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fundamental gap with a fixed number of electrons

M. J. P. Hodgson ,1,* J. Wetherell ,2,† and Emmanuel Fromager 3

1Department of Physics, Durham University and the European Theoretical Spectroscopy Facility, South Road, Durham,
DH1 3LE, United Kingdom

2LSI, École Polytechnique and the European Theoretical Spectroscopy Facility, CNRS, Institut Polytechnique de Paris, F-97728 Palaiseau
3Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France

(Received 12 October 2020; accepted 21 December 2020; published 12 January 2021)

Capturing the discontinuous shift by � in the exact exchange-correlation (xc) potential is the standard
proposal for calculating the fundamental gap Eg from the Kohn-Sham (KS) gap εg within KS density functional
theory (DFT) as Eg = εg + �, yet this discontinuity is absent from existing approximations. The “N-centered”
formulation of ensemble DFT artificially maintains a total electron number N in order to yield Eg not through
a discontinuous shift in the xc potential but via the ensemble-weight derivative of the xc energy. Within the
N-centered approach, we calculate exact xc potentials for a one-dimensional finite system and show analytically
that � can in fact be interpreted as a discontinuous shift in the exact N-centered ensemble xc potential,
thereby extending to charged excitations an exact property of uncharged excitations. We show that applying the
Levy-Zahariev “shift-in-potential” procedure in this context relocates the discontinuous shift to the unimportant
periphery of the system, so that the exact xc potential in effect is free of discontinuities and thus the inability of
a local functional to capture discontinuous behavior is inconsequential.
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I. INTRODUCTION

Kohn-Sham [1] (KS) density functional theory [2] (DFT)
owes its success to its approximations, which achieve an
unprecedented balance of computational efficiency and ac-
curacy for electronic structure properties [3–10]. However,
standard (semilocal) approximations are notoriously unreli-
able for predicting the fundamental gap [11,12]. As such,
to predict reliable gaps, in conjunction with a KS calcu-
lation, computationally expensive methods outside of KS
theory must be employed. These methods, which bypass
the need for nonlocal dependence on the electron density
within one’s approximation to the exchange-correlation (xc)
functional, use (more expensive) orbital-dependent function-
als [13], e.g., hybrid density functionals [14–29], which rely
on a generalized KS scheme, or the GW approximation within
many-body perturbation theory [30–35]. The extraction of
accurate gaps solely from a regular KS calculation [36–40]
offers the prospect of improved semiconductor, thermoelectric
material [10,41–43] and photovoltaic [44–46] modeling by
drastically reducing the computational cost.

In principle, KS DFT can yield the exact fundamental gap;
in practice the exact xc energy of DFT and the correspond-
ing xc potential of KS theory possess discontinuous features
which have a strong nonlocal dependence on the electron
density [5,47–53] and hence are difficult to capture in approx-
imate functionals [11,54–59]. Perdew, Parr, Levy, and Balduz
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(PPLB) [47] proposed to calculate the gap—the ionization
potential (IP), I , minus the electron affinity (EA), A—within
KS theory via the discontinuous constant shift �, in the mul-
tiplicative xc potential vxc(r), which occurs as the electron
number N infinitesimally surpasses an integer [47,60] N ,
where

� = lim
δ→0+

(vxc(r)|N=N+δ − vxc(r)|N=N−δ )

= I − A − εN+1 + εN , (1)

εN is the KS highest occupied molecular orbital (HOMO)
energy and εN+1 is the KS lowest unoccupied molecular
orbital (LUMO) energy, both of the N-electron system. �,
usually termed the “derivative discontinuity,” connects the
fundamental gap to the KS gap, εN+1 − εN . However, com-
mon density-functional approximations based on the local or
semi-local density are unable to capture the discontinuous
shift in the xc potential when the electron number infinites-
imally surpasses an integer and hence do not yield � [61,62].

Senjean and Fromager defined an “N-centered” KS system
from which the exact fundamental gap can be calculated in
principle [63,64]. Within their auxiliary system the electron
number is fixed and integer with the purpose of calculating
the system’s fundamental gap from the derivative (at fixed
density) of the corresponding N-centered ensemble xc energy
with respect to the ensemble weight rather than from a dis-
continuous shift in the xc potential. The theory was designed
so that the exact xc potential does not have to shift discontin-
uously in order to yield the gap and hence commonly used
approximations to the xc energy, such as the local density
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approximation (LDA), could in principle be employed reliably
in this context.

In this paper, we study the exact N-centered approach:
We calculate the exact ensemble xc energy as a function of
the ensemble weight and the corresponding exact xc poten-
tials for a one-dimensional finite model system for which the
many-body Schrödinger equation can be solved exactly. We
demonstrate both numerically and analytically that, when the
exact ensemble xc potential is (arbitrarily) forced to asymp-
totically approach zero infinitely far from the center of the
system, it experiences discontinuous shifts in the region of
centralized density, just like in the PPLB approach. Impor-
tantly, we show how these shifts can be ‘relocated’ from this
central region of the system to the unimportant periphery via
the exact Levy-Zahariev (LZ) shift [65] within the N-centered
approach, even as the ensemble weight becomes infinitesimal.

Our investigation into the nature of the N-centered method
is organized as follows. For comparison, we first consider
the ubiquitous PPLB approach. In Sec. II, we present a 1D
model system which consists of two same-spin, interacting
electrons in its ground state and calculate the exact KS xc
potential upon the addition of a small fraction of an electron
in order to observe the shift in the potential by �. Next, in
Sec. III, we briefly review the established exact N-centered
formalism. We then calculate, in Sec. IV, charged excitation
energies for our model system via the N-centered approach
both exactly and employing an LDA. In Sec. IV A 1, we
calculate the IP and find the exact N-centered ensemble xc
potential as a function of the ensemble weight. Section IV A 2
then employs a standard, weight-independent LDA to the xc
energy to find the IP for the same system, which highlights
the importance of the derivative of the xc energy with respect
to the ensemble weight. In Secs. IV B 1 and IV B 2, we repeat
these calculations but now for the EA. In Sec. V, we present
an analytic proof that � can indeed manifest within the exact
N-centered ensemble xc potential as a discontinuous shift
and thereby extend Levy’s concept for neutral excitations to
charged excitations [66,67]. We then summarize our work in
Sec. VI.

II. PERDEW, PARR, LEVY, AND BALDUZ

First let us study the PPLB approach in the absence of
approximation. For all our numerical examples, we employ
our iDEA code [68] which models electrons in 1D that in-
teract via the appropriately softened Coulomb interaction
wee(x, x′) ≡ (|x − x′| + 1)−1 [69] [atomic units (a.u.) used
throughout this manuscript]. The external potential for our
system corresponds to a model 1D atom vext (x) = 3/(|x| + 1).
Our system consists of two same-spin electrons (N = 2) and
as such we can calculate the exact fully-correlated many-body
wave function on a real-space grid in 1D and the many-body
total energy. In order to find the exact many-body IP and EA
of this system we also calculate the exact many-body wave
function and energy of the anion (which consists of three
same-spin electrons) and the wave function and energy of
ion (i.e., the one-electron system). From these wave functions
we can calculate the exact many-body electron density—both
for the integer electron systems and as an ensemble. The
exact ensemble many-body density is given by nδ (x) = (1 −

FIG. 1. PPLB case: (top) The change in the KS potential upon
the addition of δ electrons to the system; as δ → 0+ the change tends
to a uniform shift of height � (numerical noise on the far right).
We assume each xc potential decays ∝ − 1

|x| and we align the overall
constant shift of each potential such that vs(|x| → ∞) = 0 without
modeling an infinitely large system. (Bottom) The two-electron KS
system to which δ electrons is added.

δ)nN (x) + δnN+1(x), where ni(x) is the many-body density
of the i-electron system. From nδ (x) we “reverse-engineer”
the KS equations via the algorithm of Ref. [68] to find the
corresponding exact xc potential and KS energies for varying
values of δ.

Employing the exact KS energies of the N-electron KS
system, we calculate the exact � via Eq. (1). Figure 1 shows
that as δ → 0+ the change in the KS potential (vN+δ

s (x) −
vN

s (x)) tends to a uniform constant of magnitude � [53,70].
In this case, the N-electron KS potential is defined such that
vN+δ

s (|x| → ∞) = 0. vN+δ
s (x) possess a discontinuous shift

which elevates the potential in the central region of the sys-
tem. Note that as the plateau tends to a uniform constant
shift, the KS potential still asymptotically approaches zero
infinitely far from the center of the system; as discussed in
Refs. [53,70].

This discontinuous behavior is difficult to capture in an ap-
proximate density functional and hence in practice the PPLB
approach is not used.

III. N-CENTERED ENSEMBLE APPROACH

We now turn to the N-centered approach. Following
Ref. [63], we start from the general two-weight formulation
of N-centered ensemble DFT where the ensemble density is

n{ξ−,ξ+}(x) =
[

1 − ξ−
N − 1

N
− ξ+

N + 1

N

]
nN (x)

+ ξ−nN−1(x) + ξ+nN+1(x). (2)

By analogy with Ref. [64], we will refer to the special cases
{ξ−, 0} and {0, ξ+} as left and right N-centered ensembles,
respectively. In Sec. IV, we study in detail the left and then
the right ensemble, for which we vary the ensemble weights
as such: when ξ+ = 0, 0 � ξ− � N

N−1 , and when ξ− = 0,
0 � ξ+ � N

N+1 .
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The general (two-weight) ensemble energy is

E {ξ−,ξ+} =
[

1 − ξ−
N − 1

N
− ξ+

N + 1

N

]
EN

+ ξ−EN−1 + ξ+EN+1. (3)

The IP and EA can be extracted separately from the ensem-
ble energy by differentiating with respect to ξ− and ξ+; see
Eqs. (7) and (11). The ensemble energy, E {ξ−,ξ+}, is a func-
tional of the ensemble density n{ξ−,ξ+} which, unlike the PPLB
approach, integrates to the fixed (“central”) integral number
of electrons, N . This many-body density is exactly reproduced
by the noninteracting KS system:

n{ξ−,ξ+}(x)

=
(

1 − ξ−
N − 1

N
− ξ+

N + 1

N

) N∑
i=1

∣∣φ{ξ−,ξ+}
i (x)

∣∣2

+ ξ−
N−1∑
i=1

∣∣φ{ξ−,ξ+}
i (x)

∣∣2 + ξ+
N+1∑
i=1

∣∣φ{ξ−,ξ+}
i (x)

∣∣2
, (4)

where {φ{ξ−,ξ+}
i (x)} are the set of ensemble KS orbitals. As

within the regular KS DFT approach, the auxiliary KS sys-
tem employs the Hartree-xc (Hxc) potential, v

{ξ−,ξ+}
Hxc [n](x) :=

δE {ξ−,ξ+}
Hxc [n]/δn(x), to ensure that the noninteracting system

yields the exact many-body ensemble density, where

E {ξ−,ξ+}
Hxc [n] = EH[n] + E {ξ−,ξ+}

xc [n],

and EH[n] is the conventional (weight-independent) Hartree
functional. This formally exact deconstruction may not be
optimal for approximate functionals as ghost-interaction er-
rors [71–73] may be introduced. Alternatively one may use
exact (orbital-dependent) expressions for both Hartree and
exchange ensemble energies [74,75] or opt for an alterna-
tive weight-dependent definition of the ensemble Hartree
energy [76]. In this paper, we mainly focus on the exact
N-centered approach; for our LDA calculations we employ
this deconstruction.

For brevity we adopt in the rest of this work the follow-
ing shorthand notations when referring to ensemble densities,
energies, and density functionals:

{ξ−, 0} ≡ ξ−, {0, ξ+} ≡ ξ+, {ξ, ξ} ≡ ξ . (5)

As a result, the left N-centered ensemble xc functional, for
example, will simply be denoted as

E ξ−
xc [n] := E {ξ−,0}

xc [n]. (6)

Similarly, E ξ+
xc [n] := E {0,ξ+}

xc [n] and E ξ
xc[n] := E {ξ,ξ}

xc [n].
By design, the N-centered ensemble density integrates to

N , which is fixed with the aim of conveniently expressing � =
I − A − εN+1 + εN as a weight derivative where the ensemble
density is held constant [63,64], as such

� =
[

∂E ξ−
xc [n]

∂ξ−

∣∣∣∣
ξ−=0

+ ∂E ξ+
xc [n]

∂ξ+

∣∣∣∣
ξ+=0

]
n=nN

≡ ∂E ξ
xc[n]

∂ξ

∣∣∣∣
ξ=0,n=nN

.

In Sec. V, we show analytically that � can also be interpreted,
in the context of N-centered ensemble DFT, as a derivative
discontinuity, exactly like in the PPLB approach.

IV. EXTRACTING CHARGED EXCITATION ENERGIES

We now turn again to our model system and employ our
exact many-body densities within the exact N-centered for-
malism in order to calculate charged excitation energies as a
function of the ensemble weight. In addition we calculate the
corresponding exact ensemble xc potentials and observe how
they vary with the ensemble weight.

Within this section we also employ a standard LDA to the
ensemble xc energy which completely neglects the ensemble-
weight dependence.

A. Ionization potential

1. Exact theory

We start from the general expression of the IP for an N-
electron system within the N-centered approach—Eq. (33) in
Ref. [63]. By considering the left N-centered ensemble, we
obtain

I = −ε
ξ−
N +

[(
ξ−
N

+ 1

)
∂E ξ−

xc [n]

∂ξ−
− Cξ− [n]

]
n=nξ−

, (7)

where Cξ− [n] := C{ξ−,0}[n] is the analog of the LZ shift in
potential for N-centered ensembles [65] [note that the nota-
tions of Eq. (5) have been employed]. The general two-weight
expression for the ensemble density-functional LZ shift is

C{ξ−,ξ+}[n] = E {ξ−,ξ+}
Hxc [n] − ∫

dx n(x)v{ξ−,ξ+}
Hxc [n](x)∫

dx n(x)
. (8)

We stress that, unlike in the conventional PPLB approach,
the HOMO and LUMO energies (εξ−

N and ε
ξ+
N+1, respectively)

are defined up to an additive constant. This is connected to
the fact that the left and right N-centered ensemble densi-
ties (nξ− and nξ+ , respectively) integrate to the (fixed and
integer) central number of electrons N . On the other hand,
the LZ-shifted energies, εξ−

N = ε
ξ−
N + Cξ− [n]|n=nξ− and ε

ξ+
N+1 =

ε
ξ+
N+1 + Cξ+ [n]|n=nξ+ , are truly unique and independent of any

overall shift in the potential.
We study the same 1D atom of Sec. II but now the electron

number is fixed at N = 2 within the N-centered approach.
First we compare the exact IP to that of Eq. (7). We calculate
the exact many-body ensemble density via Eq. (2) considering
only the left contribution and employing the exact many-body
density for the N- and (N − 1)-electron systems. We then
employ the ensemble density, nξ− (x), and reverse-engineer
the KS equations to find the exact ensemble xc potential and
KS energies. Our results are shown in Fig. 2. We choose the
ensemble KS potential that tends to zero as |x| → ∞.

With this choice of KS potential we find that for 0 � ξ− <
N

N−1 , I = −ε
ξ−
N and hence

(
ξ−
N

+ 1

)
∂E ξ−

xc [n]

∂ξ−

∣∣∣∣
n=nξ−

= Cξ− [n]|n=nξ− . (9)
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FIG. 2. The exact KS HOMO energy (εξ−
N ) is minus the exact IP

for 0 � ξ− < N
N−1 . Each term of Eq. (7) is shown. The calculation of

I via Eq. (7) equals the exact IP for all ξ− as expected. We choose
vξ−

s (x) to asymptotically approach 0.

This can be proven analytically, as follows. For 0 � ξ− < N
N−1

the nN (x) term dominates the asymptotic decay of the density
[Eq. (2)] far from the center of the system:

lim
|x|→∞

nξ− (x) =
(

1 − N − 1

N
ξ−

)
nN (x) ∝ e−2

√
2I|x|. (10)

In addition, in the asymptotic region, the KS orbital with the
highest energy (εξ−

N ) will dominate the KS density [Eq. (4)]:

lim
|x|→∞

nξ− (x) = (
1 − N−1

N ξ−
)∣∣φξ−

N (x)
∣∣2 ∝ e−2

√
−2ε

ξ−
N |x|,

as, by design, v
ξ−
s (|x| → ∞) = 0. Hence, as this exponential

decay equals that of Eq. (10) by definition, I = −ε
ξ−
N and from

Eq. (7), Eq. (9) must follow.
We now examine v

ξ−
xc [nξ−](x) ≡ v

ξ−
xc (x) and v

ξ−
xc (x) +

Cξ− [n]|n=nξ− as ξ− → 2− ( N
N−1 = 2) which is the fully ionized

limit, i.e., nξ−
ξ−= N

N−1−→ N
N−1 nN−1 to see if there is any disconti-

nuity in the exact xc potential.
Figure 3 (top) shows that with the LZ shift there is no

plateau which yields a discontinuous shift in the xc potential
in the region of the atom and hence approximate functionals
which do not capture such discontinuities could be employed
as reliable approximations to v

ξ−
xc (x) + Cξ− [n]|n=nξ− , unlike

within the PPLB approach. On the other hand, Fig. 3 (middle)
shows v

ξ−
xc , which contains a plateau similar to that of Fig. 1.

The LZ shift “relocates” the discontinuity from the central-
ized region to the edges of the system—a region with little
influence on the system’s properties [77] . As ξ− → 2−, this
plateau would become infinitely expansive, exactly like for the
PPLB case; see Fig. 1.

Figure 2 clearly shows the importance of the ensemble-
weight dependence in the xc energy when we employ the
“discontinuity-free” LZ-shifted xc potential. Without the
contribution from the ensemble xc energy, the LZ shift sig-
nificantly worsens the IP predicted from Eq. (7). Therefore,
if one wishes to remove discontinuous shifts from the exact
xc potential, one requires a reliable approximation to the

FIG. 3. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ− → 2− in the region of
centralized density (numerical noise on the far right). (Middle) The
exact xc potential. There is a discontinuous shift in the potential as
ξ− → 2−. (Bottom) The density and xc potential for ξ− = 2.

ensemble-weight dependence in the xc energy within the N-
centered approach.

2. The local density approximation

Next we calculate the IP within the N-centered approach
employing the LDA to the xc energy, which neglects the
weight dependence entirely. Our LDA to the xc energy was
parameterized from the 1D homogeneous electron gas [78].
The LDA does not capture PPLB’s discontinuous shift, �, in
the xc potential. Therefore, although it is unsuitable for pre-
dicting the gap within the PPLB approach, it can be employed
within the N-centered approach.

Figure 4 shows the prediction for the IP evaluated via
Eq. (7) within the LDA. ILDA is comparable to the ex-
act LZ-shifted HOMO KS energy. Therefore, if an accurate
approximation to the weight derivative of the xc energy
were introduced, the LDA could yield a reliable prediction
for I . This highlights the importance of developing reli-
able approximations to the xc energy which account for the
ensemble-weight dependence [74,79].

We see in Fig. 4 that the LDA reproduces the LZ-shifted
HOMO energy well, especially when ξ− � 1. However, Fig. 5
shows that when ξ− = 2, the LDA LZ-shifted xc potential is
inaccurate, including the LDA LZ shift. This is likely because
for ξ− > 1 this LDA is employed for an ensemble well beyond
the ground-state systems from which it was parameterized.
Despite this the error in the LDA LZ-shifted HOMO energy
is acceptable owing to a cancellation of errors between the
approximate xc energy (which contributes to the LZ shift) and
the LZ-shifted potential which is overestimated in the region
of the atom and underestimated away from it.
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FIG. 4. Same as Fig. 2 but an LDA to the xc energy has been em-
ployed. ILDA is approximately equal to the exact −ε

ξ−
N − Cξ− [n]|n=nξ−

for approximately 0 � ξ− < 1.0 showing the importance of the xc
energy’s ensemble-weight dependence in obtaining an accurate IP.
ε

LDA,ξ−
N is inaccurate and hence a cancellation of errors with the LDA

LZ shift must occur.

B. Electron affinity

1. Exact theory

We now turn to the EA. We employ the right ensemble
system for which ξ+ is the ensemble weight; see Eq. (2). The
exact EA for the N-electron many-body system is given by the
following expression [63]:

A = −ε
ξ+
N+1 +

[(
ξ+
N

− 1

)
∂E ξ+

xc [n]

∂ξ+
− Cξ+ [n]

]
n=nξ+

. (11)

We model the same 1D atom as above. As before, we
calculate the exact many-body ensemble density via Eq. (2),
with ξ− = 0 and ξ+ allowed to vary, employing the exact
many-body density for the N- and (N + 1)-electron systems.
We then employ nξ+ (x) and reverse-engineer the KS equations
to find the exact ensemble xc potential and KS energies. Our
results are shown in Fig. 6 [77]. We compare our calculated
EA to the exact obtained via total energy differences of the

FIG. 5. The LDA xc potential for ξ− → 2− and ξ− = 2. The
LDA xc potential does not visibly change as ξ− → 2. The exact
potential is shown for reference.

FIG. 6. The exact KS LUMO energy (εξ+
N+1) is minus the exact

EA for 0 < ξ+ � N
N+1 . The separated terms of Eq. (11) are also

shown. The calculation of A via Eq. (11) equals the exact EA for
all ξ+, as expected. We choose vξ+

s (x) to asymptotically approach 0.

N- and (N + 1)-electron systems. As before, we (arbitrarily)
choose a KS potential, v

ξ+
s (x), that asymptotically approaches

0 towards infinity. Note that the expression on the right-hand
side of Eq. (11) is invariant under a constant shift in the KS
potential, by design.

Like for the IP, ε
ξ+
N+1 is found to be independent of ξ+ for

0 < ξ+ � N
N+1 . This is because the exact many-body ensem-

ble density decays as

lim
|x|→∞

nξ+ (x) = ξ+nN+1(x) ∝ e−2
√

2A|x|

far from the center of the system for 0 < ξ+ � N
N+1 . In this

asymptotic region, the KS orbital with the highest energy
(εξ+

N+1) dominates the KS density provided ξ+ > 0, and hence

lim
|x|→∞

nξ+ (x) = ξ+
∣∣φξ+

N+1(x)
∣∣2 ∝ e−2

√
−2ε

ξ+
N+1|x|.

Therefore, as the many-body ensemble density and the KS
density are the same, A = −ε

ξ+
N+1 and

(
ξ+
N

− 1

)
∂E ξ+

xc [n]

∂ξ+

∣∣∣∣
n=nξ+

= Cξ+ [n]|n=nξ+ ,

for 0 < ξ+ � N
N+1 .

We now examine v
ξ+
xc and v

ξ+
xc + Cξ+ [n]|n=nξ+ as ξ+ → 0+

to observe if in this case there is a discontinuous shift in the
potential. As for the IP in Sec. IV A, we observe no shift in the
potential in the region of the centralized electron density when
the LZ shift is included, as expected [64]; see Fig. 7 (top).
Instead the shift occurs in the outer region of the atom and as
ξ+ → 0+ the steps we see in Fig. 7 (top) move further and
further from the atom towards infinity. Without the LZ shift
we observe a shift in the potential in the vicinity of the atom
[Fig. 7 (middle)], as for the IP case above. In this case, it can
be shown that the height of the steps equals � as ξ+ → 0+;
see Sec. V.
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FIG. 7. (Top) The exact xc potential plus the LZ shift. There is
no discontinuous shift in the potential as ξ+ → 0+ (numerical noise
on the far right). (Middle) The exact xc potential. There is a dis-
continuous shift in the potential as ξ+ → 0+. (Bottom) The density
and xc potential for ξ+ = 0. We choose vξ+

s (x) to asymptotically
approach 0.

2. The local density approximation

Figure 8 shows the LDA’s prediction for the EA. Once
again it is clear that the ensemble-weight dependence is im-
portant for the EA prediction within the N-centered system;
see Sec. IV A 2.

As for the IP, the LDA yields an accurate LZ-shifted KS
energy for ξ+ < 0.5; see Fig. 8. Figure 9 shows that the
LDA xc potential decays too quickly (a standard issue of the
LDA) which yields an error in ε

LDA,ξ+
N+1 , however, this error is

canceled by the LDA LZ shift, as in Sec. IV A 2. Therefore,
in this case, with the addition of a reliable approximation to

FIG. 8. Same as Fig. 6 but an LDA to the xc energy has been
employed. The ensemble-weight dependence is clearly crucial for
obtaining an accurate EA. For reference, the exact ε

ξ+
N+1 is shown.

FIG. 9. The LDA xc potential as ξ+ → 0+ and ξ+ = 0. The
LDA xc potential does not visibly change as ξ+ → 0. The exact xc
potential is shown for reference.

the ensemble-weight derivative of the xc energy, one could
obtain an accurate EA from the LDA within the N-centered
approach.

For both the left and the right ensemble systems as ξ →
0 the LDA LZ-shifted KS energies are reliable approxima-
tions to the exact LZ-shifted KS energies for the N-electron
system owing to a cancellation of errors between the LDA
KS energies and the LDA LZ shift; see Figs. 4, 5, and 8.
Further investigation is required to determine whether this
cancellation of errors occurs for other types of system. These
results imply that with an accurate local approximation to the
ensemble-weight derivative of the xc energy, in the spirit of
previous works on neutral excitations [74,79], the N-centered
approach within the LDA could yield accurate fundamental
gaps for a low computational cost.

V. “LEFT-TO-RIGHT” DISCONTINUOUS SHIFT IN THE
N-CENTERED EXCHANGE-CORRELATION POTENTIAL

In the original formulation of N-centered ensemble
DFT [63], it was emphasized that modeling derivative discon-
tinuities in order to recover the fundamental gap from the KS
gap is unnecessary. Instead, one should focus on the weight
dependence of the ensemble xc energy. Still, in the light of our
numerical results and by analogy with Gross-Oliveira-Kohn
DFT [66,80–82] for neutral excitations, one may wonder if
a clear and formal connection can be established between
weight derivatives and derivative discontinuities in the con-
text of N-centered ensemble DFT. Below we establish this
connection.

The asymptotic behavior of the left and right N-centered
ensemble densities revealed that I = −(εξ−

N − v
ξ−
xc (|x| →

∞)), for 0 � ξ− < N
N−1 , and A = −(εξ+

N+1 − v
ξ+
xc (|x| → ∞)),

for 0 < ξ+ � N
N+1 . In the PPLB approach, the xc potential

tends to zero infinitely far from the center of the system, as
a consequence of Janak’s theorem. In the N-centered picture,
the potential is unique up to a constant. If we make the (arbi-
trary) choice that the N-centered ensemble xc potential always
tends to zero at infinite distance,

vξ−
xc (|x| → ∞) = vξ+

xc (|x| → ∞) = 0, (12)
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then the LZ shift and weight derivative contributions to the
IP/EA compensate each other exactly (shown above), which
can be written more explicitly as follows:

E ξ±
Hxc[nξ±] −

∫
dx v

ξ±
Hxc(x)nξ± (x) = (ξ± ∓ N )

∂E ξ±
xc [n]

∂ξ±

∣∣∣∣
n=nξ±

.

(13)

Note that, with the constraint in Eq. (12), v
ξ−=0
xc (x) =

v
ξ+=0
xc (x). As a result, by considering both ξ− = 0 and ξ+ →

0+ cases in Eq. (13), we obtain by subtraction∫
dx

(
vξ+→0+

xc (x) − vξ−=0
xc (x)

)
nN (x)

=
∫

dx
(
vξ+→0+

xc (x) − vξ+=0
xc (x)

)
nN (x)

= N

(
∂E ξ+

xc [nN ]

∂ξ+

∣∣∣∣
ξ+=0

+ ∂E ξ−
xc [nN ]

∂ξ−

∣∣∣∣
ξ−=0

)

≡ N
∂E ξ

xc[nN ]

∂ξ

∣∣∣∣
ξ=0

, (14)

which clearly shows that, as expected, v
ξ+→0+
xc (x) 	= v

ξ+=0
xc (x).

A consequence of Eqs. (12) and (14) is the constant shift
� which manifests in the xc potential in the region of the
atom or molecule as ξ+ infinitesimally increases above zero,
as shown in Fig. 7 (middle). The same occurs in the PPLB
approach when the number of electrons within the system in-
finitesimally increases above an integer; see Fig. 1. Therefore
Eq. (14) can be simplified as follows:

�

∫
dx nN (x) = N

∂E ξ
xc[nN ]

∂ξ

∣∣∣∣
ξ=0

,

thus leading to

� = vξ+→0+
xc (x) − vξ+=0

xc (x)

= δE ξ+
xc [n]

δn(x)

∣∣∣∣
n=nN ,ξ+→0+

− δE ξ+
xc [n]

δn(x)

∣∣∣∣
n=nN ,ξ+=0

= ∂E ξ
xc[nN ]

∂ξ

∣∣∣∣
ξ=0

, (15)

which shows that, within the N-centered picture, the weight
derivative � manifests in the exact xc potential as a derivative
discontinuity, when switching from left to right ensembles.
Equation (15), which is a key result, is the analog for
charged excitations of Levy’s derivative discontinuity expres-
sion for neutral excitations (see Eq. (29) in Ref. [66]; see also
Ref. [67]).

In summary, if we force the N-centered ensemble xc po-
tential to asymptotically approach zero, we recover IP/EA
theorems which are formally identical to those derived in
PPLB. In this case, the exact KS HOMO and LUMO energies
are weight-independent and

I − A = ε
ξ+→0+
N+1 − ε

ξ−=0
N

= ε
ξ+→0+
N+1 − ε

ξ+=0
N

= ε
ξ+=0
N+1 + vξ+→0+

xc (x) − vξ+=0
xc (x) − ε

ξ+=0
N

= εN+1 − εN + �. (16)

If we relax the constraint on the N-centered ensemble xc
potential at infinite distance, we can still define a truly unique
potential via the LZ shifting procedure v

ξ+
xc (x) → vξ+

xc (x) =
v

ξ+
xc (x) + Cξ+ [n]|n=nξ+ . In the latter case, the derivative discon-

tinuity �, which can be evaluated through an ensemble weight
derivative, is moved away from the system. Indeed, according
to Eqs. (8), (14), and (15),

vξ+→0+
xc (x) − vξ+=0

xc (x)

= vξ+→0+
xc (x) − vξ+=0

xc (x)

+
∫

dx
[ − v

ξ+→0+
xc (x) + v

ξ+=0
xc (x)

]
nN (x)∫

dx nN (x)

= vξ+→0+
xc (x) − vξ+=0

xc (x) − �, (17)

which gives vξ+→0+
xc (x) = vξ+=0

xc (x) in the region of the atom
or molecule and, according to Eq. (12),

vξ+→0+
xc (|x| → ∞) − vξ+=0

xc (|x| → ∞) = −�. (18)

VI. CONCLUSION

The “N-centered” system corresponds to an ensemble
Kohn-Sham (KS) system in which the electron number is
fixed and integer. This constraint on the ensemble system
permits the fundamental gap to be calculated from the KS
gap, not through the usually unattainable “derivative disconti-
nuity,” �, which manifests in the exact exchange-correlation
(xc) potential as a discontinuous shift within the usual Perdew,
Parr, Levy, and Balduz (PPLB) approach [47], but instead via
the ensemble-weight derivative of the N-centered xc energy.

We modeled the N-centered system exactly in 1D in order
to study the exact xc energy and corresponding xc potential as
a function of the ensemble weight (ξ ). We found that the xc
potential can always be (arbitrarily) forced to asymptotically
approach zero infinitely far from the center of the system.
We employed this constraint to prove analytically that �

manifests within the exact xc potential of the N-centered en-
semble as a derivative discontinuity, thus extending to charged
excitations Levy’s exact property of number-conserving ex-
citations [66]. We demonstrated numerically and analytically
that the exact Levy-Zahariev (LZ) shift “relocates” this dis-
continuity to the periphery of the system—a region with
negligible importance to the system’s observable properties.

We employed a standard 1D local density approximation
(LDA) to the xc energy which completely neglects the ensem-
ble weight dependence. We found, for our prototype system,
that the LDA LZ-shifted KS energies were accurate for a
significant range of ensemble weights including ξ = 0 which
corresponds to the regular N-electron KS system.

Within the PPLB perspective the LDA is unreliable be-
cause it does not exhibit the required discontinuous shift in
the xc potential and hence predicting the electron affinity (EA)
results in a substantial error. Additionally, the LDA yields an
inaccurate ionization potential (IP) owing to the usual self-
interaction error. From an N-centered perspective, the LDA
is much more reliable for the LZ-shifted highest occupied
and lowest unoccupied KS energies; by design, the LDA’s
inability to yield the discontinuous shift in the xc potential is
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inconsequential. We find that for ξ = 0 the LDA is remark-
ably accurate for the LZ-shifted KS energies; the IP and EA
are inaccurate because the standard LDA is independent of the
ensemble weight ξ as expected. Recent work combining finite
(for introducing weight dependencies into the functional) and
infinite (for reducing finite-size effects) uniform electron gas
models have yielded substantial progress in the design of lo-
cal ensemble functionals for neutral excitations [74,79]. This
strategy can also be applied to N-centered ensembles to yield
an approximation to the ensemble weight dependence of the

xc energy. This offers the prospect of calculations which yield
reliable fundamental gaps at a substantially lower cost than
with popular hybrid functionals.
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