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Exact expressions for the height of the interatomic step in the exchange-correlation
potential from the derivative discontinuity of the energy
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Popular approximations to the exchange-correlation (xc) energy of density-functional theory do not yield
the spatial “step” structures in the exact xc potential which are necessary to describe dissociation and electron
excitation with the Kohn-Sham (KS) system. Via the discontinuity in the derivative of the xc energy as a function
of electron number I derive exact analytic expressions in terms of the KS single-particle energies for the height
of the step in the xc potential between a variety of open- and closed-shell atoms within stretched molecules.
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I. INTRODUCTION

The unparalleled success of Kohn-Sham (KS) [1] density-
functional theory (DFT) [2] within solid-state physics [3–5]
is not experienced within quantum chemistry. DFT’s popular-
ity stems from the accuracy and computational efficiency of
commonly used approximations to the exchange-correlation
(xc) energy, such as the local density [1] and the generalized
gradient [6] approximation. However, these popular approx-
imations are unreliable for molecules with strong electron
localization [7–9].

An accurate ground-state KS potential is required for
determining ground-state properties, such as the total en-
ergy [10], as well as the optical absorption spectra [11,12],
charge-transfer energies [13–16], and electron real-time dy-
namics [17]. As existing approximations within KS theory
are unreliable, computationally demanding hybrid density
functionals [18,19] are employed to calculate these proper-
ties [5,20–28].

The exact xc potential has a strong dependence on the elec-
tron density everywhere in the system, which is challenging
to capture within an approximation. In the KS system, the
KS potential ensures that the noninteracting single-particle
electron density equals the many-body density. For systems
in which there is a large distance d between its subsystems,
e.g., the disassociated atoms of a molecule or a donor-acceptor
pair, the exact xc potential can consist of continuous, but
sharp, features, termed spatial “steps.” They occur at points
in the density where the “local effective ionization potential”
(LEIP) [29] changes, for example, at the intersection of two
subsystems. The step can be present in the xc potential in the
limit that the subsystems are infinitely separated [29–31] and
can depend on properties of each subsystem [see Eq. (1)].

For diatomic molecules the step that occurs between
the atoms can be crucial to obtain the correct electron
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occupation on each atom throughout the ground- and excited-
state KS system [15,29]. Common approximations based on
the local density that omit this “interatomic” step yield spu-
rious fractional electron numbers on the disassociated atoms
[7,32–36], termed the delocalization error [37,38], which
leads to an unreliable prediction of the bonding length and
dissociation energy [39]. Despite employing a spatially non-
local potential, the exact multiplicative potential of hybrid
density functionals [19] can also require an interatomic step
to accurately describe atomic dissociation [40].

In order to calculate accurate excitation energies within en-
semble and time-dependent DFT a reliable xc approximation
must capture steps in the ground-state KS potential [13,15].

For a system that consists of two separated open-shell
atoms the interatomic step height S is given by Almbladh and
von Barth’s expression [30]

S = IL − IR, (1)

where IL is the ionization energy of the left atom and IR is that
of the right atom. An analytic expression for the step height
in terms of the atomic KS quantities has not been formally
derived for a system that contains any closed-shell atoms.

In this article I study the addition of an electron to var-
ious stretched diatomic molecules (composed of a verity of
open- and closed-shell atoms) that each initially consists of
an arbitrary integer number of electrons N0 in order to de-
duce the height of the interatomic step in the KS potential
of the (N0 + 1)-electron molecule. I study the evolution of
the exact KS potential as the amount of additional electron
goes smoothly from 0 to 1 via an ensemble of the two integer
systems. This insight could aid the development of advanced
density-functional approximations aiming to model electron
excitation or within ground-state approximations that yield
step structures in the xc potential but require exact conditions
for practical use (e.g., Ref. [41]).

The electron number of a finite system can vary continu-
ously if it is in contact with an electron reservoir, the chemical
potential of which can be adjusted. In this case the exact total
energy of the finite system is a linear function of the electron
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number N between integer values [42]. At an integer value N0,
the derivative of the energy with respect to N is discontinuous.
The magnitude of this derivative discontinuity is the funda-
mental gap of the N0-electron system—its ionization energy
minus its electron affinity (IN0 − AN0 ). Within the KS system,
Janak’s theorem [43] ensures that the highest occupied molec-
ular orbital (HOMO) energy is also discontinuous at integer
values of N and is equal to minus the ionization energy (the
“IP theorem” of DFT). Therefore, when the system consists
of infinitesimally less than N0 electrons, the HOMO energy
limδ→0 ε

N0−δ
N0

= −IN0 . When N is infinitesimally more than

N0, limδ→0 ε
N0+δ
N0+1 = −IN0+1 = −AN0 . In order to ensure that

these two KS orbital energies yield the required ionization
energies, the exact xc potential vxc(x) experiences a discon-
tinuous uniform shift by a constant, �N0 , when the number
of electrons N within the system infinitesimally surpasses an
integer [42]: �N0 = limδ→0[vxc(x)|N=N0+δ − vxc(x)|N=N0−δ].
The magnitude of the shift is thus

�N0 = lim
δ→0

[
IN0 + ε

N0−δ
N0

− (
AN0 + ε

N0+δ
N0+1

)]

= IN0 − AN0 − (
ε

N0
N0+1 − ε

N0
N0

)
, (2)

where ε
N0
N0

is the KS energy of the HOMO and ε
N0
N0+1 is the KS

energy of the lowest unoccupied molecular orbital (LUMO),
both of the N0-electron system. Owing to the IP theorem,
IN0 = −ε

N0
N0

(where the exact KS potential of the N0-electron
system asymptotically approaches zero; if a nodal plane is
present in the HOMO orbital, this may not be the case [44]),
and thus, Eq. (2) can be simplified to �N0 = −AN0 − ε

N0
N0+1.

For clarity I present my arguments in one dimension.
It is straightforward to generalize my arguments to three-
dimensional (3D) systems without altering my conclusions.
However, one must be mindful of nodal planes in the HOMO
on which the exact KS potential can exhibit divergent behav-
ior [44].

In principle �N0 yields the fundamental gap from the KS
system [42,45,46]; in practice, common density-functional
approximations do not capture this xc derivative discontinu-
ity [32,47–51].

In Refs. [15,52] the relationship between the interatomic
step and the discontinuity in the derivative of the xc energy
was demonstrated in the context of charge transfer within a
diatomic molecule. In this article I show analytically that the
height of the interatomic step in the exact KS potential of any
stretched molecule consisting of an arbitrary N0 + 1 number
of electrons is equal to the xc derivative discontinuity of the
N0-electron system.

II. COMPUTATIONAL DETAILS

I employ the iDEA code [53] to verify my analytic
results via exactly solvable model systems. The code mod-
els few-electron systems exactly by solving the many-body
Schrödinger equation on a real-space grid in one dimension.
The code employs the softened Coulomb interaction (|x −
x′| + 1)−1 as appropriate [54]. From the exact fully correlated,
ground-state many-body wave function I obtain the exact
ground-state many-body density n(x). I reverse engineer the
KS equations so that the KS density is equal to the many-body

FIG. 1. Diagram of an N0-electron stretched diatomic molecule.
Both atoms are closed shell within the exact KS description. The
lowest unoccupied KS orbital is localized to the left atom, and the
highest occupied KS orbital is localized to the right atom.

density to find the corresponding exact KS potential, orbitals,
and energies; details of the reverse-engineering procedure are
given in Ref. [53].

III. ADDING AN INFINITESIMAL AMOUNT
OF AN ELECTRON TO A DIATOMIC MOLECULE

Consider the exact KS description of an N0-electron
stretched diatomic molecule. The external potential generated
by the left nucleus (L) corresponds to a deeper potential well
than that of the right (R), and both atoms are closed shell (see
Fig. 1). The HOMO is localized to the right atom, and the
LUMO is localized to the left atom. The atoms are so sep-
arated that adding or subtracting electrons from either atom
has a negligible effect on the electron density localized to the
other atom.

An electron added to this N0-electron system localizes to
the left atom, and ionization causes an electron localized to
the right atom to escape. Hence, the ionization energy of the
whole system corresponds to the ionization energy of the iso-
lated right atom (IN0 = IN0

R ), and the whole system’s electron
affinity is that of the isolated left atom (AN0 = AN0

L ); see Fig. 1.
The interatomic step in the KS potential is usually dis-

cussed in the context of “reordering” the KS single-particle
energy levels of one atom relative to the other [15]. The
role of the step in this case is to ensure that the additional
KS electron localizes to the “correct” atom, i.e., that which
matches the many-body system; for more details see Sec. V.
For the N0-electron system described above, without any ad-
justments to its exact KS potential, the additional KS electron
localizes to the left atom just like the many-body system.
Thus, the reordering of KS single-particle energy states is not
required—does this mean there is no interatomic step in the
(N0 + 1)-electron system’s xc potential?

According to Eq. (2) the xc derivative discontinuity of
the whole N0-electron system (left and right atoms) is �N0 =
IN0
R − AN0

L − (εN0
N0+1 − ε

N0
N0

). As the right atom’s ionization en-
ergy is that of the whole molecule, the IP theorem states
IN0
R = −ε

N0
N0

. Thus, �N0 = AN0
L − ε

N0
N0+1.
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FIG. 2. Diagram of the natural logarithm of the density of an
(N0 + δ)-electron system with a vanishingly small δ. Black dots
indicate the left and right nuclei. On the periphery of the system the

exponential decay of the density changes from ∝
√

IN0
R to ∝

√
AN0

L ,

which yields a step in the xc potential of height �N0 (see text).

For this system the LUMO is also the left atom’s (the atom
to which the additional electron localizes) lowest unoccupied
KS atomic orbital. Thus, the xc derivative discontinuity of the
isolated left atom �L = −AN0

L − ε
N0
N0+1, which is equal to �N0

for this molecule.
Figure 2 demonstrates the change in the xc potential and

the natural log of the electron density when a vanishingly
small amount of an electron is added to this N0-electron
system. The exact many-body total density of the (N0 + δ)-
electron system is an ensemble of the N0-electron and (N0 +
1)-electron systems, as such

nN0+δ (x) = (1 − δ)nN0 (x) + δnN0+1(x). (3)

Far from any system the many-body density decays exponen-
tially ∝ e−2

√
2I|x| [55,56], where I is the ionization energy of

the system. Thus, far from the center of my stretched molecule

the density decays ∝ e−2
√

2I
N0
R |x| (IN0

R is the whole system’s ion-
ization energy). Even when δ is vanishingly small, eventually,

the total density decay is dominated by the decay e−2
√

2A
N0
L |x|

(AN0
L is the whole system’s electron affinity):

nN0+δ (|x| → ∞) = (1 − δ)Be−2
√

2I
N0
R

∣∣x− 1
2 d

∣∣

+ δCe−2
√

2A
N0
L

∣∣x+ 1
2 d

∣∣
, (4)

where B and C are normalization constants. In order for the
KS density to decay at the same rate as the many-body density,
on the periphery of the system, at the point in the density
where the LEIP changes, steps must form in the xc poten-
tial, yielding a finite “plateau” which raises the xc potential
by a constant, vp, in the vicinity of only the molecule (see
Fig. 2) [57]. Hence, the KS density is

nN0+δ (|x| → ∞) = (1 − δ)Be
−2

√
−2

(
ε

N0+δ

N0
−vp

)∣∣x− 1
2 d

∣∣

+ δCe−2
√

−2ε
N0+δ

N0+1

∣∣x+ 1
2 d

∣∣
, (5)

where vxc(|x| → ∞) = 0, limδ→0 ε
N0+δ
N0+1 = ε

N0
N0+1 + vp, and

limδ→0 ε
N0+δ
N0

= ε
N0
N0

+ vp. For the KS density to decay at the

same rate as the many-body density, ε
N0+δ
N0

− vp = ε
N0
N0

+ vp −

vp = ε
N0
N0

= −IN0
R , and ε

N0+δ
N0+1 = ε

N0
N0+1 + vp = −AN0

L . Thus, the

height of the plateau vp = −AN0
L − ε

N0
N0+1, which is �N0 . These

steps are drawn infinitely far from the system’s center as
δ → 0 and the plateau becomes a uniform shift in the xc
potential, a numerical demonstration of which is in Ref. [52].

IV. INCREASING THE AMOUNT OF ADDITIONAL
ELECTRON TO 1

On the periphery of any subsystem within a larger system
the electron density decays in accordance with that sub-
system’s ionization energy. The decay can abruptly change,
for example, when the decay of two subsystems meet. This
change in the density corresponds to a change in the LEIP
which in turn can yield an abrupt spatial step in the xc poten-
tial at that point [29].

For my stretched molecule, as δ is increased slightly,
the additional electron completely localizes to the left atom.
Hence, the left atom’s local number of electrons surpasses
an integer, and consequently, its xc potential experiences a
local shift (spatially uniform just for the left atom) by �L,
as depicted in Fig. 3.

When an atom’s local number of electrons increases by a
small amount, the exponential decay of the atom’s density

(in my case the left atom) changes from ∝ e−2
√

2I
N0
L |x| to

∝ e−2
√

2A
N0
L |x| far from that atom, e.g., in Fig. 3. This causes

a step to form in the xc potential around the atom [58], the
height of which is given by that atom’s xc derivative dis-
continuity [15,52], giving rise to the plateau in the atom’s
xc potential. For my stretched molecule this happens for the

left atom such that the KS density decays ∝ e−2
√

−2ε
N0+δ

N0+1 |x| =
e−2

√
−2(ε

N0
N0+1+�L )|x| = e−2

√
2A

N0
L |x|. This

√
AN0

L decay then

meets the decay of the right atom, which is ∝ e−2
√

2I
N0
R |x|,

causing a second change in the LEIP and a second step in
the xc potential between the atoms (see Fig. 3).

In principle, when the atoms are far apart, the right
plateau’s height does not affect the KS decay in any region

which is ∝ e−2
√

−2ε
N0+δ

N0+1 |x| because the highest (partially) oc-
cupied KS orbital is localized to the left atom. Thus, the height
of the right plateau (within a range [29]) has no effect on the
corresponding KS single-particle energy ε

N0+δ
N0+1. This may lead

one to assume that the height of the right plateau cannot be
determined from the decay of the density. However, recall
that the atoms are so far apart that the introduction of an
electron to the left atom has a negligible effect on the right

atom’s density, so the decays ∝ e−2
√

2I
N0
R |x| and e−2

√
2A

N0
L |x|

are both independent of δ. Hence, the density to the right of
the right atom, given by Eq. (4), does not change its spatial
structure as δ is increased [59]. As the KS potential is uniquely
determined by the spatial structure of the density [2], the
height of the corresponding step in the xc potential at the point
where the

√
IN0
R decay becomes the

√
AN0

L decay must remain
fixed as a function of δ. The step height is �N0 in the limit
that δ → 0; therefore, the plateau localized to the right atom
has a height of �N0 for 0 < δ � 1. It follows that the plateau’s
other step—located between the atoms—has a height of �N0

also, as shown in Fig. 3.
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FIG. 3. Diagram of the natural logarithm of the density of an (N0 + δ)-electron system; δ is finite, but small. Black dots indicate the left and
right nuclei. For the stretched molecule the LEIP changes on the periphery of the left atom, resulting in a plateau with a height corresponding to
the left atom’s xc derivative discontinuity �L. The decay of the left atom then meets the decay of the right atom, yielding a second step between
the atoms. A final change in the LEIP occurs far to the right of the system. The height of the right plateau is the xc derivative discontinuity of
the whole molecule �N0 in the limit that the atoms are infinitely separated (see text).

In Ref. [52] the double-step structure between two sepa-
rated atoms was demonstrated to occur for a 3D stretched
diatomic molecule whose KS potential possesses an inter-
atomic step before the addition of any fraction of an electron.
I have shown that, in general, when a small amount of an
electron is added to any stretched molecule the atom to which
the additional electron localizes experiences a shift by its own
xc derivative discontinuity and the other atom’s xc potential
also shifts but by the xc derivative discontinuity of the whole
system [60].

As δ → 1, the width of the plateau localized to the left
atom (with height �L) shrinks as the LEIP in left atom’s
density moves closer to the center of the atom (see Fig. 5). The
height of the plateau localized to the right atom is unaffected
owing to the large separation of the atoms.

In summary, for small δ there are two steps between the
atoms: an interatomic step with height �N0 and an “intra-
atomic step” (related to the left atom) of height −�L (minus
indicates a step “down”; see Figs. 3 and 5, bottom). For this
system �N0 = �L, thus, there is no overall step between the
atoms for small δ. When δ = 1, only the interatomic step
remains in the KS potential, yielding an overall step in the
(N0 + 1)-electron system of height �N0 :

lim
d→∞

SN0+1 = �N0

(see Fig. 4, bottom).
I model a one-dimensional (1D) two-electron stretched

diatomic molecule (N0 = 2), where the external potential
is vext (x) = −2/(|x − d

2 | + 1) − 3/(|x + d
2 | + 1) and d = 30

a.u. (see Fig. 4, top). All electrons have the same spin, so
that each atom is closed shell. This achieves the maximum
richness of exchange and correlation for a given computa-
tional effort; for example, three KS orbitals are occupied in
the three-electron system.

The system is designed such that the LUMO is localized
to the left well and the HOMO is localized the right one (see

Fig. 4, middle, and compare it with Fig. 1). Within the three-
electron many-body system the additional electron localizes
to the left well (see Fig. 4, bottom).

Via Eq. (3) I combine the two-electron density and
the three-electron density in an ensemble to obtain the
exact many-body density as a function of δ. I reverse

FIG. 4. Top: The two-electron density and external potential.
Middle: The lowest unoccupied KS orbital, φN=2

3 (x), and the highest
occupied KS orbital, φN=2

2 (x), of the two-electron system. The cor-
responding single-particle energy levels are shown in gray. Bottom:
The many-body density of three same-spin electrons and the corre-
sponding exact KS potential. A step is present which elevates the xc
potential in the vicinity of the right well, the height of which is given
by the xc derivative discontinuity of the two-electron molecule.
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FIG. 5. Top: The natural log of the density with 2 + δ same-spin
electrons. Bottom: The corresponding exact KS potential. As δ →
1, the additional fraction of an electron localizes to the left atom,
giving rise to a plateau localized to the left atom which corresponds
to the left atom’s xc derivative discontinuity �L. Simultaneously, a
separate plateau localizes to the right atom with height �N=2 (the xc
derivative discontinuity of the whole molecule). When δ = 1, only
the right plateau remains, giving rise to an interatomic step in the
three-electron system of height �N0 .

engineer the KS equations with fractional occupation of
the (now) HOMO, such that nN=2+δ (x) = |φN=2+δ

1 (x)|2 +
|φN=2+δ

2 (x)|2 + δ|φN=2+δ
3 (x)|2, to find the corresponding ex-

act KS potential as a function of δ (see Fig. 5).
For small δ the density in the region of the left atom is

unchanged; there is a change in the LEIP on either side of
the left atom as expected (compare Fig. 5 with Fig. 3). The
corresponding steps in the xc potential give rise to the plateau
which elevates the left atom’s xc potential by the xc derivative
discontinuity of the left atom [15,52] �L (Fig. 5, bottom). (For
this system �L = 0.349 a.u.) This plateau in the xc potential
shrinks as δ → 1; the steps move towards the left atom until
the plateau has zero width and the xc potential corresponds to
the left atom with an additional electron (δ = 1).

Towards the right atom, at the point where the left atom’s
density meets the right’s, there is a second change in the LEIP
(see Fig. 5, top). As predicted above, a plateau which elevates
the xc potential in the region of the right atom with magnitude
�N=2 is present as δ → 1 (see Figs. 5, bottom, and 4, bottom).

In summary, when a finite, but small, fraction of an electron
is added to this stretched molecule, there are two plateaus in
the exact xc potential—one localized to the left atom with
height �L and one localized to the right atom with height
�N0 . At the edge of each plateau between the atoms there is
a step. For this molecule �L = �N0 ; below I investigate the
effect on the exact xc potential when the heights of these two
plateaus are not equal. As the amount of additional electron
tends to 1, the left plateau (in the vicinity of the atom to
which the additional electron localizes) is removed from the
xc potential, while the right plateau remains at a height of �N0 .
Thus, within the (N0 + 1)-electron system the right atom’s
xc potential is elevated by �N0 , yielding the interatomic step
(see Fig. 4, bottom). Therefore, although the interatomic step
in the KS potential for this type of system is not needed to
reorder the KS single-particle energies, the requirement that

FIG. 6. Diagram of an N0-electron stretched diatomic molecule
where both atoms are closed shell and the lowest unoccupied and
highest occupied molecular orbitals are localized to the left atom.

the KS potential yield the correct electron density at all points
in space means an interatomic step is present.

V. AN INTERATOMIC STEP TO CORRECTLY
DISTRIBUTE ELECTRONS

Imagine an N0-electron stretched diatomic molecule where
the system is asymmetric (as above) and both atoms are closed
shell (see Fig. 6).

Consider the atoms to be so separated that the ionization
energy of the molecule corresponds to the ionization energy
of the isolated left atom (IN0 = IN0

L ) and the electron affinity
of the whole molecule corresponds to the affinity of the iso-
lated right atom (AN0 = AN0

R ). Hence, for this system �N0 =
IN0
L − AN0

R − (εN0
N0+1 − ε

N0
N0

) = −AN0
R − ε

N0
N0+1. The HOMO and

the LUMO are both localized to the left atom (see Fig. 6).
When an electron is added to this system, it localizes to the
right atom owing to the Coulomb and Pauli interaction which
would be experienced if it were to localize to the left atom.
Within the exact KS description, if an electron were to be
added to the exact KS potential of the N0-electron system, it
would spuriously localize to the left atom (within the many-
body system it would localize in the right atom). Therefore, an
interatomic step in the (N0 + 1) electron is required to ensure
that the KS single-particle density is equal to the many-body
density by reordering the KS energies. When an infinitesimal
amount of an electron is added to this N0-electron system, the
xc potential of the whole system jumps by �N0 (demonstrated
above).

For small δ, the additional electron completely localizes
to the right atom, which gives rise to a plateau in its xc
potential, the height of which corresponds to the xc derivative
discontinuity of the right atom �R (see Fig. 7). Like for
the system above, the left atom’s xc potential is elevated by
�N0 (for 0 < δ � 1; see Sec. IV). Thus, the overall height
of the interatomic step within the (N0 + δ)-electron system
is �N0 − �R = −AN0

R − ε
N0
N0+1 − �R. For this system �R =

−AN0
R − ε

N0
N0+2 as ε

N0
N0+2 is the lowest unoccupied atomic KS

energy of the right atom. Therefore, �N0 − �R = ε
N0
N0+2 −
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FIG. 7. Diagram of an (N0 + δ)-electron stretched diatomic
molecule with a closed-shell left atom and a partially occupied
open-shell right atom within the exact KS description (δ �= 1). The
double-step structure occurs between the atoms because the left and
right atoms’ xc potentials are elevated by two plateaus (see Fig. 5,
bottom).

ε
N0
N0+1. The highest (partially) occupied KS energy of the right

atom is aligned with the lowest unoccupied KS energy of the
left atom via a double-step structure between the atoms (see
Fig. 7). These two steps occur because each atom has been
elevated locally by a plateau (like for the system above; see
Sec. IV, specifically Fig. 5, bottom). This case differs from
that shown in Fig. 5 (bottom) because the magnitudes of the
two step heights are not equal [61].

When δ → 1, the right plateau is removed from the xc po-
tential, and the left plateau remains, the mechanism for which
is described in Sec. IV. Hence, within the (N0 + 1)-electron
system the right atom is elevated by the plateau of height �N0 ,
and thus, there is an interatomic step in the xc potential with
height S = �N0 .

For this system, as AN0
R = IN0+1

R , �N0 = −IN0+1
R − ε

N0
N0+1.

Within the (N0 + 1)-electron system IN0+1
R = −ε

N0+1
N0+1 owing to

the IP theorem. Therefore, �N0 = ε
N0+1
N0+1 − ε

N0
N0+1 (see Fig. 8,

bottom). Thus,

lim
d→∞

SN0+1 = �N0 = ε
N0+1
N0+1 − ε

N0
N0+1. (6)

I model a 1D stretched diatomic molecule which initially
consists of one electron (N0 = 1). The additional electron has
the same spin as the initial electron so that the atoms are
closed shell. vext (x) = −1/(|x − d

2 | + 1) − 3/(|x + d
2 | + 1),

and d = 15 a.u. (see Fig. 8, top). The left external potential
well is deep enough that two same-spin fully noninteracting
electrons in this external potential both occupy the left well
(see Fig. 8, middle). However, within the triplet two-electron
many-body system one electron localizes in the left well, and
the other electron localizes in the opposite well owing to the
Coulomb and Pauli interaction they would experience if they
were to occupy the same well (see Fig. 8, bottom).

Equation (6) implies that the role of the step is to ensure
that as the atoms are separated, the difference between the
highest occupied atomic KS energy of the right atom and the
lowest unoccupied atomic KS energy of the left atom tends to

FIG. 8. Top: The one-electron density and the external poten-
tial. Middle: The lowest unoccupied KS orbital φN=1

2 (x) and the
highest occupied KS orbital φN=1

1 (x) of the one-electron system.
The corresponding single-particle energy levels are shown in gray.
Bottom: The many-body density of two same-spin electrons and the
corresponding exact KS potential. The step elevates the xc potential
in the vicinity of the left well in order to reorder the occupation of
the KS states.

zero. For any large, but finite, separation the highest occupied
atomic KS energy of the right atom is slightly lower than the
lowest unoccupied atomic KS energy of the left atom because
the additional electron localized to the right atom has a small
effect on the left atom’s density. In practice this avoids the
spurious occupation of the LUMO (for finite separations the
inequality of Ref. [29] must be obeyed by the step height; see
Fig. 8, bottom). As I increase the separation of the external
potential wells, I find that this difference indeed tends to zero
as predicted by Eq. (6).

A. Almbladh and von Barth case

The Almbladh and von Barth case is similar to that above,
but the left atom is open shell. Thus, ε

N0
N0

= ε
N0
N0+1, and �N0 =

IN0
L − AN0

R [see Eq. (2)].
When an electron with the opposite spin to the unpaired

electron is added to this system within the many-body de-
scription, the additional electron localizes to the right atom
owing to the Coulomb interaction which it would experience
if it tried to localize to the left atom. Note that within the exact
KS system, despite the LUMO being localized to the left atom
within the N0-electron system, the additional KS electron must
localize to the right atom in order for the single-particle KS
density to equal the exact many-body electron density. As
such the highest occupied atomic energies must be aligned
within the (N0 + 1)-electron KS system, which is ensured
within the exact system by the interatomic step [see Eq. (1)].
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Within the (N0 + δ)-electron system, the localization of the
additional electron within the exact KS system is the same as
described above; a plateau of height �R forms for the right
atom (the atom to which the additional electron localizes),
while a plateau of height �N0 forms in the vicinity of the left
atom. �N0 − �R = ε

N0
N0+2 − ε

N0
N0+1, so in this case the step acts

to align the highest (partially) occupied KS energy of the right
atom with the highest occupied KS energy of the left atom, as
required by Almbladh and von Barth’s argument [30].

When δ = 1, the right plateau has gone, and the left
plateau is still present. For this stretched molecule AN0

R =
IN0+1
R , and because the additional electron localizes to the

right atom, IN0
L = IN0+1

L , where IN0+1
L is the ionization energy

of the left atom and IN0+1
R is the ionization energy of the

right atom within the (N0 + 1)-electron system. Therefore,
�N0 = IN0+1

L − IN0+1
R . Thus, in accordance with Eq. (1), the

step height is given by the difference between the left and right
atoms’ ionization energies:

lim
d→∞

SN0+1 = �N0 = IN0+1
L − IN0+1

R . (7)

VI. CONCLUSION

I demonstrated analytically that the height of the spatial
step that forms in the exact exchange-correlation potential
between a variety of open- and closed-shell atoms within any
stretched diatomic molecule composed of an arbitrary N0 + 1
number of electrons, where N0 is an integer, is equal to the
xc derivative discontinuity [42] of the N0-electron system. I
verified my results with exactly solvable 1D model systems.

I considered the addition of an electron to an N0-electron
diatomic molecule in order to find an expression for the inter-
atomic step in the (N0 + 1)-electron system: When the amount
of additional electrons is infinitesimal, the whole system’s xc
potential shifts discontinuously by a constant, �N0 (the xc
derivative discontinuity of the N0-electron system). For suffi-
ciently large separation between the atoms of this molecule,
the additional electron completely localizes to one of the
atoms, say the left. This left atom experiences a local shift
(a plateau) by its xc derivative discontinuity �L, which may
differ from that of the whole molecule �N0 . In conjunction a

plateau with height �N0 localizes to the right atom, as depicted
in Fig. 3 in Sec. IV.

As the amount of additional electron is increased to 1,
the plateau localized to the left atom, to which the additional
electron localizes, shrinks, while the plateau localized to the
right atom has a fixed height of �N0 , as shown in Sec. IV. As a
result, within the (N0 + 1)-electron system the right atom’s xc
potential is elevated by �N0 , which means a step with height
�N0 is present in the xc potential between the atoms.

I presented three distinct example diatomic molecules that
consist of a variety of open- and closed-shell atoms. In each
case the height of the interatomic step S = �N0 . Two of my
example systems require a step in the xc potential to reorder
the KS single-particle energies so that the KS density equals
the many-body density (one of which is the well-known
thought experiment of Almbladh and von Barth [30]; see
Sec. V). Without the step, the KS electron density would
experience a large delocalization error [38]. I demonstrated
that the required reordering of the KS single-particle states
is achieved completely by the interatomic step of height �N0

[see Eq. (6)], which is verified numerically in Fig. 8 (bottom).
I showed that in the case of two open-shell atoms S = �N0 is
consistent with Almbladh and von Barth’s result [see Eq. (7)].

An accurate description of the step structures in the xc
potential is needed to correctly distribute electron density
throughout a molecular structure and describe the dissociation
of atoms, bonding lengths, ground-state energies, and exci-
tation energies [15,16]. For example, existing approximate
functionals that omit these step features cannot be employed
to reliably calculate optical absorption properties for charge-
transfer donor-acceptors [15,38,62,63]. The insights offered
in this paper could aid the development of advanced approx-
imations to the xc energy and corresponding xc potential in
order to yield more reliable KS calculations and offer a path to
the computationally efficient calculation of excitation energies
within quantum chemistry, alleviating the reliance on hybrid
density functionals that carry a large computational cost.
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