use these errors to calculate a refined
LDA+: e.(n) — &.(n) — AE.(n)/2 [73].

Figure 2(b) shows the correlation energy per electron for
the range of slab systems (e.) as a function of the density,
n. The form of the “restricted correlation energy,” i.e., that
which corresponds to RHFKS, is similar to the “unrestricted
correlation energy” for high-density regions because for these
systems static correlation is negligible. However, for the
lower-density regions the two energies differ to a large degree.
Note that the restricted correlation energy is much larger than
the unrestricted correlation energy because it has the burden
of capturing static correlation.

C. Ground-state hydrogen molecule

We now calculate the molecular energy of H, as the atoms
are separated employing RHF, UHF, RLDA+, and ULDA+
and compare them to the exact case; for a comparison of our
1D results against the corresponding experimental results see
Supplemental Material [70]. Figure 3 shows, as expected, that
the RHF energy is inaccurate owing to a complete absence
of correlation. UHF correctly gives the dissociation energy of
the molecule by capturing static correlation [68] but yields
the incorrect energy at and around the bonding length (1.4
a.u.) owing to the absence of dynamic correlation in the
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FIG. 3. Molecular energy of H, as the atoms are separated.
RHF and UHF are compared against the many-body exact form. As
expected, RHF is incorrect for all separations and UHF is inaccurate
at and around the bonding length owing to an absence of dynamical
correlation effects. Our RLDA+ only slightly improves the energy.
Our ULDA+ gives a large improvement upon UHF at and around
the bonding length and slightly worsens the performance of UHF in
the dissociation limit.
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FIG. 4. (a) The H, molecule at the bonding length (atomic sepa-
ration ~1.4 a.u.). UHF and RHF densities are indistinguishable: both
are inaccurate in the central region when compared to the many-body
exact form. The decay of the approximate densities is also incorrect.
RLDA+ and ULDA+ yield accurate densities. (b) The dissociated
H, molecule (separation = 8.0 a.u.). UHF density is extremely
accurate. The RHF density is poor when compared to the exact form
owing to the absence of static correlation. RLDA+ does not improve
the density much over RHF, showing the inability to capture static
correlation with an LDA. The ULDA+ density is only slightly worse
than UHF owing to the self-correlation error (see text) introduced by
the local approximation to the correlation energy.

approximation. At the bonding length RHF and UHF yield
exactly the same total electron energy with an error of 1.3%.
The error in the ionization potential (IP) predicted by UHF
and RHF is 2.1%. At an atomic separation of 7.2 a.u. the error
in the IP of RHF is 34.3% and 1.7% for UHF.

ULDA+ yields an accurate total electron energy at the
bonding length with an error of 0.5% and introduces an error
as the atoms are separated (2%) because of the use of an LDA
to ve; as the electrons localize each to an H atom, our ap-
proximate correlation potential introduces a “self-correlation
error.” In principle this error could be reduced via a more
sophisticated approximation to v, [74].

RLDA+ gives a relatively poor total energy at the bonding
length, 1.6%, and an only slightly improved total energy when
the molecule is stretched, 9.0%, when compared to the RHF
error of 15.2%. Because the LDA for the restricted correla-
tion energy aims to add both static and dynamic correlation,
and there is negligible static correlation in the systems with
relatively small atom separations, RLDA-+ yields relatively
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FIG. 5. (a) The dynamic electron density at r = 30 a.u. All
approximations yield similar densities by eye. (b) The corresponding
electron current. The performance of each approximation is more
apparent. RLDA+ yields by far the worst result, while ULDA+
yields the best. Both RHF and UHF yield relatively accurate currents.

inaccurate energies by introducing spurious static correlation.
This issue is not present for ULDA+ as it only attempts
to introduce dynamic correlation which is present in these
systems [75].

Next we turn to the ground-state density. We compare the
density from RLDA+ and ULDA+ to RHF, UHF, and the
exact form at the bonding length [see Fig. 4(a)] and when
the atoms are dissociated; see Fig. 4(b). When the atoms are
relatively close together, RHF and UHF yield the same density
(like for the energy). RLDA+ and ULDA+ also yield very
similar densities, with ULDA+ performing slightly better.

On the other hand, when the atoms are separated the RHF
and RLDA+ densities are inaccurate. RLDA+ only slightly
improves the electron density compared to RHF, demon-
strating how ineffective an LDA to the restricted correlation
potential is, as expected; see Sec. Il A. UHF is extremely
accurate when the atoms are dissociated, again as expected.
ULDA+- is only slightly worse for the density demonstrating
that the self-correlation error introduced by our LDA to the
correlation potential does not have a detrimental effect.

D. Time-dependent perturbed hydrogen molecule

We now assess the accuracy of employing RLDA+ and
ULDA+ adiabatically to calculate the time-dependent density
and current when the H, molecule is perturbed by an electric
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FIG. 6. (a) Dynamic electron densities at + = 30 a.u. The RHF
and RLDA+ densities are visibly bad, whereas the UHF and
ULDA+ densities are accurate throughout the whole simulation.
(b) The same case for the current, with UHF yielding the most
accurate current. ULDA+ yields a quantitatively good description
of the current throughout the simulation.

field (—0.03x). The time-dependent version of Eq. (5) is
. 0
R ¢l (x,1) = ig(ﬁ,»y(x, 1), 3

where /” is the single-particle Hamiltonian given by Eq. (5)
but with the time-dependent potentials. (We do not derive this
equation, as the existence of a unique multiplicative potential
cannot be ensured in general [64], but is instead an ansatz.)

Figure 5(a) shows the electron density at ¢ = 30 a.u.
for the hydrogen molecule at the bonding length after the
perturbation. The density sloshes back and forth within the
molecule and generates a current; see Fig. 5(b). The current is
the clearest indicator of how accurate each approximation is:
RLDA+ is the worst, and RHF and UHF perform identically
and yield a reasonably good approximation to the many-body
electron current. The best method is ULDA+-: although the
current is by no means exact, it is quantitatively correct
throughout the whole simulation (30 a.u.). The relative error
of the time-dependent densities as the system evolves is shown
in Fig. 7(a).

When the stretched molecule is perturbed, the story is sim-
ilar (Fig. 6): RLDA+ performs the worst, followed by RHF.
However, for this system UHF is the most accurate followed
by ULDA+. Like for the ground state, the approximation to
the correlation potential has not significantly worsened the
density when the ULDA+ is employed. Again, in principle
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FIG. 7. The integrated absolute density error of each approxima-
tion as a function of time. (a) Applied to the molecule at the bonding
length (*1.4 a.u.). The RHF and UHF methods are indistinguishable
in this case, as expected. The ULDA+ method successfully reduces
the error relative to UHF and approximately reduces the error by
a further factor of 2 when compared to RLDA+. (b) Applied to
the molecule at the stretched length (8.0 a.u.). The UHF method
outperforms the RHF method. The RLDA+ and ULDA+ methods
perform slightly worse than their counterparts due to the presence of
small spurious self-interaction arising from the LDA.

this error can be reduced by more advanced (semilocal)
approximations to the time-dependent correlation potential.
Again see Fig. 7(b) for the relative error of the time-dependent
densities. (Videos of all time-dependent results can be found
in Supplemental Material [70].)

IV. CONCLUSION

We have shown that, within generalized Kohn-Sham the-
ory, the multiplicative local potential which ensures an exact
density can be well approximated on the basis of the local
density when the potential is designed to be nearsighted
through the choice of spatially nonlocal potential. We find that
the exact local correlation potential which corresponds to the
nonlocal potential of unrestricted Hartree-Fock theory does
not contain features which depend on the density everywhere
in the system, which are present in the exact exchange-
correlation potential of standard KS theory, e.g., steps and
peaks. On the other hand, the local correlation potential
which corresponds to the nonlocal potential of restricted HF
theory does have such features because, in this case, without
spin symmetry breaking, the contribution from the nonlocal
potential does not render the corresponding local potential
nearsighted.

We constructed a local-density approximation to the lo-
cal correlation potential of UHFKS theory, which we term
ULDA+. Our approximation yields accurate ground-state
densities and energies for 1D model hydrogen molecules
for varying atomic separations, and can even yield relatively
accurate currents when applied adiabatically to systems which
are perturbed by an electric field. We compared our calcula-
tions to the exact many-body solutions.

Our ULDA+ has an inherent self-correlation error. We
find that this leads to inaccuracies in the energies and den-
sities of H, when its atoms are dissociated, although these
errors are significantly small relative to other approximate
methods. This error can in principle be reduced by a more
advanced approximation to the correlation energy. Overall,
our ULDA+ yields accurate dynamic densities and currents
as well as ground-state properties even when correlation is
strong. Future work should focus on the development of
a three-dimensional ULDA+ which may lead to accurate
simulations of realistic molecules undergoing field-induced
excitations.

ACKNOWLEDGMENTS

We thank Lucia Reining for feedback and the University of
York for computational resources.
M.J.P.H. and J.W. contributed equally to this work.

[1] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).

[2] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).

[3] D. R. Bowler, J. Phys.: Condens. Matter 28, 421001 (2016).

[4] J. P. Perdew, R. G. Parr, M. Levy, and J. L. Balduz Jr., Phys.
Rev. Lett. 49, 1691 (1982).

[5] C. O. Almbladh and U. von Barth, in Density Functional
Methods in Physics (Springer, New York, 1985), pp. 209-231.

[6] M. A. Buijse, E. J. Baerends, and J. G. Snijders, Phys. Rev. A
40, 4190 (1989).

[7] N. Helbig, I. V. Tokatly, and A. Rubio, J. Chem. Phys. 131,
224105 (2009).

[8] A. Makmal, S. Kiimmel, and L. Kronik, Phys. Rev. A 83,
062512 (2011).

[9] K. Burke, J. Chem. Phys. 136, 150901 (2012).

[10] M. J. P. Hodgson, J. D. Ramsden, and R. W. Godby, Phys. Rev.
B 93, 155146 (2016).

[11] Y. Zhang and W. Yang, J. Chem. Phys. 109, 2604 (1998).

[12] P. Mori-Sanchez, A. J. Cohen, and W. Yang, J. Chem. Phys.
125, 201102 (2006).

[13] A. Ruzsinszky, J. P. Perdew, G. I. Csonka, O. A.
Vydrov, and G. E. Scuseria, J. Chem. Phys. 125, 194112
(2006).

[14] S. F. Sousa, P. A. Fernandes, and M. J. Ramos, J. Phys. Chem.
A 111, 10439 (2007).

[15] A. J. Cohen, P. Mori-Sénchez, and W. Yang, Science 321, 792
(2008).

[16] A. J. Cohen, P. Mori-Sdnchez, and W. Yang, J. Chem. Phys.
129, 121104 (2008).

032502-6


https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1088/0953-8984/28/42/421001
https://doi.org/10.1088/0953-8984/28/42/421001
https://doi.org/10.1088/0953-8984/28/42/421001
https://doi.org/10.1088/0953-8984/28/42/421001
https://doi.org/10.1103/PhysRevLett.49.1691
https://doi.org/10.1103/PhysRevLett.49.1691
https://doi.org/10.1103/PhysRevLett.49.1691
https://doi.org/10.1103/PhysRevLett.49.1691
https://doi.org/10.1103/PhysRevA.40.4190
https://doi.org/10.1103/PhysRevA.40.4190
https://doi.org/10.1103/PhysRevA.40.4190
https://doi.org/10.1103/PhysRevA.40.4190
https://doi.org/10.1063/1.3271392
https://doi.org/10.1063/1.3271392
https://doi.org/10.1063/1.3271392
https://doi.org/10.1063/1.3271392
https://doi.org/10.1103/PhysRevA.83.062512
https://doi.org/10.1103/PhysRevA.83.062512
https://doi.org/10.1103/PhysRevA.83.062512
https://doi.org/10.1103/PhysRevA.83.062512
https://doi.org/10.1063/1.4704546
https://doi.org/10.1063/1.4704546
https://doi.org/10.1063/1.4704546
https://doi.org/10.1063/1.4704546
https://doi.org/10.1103/PhysRevB.93.155146
https://doi.org/10.1103/PhysRevB.93.155146
https://doi.org/10.1103/PhysRevB.93.155146
https://doi.org/10.1103/PhysRevB.93.155146
https://doi.org/10.1063/1.476859
https://doi.org/10.1063/1.476859
https://doi.org/10.1063/1.476859
https://doi.org/10.1063/1.476859
https://doi.org/10.1063/1.2403848
https://doi.org/10.1063/1.2403848
https://doi.org/10.1063/1.2403848
https://doi.org/10.1063/1.2403848
https://doi.org/10.1063/1.2387954
https://doi.org/10.1063/1.2387954
https://doi.org/10.1063/1.2387954
https://doi.org/10.1063/1.2387954
https://doi.org/10.1021/jp0734474
https://doi.org/10.1021/jp0734474
https://doi.org/10.1021/jp0734474
https://doi.org/10.1021/jp0734474
https://doi.org/10.1126/science.1158722
https://doi.org/10.1126/science.1158722
https://doi.org/10.1126/science.1158722
https://doi.org/10.1126/science.1158722
https://doi.org/10.1063/1.2987202
https://doi.org/10.1063/1.2987202
https://doi.org/10.1063/1.2987202
https://doi.org/10.1063/1.2987202

ACCURATE REAL-TIME EVOLUTION OF ELECTRON ...

PHYSICAL REVIEW A 101, 032502 (2020)

[17] P. Mori-Séanchez, A. J. Cohen, and W. Yang, Phys. Rev. Lett.
100, 146401 (2008).

[18] P. Mori-Sdnchez and A. J. Cohen, Phys. Chem. Chem. Phys. 16,
14378 (2014).

[19] R. Van Leeuwen, O. Gritsenko, and E. J. Baerends, Z. Phys. D
33, 229 (1995).

[20] K. Deur, L. Mazouin, and E. Fromager, Phys. Rev. B 95,
035120 (2017).

[21] P. Elliott, S. Goldson, C. Canahui, and N. T. Maitra, Chem.
Phys. 391, 110 (2011).

[22] M. Isegawa, R. Peverati, and D. G. Truhlar, J. Chem. Phys. 137,
244104 (2012).

[23] M. J. Hodgson, E. Kraisler, A. Schild, and E. K. Gross, J. Phys.
Chem. Lett. 8, 5974 (2017).

[24] M. Mundt and S. Kiimmel, Phys. Rev. Lett. 95, 203004 (2005).

[25] S. Kurth, G. Stefanucci, E. Khosravi, C. Verdozzi, and E. K. U.
Gross, Phys. Rev. Lett. 104, 236801 (2010).

[26] J. 1. Fuks, P. Elliott, A. Rubio, and N. T. Maitra, J. Phys. Chem.
Lett. 4, 735 (2013).

[27] E. Evers, F. Weigend, and M. Koentopp, Phys. Rev. B 69,
235411 (2004).

[28] E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).

[29] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,
3865 (1996).

[30] K. Burke, J. Werschnik, and E. Gross, J. Chem. Phys. 123,
062206 (2005).

[31] E. K. Gross and N. T. Maitra, Fundamentals of Time-Dependent
Density Functional Theory (Springer, New York, 2012),
pp- 53-99.

[32] A. Dreuw and M. Head-Gordon, J. Am. Chem. Soc. 126, 4007
(2004).

[33] D. Hofmann and S. Kiimmel, Phys. Rev. B 86, 201109(R)
(2012).

[34] J. I. Fuks and N. T. Maitra, Phys. Rev. A 89, 062502 (2014).

[35] N. T. Maitra, J. Phys.: Condens. Matter 29, 423001 (2017).

[36] M. Petersilka and E. K. U. Gross, Laser Phys. 9, 105 (1999).

[37] M. Koentopp, C. Chang, K. Burke, and R. Car, J. Phys.:
Condens. Matter 20, 083203 (2008).

[38] C. Verdozzi, Phys. Rev. Lett. 101, 166401 (2008).

[39] M. J. P. Hodgson, J. D. Ramsden, J. B. J. Chapman, P.
Lillystone, and R. W. Godby, Phys. Rev. B 88, 241102(R)
(2013).

[40] C. C. Chirild and M. Lein, J. Phys. B 50, 055601 (2017).

[41] J. Jornet-Somoza and 1. Lebedeva, J. Chem. Theory Comput.
15, 3743 (2019).

[42] N. T. Maitra, K. Burke, and C. Woodward, Phys. Rev. Lett. 89,
023002 (2002).

[43] P. Elliott, J. I. Fuks, A. Rubio, and N. T. Maitra, Phys. Rev. Lett.
109, 266404 (2012).

[44] D. Hofmann, T. Korzdorfer, and S. Kiimmel, Phys. Rev. Lett.
108, 146401 (2012).

[45] J. D. Ramsden and R. W. Godby, Phys. Rev. Lett. 109, 036402
(2012).

[46] M. J. P. Hodgson, J. D. Ramsden, T. R. Durrant, and R. W.
Godby, Phys. Rev. B 90, 241107(R) (2014).

[47] J. 1. Fuks, A. Rubio, and N. T. Maitra, Phys. Rev. A 83, 042501
(2011).

[48] M. R. Provorse and C. M. Isborn, Int. J. Quantum Chem. 116,
739 (2016).

[49] A. D. Becke, J. Chem. Phys. 98, 1372 (1993).

[50] J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118,
8207 (2003).

[51] T. Stein, L. Kronik, and R. Baer, J. Am. Chem. Soc. 131, 2818
(2009).

[52] J. Autschbach, ChemPhysChem 10, 1757 (2009).

[53] S. Kiimmel, Adv. Energy Mater. 7, 1700440 (2017).

[54] M. Bokdam, J. Lahnsteiner, B. Ramberger, T. Schifer, and G.
Kresse, Phys. Rev. Lett. 119, 145501 (2017).

[55] X. Zhang, G. Lu, R. Baer, E. Rabani, and D.
Neuhauser, J. Chem. Theory Comput. (2020), doi:
10.1021/acs.jctc.9b01121.

[56] J. Muscat, A. Wander, and N. Harrison, Chem. Phys. Lett. 342,
397 (2001).

[57] M. Jain, J. R. Chelikowsky, and S. G. Louie, Phys. Rev. Lett.
107, 216806 (2011).

[58] A. R. Elmaslmane, J. Wetherell, M. J. P. Hodgson, K. P.
McKenna, and R. W. Godby, Phys. Rev. Materials 2, 040801
(2018).

[59] K. Lopata and N. Govind, J. Chem. Theory Comput. 7, 1344
(2011).

[60] A. Seidl, A. Gorling, P. Vogl, J. A. Majewski, and M. Levy,
Phys. Rev. B 53, 3764 (1996).

[61] W. Kohn, Phys. Rev. Lett. 76, 3168 (1996).

[62] E. Prodan and W. Kohn, Proc. Natl. Acad. Sci. USA 102, 11635
(2005).

[63] J. Wetherell, M. J. P. Hodgson, L. Talirz, and R. W. Godby,
Phys. Rev. B 99, 045129 (2019).

[64] R. Baer and L. Kronik, Eur. Phys. J. B 91, 170 (2018).

[65] G. W. Pratt, Phys. Rev. 102, 1303 (1956).

[66] a(o = %) =1, a(c = —%) =0, Blo = %) =0, and B(oc =
_l) =1.

[67] M.2 Levy, Proc. Natl. Acad. Sci. USA 76, 6062 (1979).

[68] C. A. Jiméninez-Hoyos, T. M. Henderson, and G. E. Scuseria,
J. Chem. Theory Comput. 7, 2667 (2011).

[69] A. Gordon, R. Santra, and F. X. Kirtner, Phys. Rev. A 72,
063411 (2005).

[70] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevA.101.032502 for (i) a Jupyter notebook
demonstrating how our results in the main text were generated,
(ii) a Jupyter notebook which shows the same calculations as in
the main text but for an asymmetric system, (iii) videos of all
the time-dependent simulations detailed in the main text, and
(iv) the analytic form of our LDA+ potentials and energies.

[71] 1. Dreissigacker and M. Lein, Chem. Phys. 391, 143 (2011).

[72] M. T. Entwistle, M. J. P. Hodgson, J. Wetherell, B. Longstaff,
J. D. Ramsden, and R. W. Godby, Phys. Rev. B 94, 205134
(2016).

[73] This way of constructing an LDA was done for the xc of KS
theory and shown to yield an LDA close to that compared to the
LDA constructing from the homogeneous electron gas in Ref.
[76].

[74] J. Wetherell, M. J. P. Hodgson, and R. W. Godby, Phys. Rev. B
97, 121102(R) (2018).

[75] Note that within GKS theory the total electron energy is cal-
culated via the appropriate energy density functional, as is
appropriate within DFT.

[76] M. T. Entwistle, M. Casula, and R. W. Godby, Phys. Rev. B 97,
235143 (2018).

032502-7


https://doi.org/10.1103/PhysRevLett.100.146401
https://doi.org/10.1103/PhysRevLett.100.146401
https://doi.org/10.1103/PhysRevLett.100.146401
https://doi.org/10.1103/PhysRevLett.100.146401
https://doi.org/10.1039/C4CP01170H
https://doi.org/10.1039/C4CP01170H
https://doi.org/10.1039/C4CP01170H
https://doi.org/10.1039/C4CP01170H
https://doi.org/10.1007/BF01437503
https://doi.org/10.1007/BF01437503
https://doi.org/10.1007/BF01437503
https://doi.org/10.1007/BF01437503
https://doi.org/10.1103/PhysRevB.95.035120
https://doi.org/10.1103/PhysRevB.95.035120
https://doi.org/10.1103/PhysRevB.95.035120
https://doi.org/10.1103/PhysRevB.95.035120
https://doi.org/10.1016/j.chemphys.2011.03.020
https://doi.org/10.1016/j.chemphys.2011.03.020
https://doi.org/10.1016/j.chemphys.2011.03.020
https://doi.org/10.1016/j.chemphys.2011.03.020
https://doi.org/10.1063/1.4769078
https://doi.org/10.1063/1.4769078
https://doi.org/10.1063/1.4769078
https://doi.org/10.1063/1.4769078
https://doi.org/10.1021/acs.jpclett.7b02615
https://doi.org/10.1021/acs.jpclett.7b02615
https://doi.org/10.1021/acs.jpclett.7b02615
https://doi.org/10.1021/acs.jpclett.7b02615
https://doi.org/10.1103/PhysRevLett.95.203004
https://doi.org/10.1103/PhysRevLett.95.203004
https://doi.org/10.1103/PhysRevLett.95.203004
https://doi.org/10.1103/PhysRevLett.95.203004
https://doi.org/10.1103/PhysRevLett.104.236801
https://doi.org/10.1103/PhysRevLett.104.236801
https://doi.org/10.1103/PhysRevLett.104.236801
https://doi.org/10.1103/PhysRevLett.104.236801
https://doi.org/10.1021/jz302099f
https://doi.org/10.1021/jz302099f
https://doi.org/10.1021/jz302099f
https://doi.org/10.1021/jz302099f
https://doi.org/10.1103/PhysRevB.69.235411
https://doi.org/10.1103/PhysRevB.69.235411
https://doi.org/10.1103/PhysRevB.69.235411
https://doi.org/10.1103/PhysRevB.69.235411
https://doi.org/10.1103/PhysRevLett.52.997
https://doi.org/10.1103/PhysRevLett.52.997
https://doi.org/10.1103/PhysRevLett.52.997
https://doi.org/10.1103/PhysRevLett.52.997
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1063/1.1904586
https://doi.org/10.1063/1.1904586
https://doi.org/10.1063/1.1904586
https://doi.org/10.1063/1.1904586
https://doi.org/10.1021/ja039556n
https://doi.org/10.1021/ja039556n
https://doi.org/10.1021/ja039556n
https://doi.org/10.1021/ja039556n
https://doi.org/10.1103/PhysRevB.86.201109
https://doi.org/10.1103/PhysRevB.86.201109
https://doi.org/10.1103/PhysRevB.86.201109
https://doi.org/10.1103/PhysRevB.86.201109
https://doi.org/10.1103/PhysRevA.89.062502
https://doi.org/10.1103/PhysRevA.89.062502
https://doi.org/10.1103/PhysRevA.89.062502
https://doi.org/10.1103/PhysRevA.89.062502
https://doi.org/10.1088/1361-648X/aa836e
https://doi.org/10.1088/1361-648X/aa836e
https://doi.org/10.1088/1361-648X/aa836e
https://doi.org/10.1088/1361-648X/aa836e
https://doi.org/10.1088/0953-8984/20/8/083203
https://doi.org/10.1088/0953-8984/20/8/083203
https://doi.org/10.1088/0953-8984/20/8/083203
https://doi.org/10.1088/0953-8984/20/8/083203
https://doi.org/10.1103/PhysRevLett.101.166401
https://doi.org/10.1103/PhysRevLett.101.166401
https://doi.org/10.1103/PhysRevLett.101.166401
https://doi.org/10.1103/PhysRevLett.101.166401
https://doi.org/10.1103/PhysRevB.88.241102
https://doi.org/10.1103/PhysRevB.88.241102
https://doi.org/10.1103/PhysRevB.88.241102
https://doi.org/10.1103/PhysRevB.88.241102
https://doi.org/10.1088/1361-6455/aa5907
https://doi.org/10.1088/1361-6455/aa5907
https://doi.org/10.1088/1361-6455/aa5907
https://doi.org/10.1088/1361-6455/aa5907
https://doi.org/10.1021/acs.jctc.9b00209
https://doi.org/10.1021/acs.jctc.9b00209
https://doi.org/10.1021/acs.jctc.9b00209
https://doi.org/10.1021/acs.jctc.9b00209
https://doi.org/10.1103/PhysRevLett.89.023002
https://doi.org/10.1103/PhysRevLett.89.023002
https://doi.org/10.1103/PhysRevLett.89.023002
https://doi.org/10.1103/PhysRevLett.89.023002
https://doi.org/10.1103/PhysRevLett.109.266404
https://doi.org/10.1103/PhysRevLett.109.266404
https://doi.org/10.1103/PhysRevLett.109.266404
https://doi.org/10.1103/PhysRevLett.109.266404
https://doi.org/10.1103/PhysRevLett.108.146401
https://doi.org/10.1103/PhysRevLett.108.146401
https://doi.org/10.1103/PhysRevLett.108.146401
https://doi.org/10.1103/PhysRevLett.108.146401
https://doi.org/10.1103/PhysRevLett.109.036402
https://doi.org/10.1103/PhysRevLett.109.036402
https://doi.org/10.1103/PhysRevLett.109.036402
https://doi.org/10.1103/PhysRevLett.109.036402
https://doi.org/10.1103/PhysRevB.90.241107
https://doi.org/10.1103/PhysRevB.90.241107
https://doi.org/10.1103/PhysRevB.90.241107
https://doi.org/10.1103/PhysRevB.90.241107
https://doi.org/10.1103/PhysRevA.83.042501
https://doi.org/10.1103/PhysRevA.83.042501
https://doi.org/10.1103/PhysRevA.83.042501
https://doi.org/10.1103/PhysRevA.83.042501
https://doi.org/10.1002/qua.25096
https://doi.org/10.1002/qua.25096
https://doi.org/10.1002/qua.25096
https://doi.org/10.1002/qua.25096
https://doi.org/10.1063/1.464304
https://doi.org/10.1063/1.464304
https://doi.org/10.1063/1.464304
https://doi.org/10.1063/1.464304
https://doi.org/10.1063/1.1564060
https://doi.org/10.1063/1.1564060
https://doi.org/10.1063/1.1564060
https://doi.org/10.1063/1.1564060
https://doi.org/10.1021/ja8087482
https://doi.org/10.1021/ja8087482
https://doi.org/10.1021/ja8087482
https://doi.org/10.1021/ja8087482
https://doi.org/10.1002/cphc.200900268
https://doi.org/10.1002/cphc.200900268
https://doi.org/10.1002/cphc.200900268
https://doi.org/10.1002/cphc.200900268
https://doi.org/10.1002/aenm.201700440
https://doi.org/10.1002/aenm.201700440
https://doi.org/10.1002/aenm.201700440
https://doi.org/10.1002/aenm.201700440
https://doi.org/10.1103/PhysRevLett.119.145501
https://doi.org/10.1103/PhysRevLett.119.145501
https://doi.org/10.1103/PhysRevLett.119.145501
https://doi.org/10.1103/PhysRevLett.119.145501
https://doi.org/10.1021/acs.jctc.9b01121
https://doi.org/10.1021/acs.jctc.9b01121
https://doi.org/10.1021/acs.jctc.9b01121
https://doi.org/10.1016/S0009-2614(01)00616-9
https://doi.org/10.1016/S0009-2614(01)00616-9
https://doi.org/10.1016/S0009-2614(01)00616-9
https://doi.org/10.1016/S0009-2614(01)00616-9
https://doi.org/10.1103/PhysRevLett.107.216806
https://doi.org/10.1103/PhysRevLett.107.216806
https://doi.org/10.1103/PhysRevLett.107.216806
https://doi.org/10.1103/PhysRevLett.107.216806
https://doi.org/10.1103/PhysRevMaterials.2.040801
https://doi.org/10.1103/PhysRevMaterials.2.040801
https://doi.org/10.1103/PhysRevMaterials.2.040801
https://doi.org/10.1103/PhysRevMaterials.2.040801
https://doi.org/10.1021/ct200137z
https://doi.org/10.1021/ct200137z
https://doi.org/10.1021/ct200137z
https://doi.org/10.1021/ct200137z
https://doi.org/10.1103/PhysRevB.53.3764
https://doi.org/10.1103/PhysRevB.53.3764
https://doi.org/10.1103/PhysRevB.53.3764
https://doi.org/10.1103/PhysRevB.53.3764
https://doi.org/10.1103/PhysRevLett.76.3168
https://doi.org/10.1103/PhysRevLett.76.3168
https://doi.org/10.1103/PhysRevLett.76.3168
https://doi.org/10.1103/PhysRevLett.76.3168
https://doi.org/10.1073/pnas.0505436102
https://doi.org/10.1073/pnas.0505436102
https://doi.org/10.1073/pnas.0505436102
https://doi.org/10.1073/pnas.0505436102
https://doi.org/10.1103/PhysRevB.99.045129
https://doi.org/10.1103/PhysRevB.99.045129
https://doi.org/10.1103/PhysRevB.99.045129
https://doi.org/10.1103/PhysRevB.99.045129
https://doi.org/10.1140/epjb/e2018-90103-0
https://doi.org/10.1140/epjb/e2018-90103-0
https://doi.org/10.1140/epjb/e2018-90103-0
https://doi.org/10.1140/epjb/e2018-90103-0
https://doi.org/10.1103/PhysRev.102.1303
https://doi.org/10.1103/PhysRev.102.1303
https://doi.org/10.1103/PhysRev.102.1303
https://doi.org/10.1103/PhysRev.102.1303
https://doi.org/10.1073/pnas.76.12.6062
https://doi.org/10.1073/pnas.76.12.6062
https://doi.org/10.1073/pnas.76.12.6062
https://doi.org/10.1073/pnas.76.12.6062
https://doi.org/10.1021/ct200345a
https://doi.org/10.1021/ct200345a
https://doi.org/10.1021/ct200345a
https://doi.org/10.1021/ct200345a
https://doi.org/10.1103/PhysRevA.72.063411
https://doi.org/10.1103/PhysRevA.72.063411
https://doi.org/10.1103/PhysRevA.72.063411
https://doi.org/10.1103/PhysRevA.72.063411
http://link.aps.org/supplemental/10.1103/PhysRevA.101.032502
https://doi.org/10.1016/j.chemphys.2011.02.009
https://doi.org/10.1016/j.chemphys.2011.02.009
https://doi.org/10.1016/j.chemphys.2011.02.009
https://doi.org/10.1016/j.chemphys.2011.02.009
https://doi.org/10.1103/PhysRevB.94.205134
https://doi.org/10.1103/PhysRevB.94.205134
https://doi.org/10.1103/PhysRevB.94.205134
https://doi.org/10.1103/PhysRevB.94.205134
https://doi.org/10.1103/PhysRevB.97.121102
https://doi.org/10.1103/PhysRevB.97.121102
https://doi.org/10.1103/PhysRevB.97.121102
https://doi.org/10.1103/PhysRevB.97.121102
https://doi.org/10.1103/PhysRevB.97.235143
https://doi.org/10.1103/PhysRevB.97.235143
https://doi.org/10.1103/PhysRevB.97.235143
https://doi.org/10.1103/PhysRevB.97.235143

