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ABSTRACT: Accurately describing excited states within Kohn−Sham (KS)
density functional theory (DFT), particularly those which induce ionization and
charge transfer, remains a great challenge. Common exchange-correlation (xc)
approximations are unreliable for excited states owing, in part, to the absence of a
derivative discontinuity in the xc energy (Δ), which relates a many-electron energy
difference to the corresponding KS energy difference. We demonstrate, analytically
and numerically, how the relationship between KS and many-electron energies leads
to the step structures observed in the exact xc potential in four scenarios: electron
addition, molecular dissociation, excitation of a finite system, and charge transfer. We further show that steps in the potential can be
obtained also with common xc approximations, as simple as the LDA, when addressed from the ensemble perspective. The article
therefore highlights how capturing the relationship between KS and many-electron energies with advanced xc approximations is
crucial for accurately calculating excitations, as well as the ground-state density and energy of systems which consist of distinct
subsystems.

I. INTRODUCTION
Describing many-electron excited states at an affordable
computational cost remains an important goal within solid-
state physics, quantum chemistry, and materials science.1 In
principle, this is possible within density functional theory
(DFT)2−8 as the ground-state density, n(r), contains all the
information about the many-electron system’s ground and
excited states according to the first Hohenberg−Kohn (HK)
theorem.9 However, in practice, such a description is extremely
challenging. The excitation spectrum, the fundamental gap
(the difference between the ionization potential (IP), I, and
the electron affinity (EA), A), and charge-transfer energies (the
difference between the IP of the donor, Id, and the EA of the
acceptor, Aa) are of particular importance.10−28 The unreliable
performance of standard exchange-correlation (xc) approx-
imations for these quantities is in contrast to the remarkable
success of Kohn−Sham (KS) DFT for various applications to
ground-state properties of materials.26,29−37 In this article, we
explore the exact relationship between KS excitation energies
and the corresponding many-electron quantities with standard
and ensemble DFT. We study the consequences of this
relationship on the exact KS potential and its importance for
the advancement of approximate xc density functionals.
Unlike other commonly used methods for electronic

structure calculations, e.g., many-body perturbation
theory,38−40 within KS-DFT the relationship between the KS
energy levels, {εi}, and the many-electron energies, {Ei}, is not
generally straightforward. For example, while for the exact KS
potential the highest occupied (ho) KS energy level, εho, equals
minus the IP,41−47 −I, the fundamental gap, Eg = I − A, does
not simply equal the KS gap, Eg

KS = εlu − εho (i.e., the difference

between the lowest unoccupied (lu) and the ho KS energies),
even for the exact KS potential. Instead, the KS gap differs
from the fundamental gap by Δ, known as the derivative
discontinuity:41,42,48−61 Eg = I − A = εlu − εho + Δ. Δ manifests
in the exact xc potential as a uniform shift when the number of
electrons within the system infinitesimally surpasses an integer.
It occurs because the xc energy of the system has
discontinuities in its derivative as a function of electron
number, N, at integer values of N.
Similarly, it has been shown recently62 that the charge-

transfer energy in stretched systems differs from the
corresponding KS energy difference by the charge-transfer
derivative discontinuity (CTDD), ΔCT, which occurs when a
fraction of charge is transferred from one subsystem to another
within the whole system. The CTDD proved to be an
important concept for accurately modeling charge transfer
within KS theory in practice.63

In 1995, Levy proposed that the optical (uncharged) gap,
i.e., the energy to excite an electron from the ground to its first
excited state (ℏωog), is related to the corresponding KS gap
(εlu − εho = ℏωog

KS) via a derivative discontinuity,64 as such
ℏωog = ℏωog

KS + Δog.
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All the discontinuities mentioned above−Δ, ΔCT, and Δog−
are important and rather delicate properties of the exact xc
functional. Their existence gives rise to step structures in the
exact xc potential−sudden changes in the magnitude of the
potential over a short region of space. These steps have a
strong nonlocal dependence on the electron density, which
partly explains why they are not captured by most existing
approximations.
In ref 62, the relationship between the derivative

discontinuity in the xc energy, Δ, and the spatial step S that
appears in the exact xc potential of stretched diatomics was
established. In this article, we further study the step structure
of the exact xc potential and relate it to the excitation energies
of the interacting many-electron system. Particularly, we show
how the steps are crucial in the prediction of the fundamental
gap, excitation energies, such as charge transfer, and the correct
distribution of charge in stretched systems.
This article is organized as follows. Section II gives a detailed

introduction to the interatomic step S within a stretched
diatomic molecule in its ground state. Then, the derivative
discontinuity, Δ, which occurs for ground-state systems with a
fractional electron number, is discussed. Finally the CTDD,
ΔCT, is analytically studied for both a stretched diatomic
molecule with a fractional N and for a stretched diatomic
molecule that experiences charge transfer upon excitation.
Section III provides the numerical details of the calculations
performed in this work. Section IV discusses the relationship
between Δ and S, numerically addressing finite and stretched
systems. Section V presents the exact KS potential obtained
from an excited-state calculation of a one-dimensional (1D)
stretched diatomic molecule, which undergoes charge transfer.
Then, in Section VI, an excited atom is analyzed to show that
steps and plateaus in the KS potential appear not only for a
stretched but also for a finite system, upon excitation within
ensemble DFT. In Section VII, we show that steps can be
found not only in the usually unreachable exact KS potential
but also in approximate potentials, as simple as the one that
stems from the local density approximation (LDA), by means
of numerical inversion of the LDA ensemble density. Finally, in
Section VIII, we summarize our work.

II. PROPERTIES OF THE EXACT
EXCHANGE-CORRELATION FUNCTIONAL
II.A. The Spatial Step S. In general, sharp spatial steps may

occur in the exact xc potential51,65,66 at any point where the
electron density decays at a rate which abruptly changes. One
scenario is an atom with spatially distinct electron shells (see,
e.g., refs 67 and 68). In this case, approaching the atom inward
from infinity, the decay of the outermost shell is substituted by
the decay of the next, inner shell. The potential then
experiences a step, which can be revealed,69−71 particularly
when using orbital-dependent, exact-exchange-based approx-
imations, within the optimized effective potential (OEP)
method;72−78 however, this approach has known numerical
difficulties which arise from the use of a finite basis
set.74,75,79−81 Solutions have been proposed to overcome
these numerical issues;77,78,82,83 however, the OEP method is
yet to be adopted as a mainstream approximation within DFT
owing to the numerically challenging nature of the approach.
Another, very important scenario is a complex system, which

consists of several spatially distinct subsystems, e.g., atoms
within a molecule. For such systems, one can introduce the
local effective ionization potential (LEIP),68 which stems from

the decay rate of a given subsystem. Moving from one
subsystem to another leads to a change in the LEIP, which
causes a sharp spatial step in the xc potential. The height of the
step is analytically derived below from the density decay rate,
following refs 62 and 68.
A simple and instructive example of a system with a step in

the xc potential is a stretched diatomic molecule L···R sketched
in Figure 1. In this case, each atom within the system can be

considered a subsystem. Additional, more complicated
examples include donor−acceptor pairs, which are important
in photovoltaics,84−89 and a molecule between two metallic
contacts in a transport experiment.21,28,90−96 Therefore,
understanding the steps in the exact KS potential is crucial,
as it allows one to accurately describe various scenarios in real
materials of high practical importance with KS DFT.
In the diatomic molecule L···R with interatomic distance d =

|d|, Atom L is located at x d1
2

= − , and Atom R is located at

x d1
2

= with x being the interatomic axis (see Figure 1). In the

limit d → ∞, the energy of the molecule equals the sum of the
energies of the constituent atoms (the subsystems), as such

E E Elim
d

L R L R= +
→∞

··· (1)

and the density is the sum of the (shifted) atomic densities

i
k
jjj

y
{
zzz

i
k
jjj

y
{
zzzr r d r dn n nlim ( )

1
2

1
2d

L R L R= + + −
→∞

··· (2)

with NL
0 electrons on Atom L and NR

0 electrons on R; see
Figure 2 (top). The equilibrium number of electrons in the
molecule is thus NL···R

0 = NL
0 + NR

0 . Eq 2 is true for systems that
do not experience degeneracy of the ground state in the limit d
→ ∞; those are the systems on which we focus below. [Note,
however, that, e.g., for homonuclear diatomic ions (A···A)+,

any density of the form ( )r dnA
1
2

q ++ + ( )r dnA
1
2

q(1 ) −+ − is a

valid ground-state density in the limit d → ∞.]
Now we ask what form the exact KS potential of the whole

molecule, vL···R
KS (r), takes for large d,97 and how it relates to the

atomic potentials, vL
KS(r) and vR

KS(r). Is it that, similarly to the

molecular density, rvlim ( )d L R
KS

→∞ ··· = ( )r dvL
KS 1

2
+ +

( )r dvR
KS 1

2
− ? There is reason to think that the limit above

holds, at least in the vicinity of each atom, because near, say,
Atom L, the molecular potential vL···R

KS (r) has to reproduce the

atomic density ( )r dnL
1
2

+ . From the HK theorem,9 we know

that this potential is unique, up to a constant, and equals

( )r dvL
KS 1

2
+ .98 The same is, of course, also true for Atom R.

However, the simple superposition of the atomic KS potentials
can create the following problem (see Figure 2 (middle)): the
lu KS energy level of one of the atoms (say, Atom R), εR

lu, can

Figure 1. A stretched diatomic molecule, L···R, with an interatomic
distance d.
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lie below the ho level of the other atom (Atom L), εL
ho. Then,

from the perspective of the KS system, the electron which
should localize on L will spuriously do so on R, resulting in the
wrong number of electrons on each atom.99 In the case in
which the atoms within the molecule are bonded, the
molecular ho levels of Atoms L and R ought to be aligned;
this does not always happen if the two atomic potentials are
simply superimposed.
What must the exact KS potential do to maintain the correct

atomic densities in the vicinity of each atom while yielding the
correct distribution of charge within the molecule? The answer
is to raise the level of the potential around one of the atoms, in
our case Atom R, forming a plateau, which results in a spatially
abrupt step in the KS potential between the atoms (and a
complementary step far to the right of Atom R).44,65 In the
vicinity of Atom R, the molecular potential equals

( )r dv ,R
KS 1

2
− up to a constant; hence, no violation of the

HK theorem occurs. The density in this vicinity equals

( )r dnR
1
2

− , as required.

Following ref 68, we now show how the height of the step in
the KS potential of a stretched diatomic molecule is related, in
the general case, to the IPs of the constituent atoms, IL and IR,
and the molecular orbital energies of the system as a whole (see
also ref 62 and references therein). We consider, therefore, a

diatomic molecule L···R with a large but finite separation d and
assume that it has been solved within KS DFT, and the
molecular KS potential, vL···R

KS (r), as well as the molecular
energy levels are known; see Figure 2 (bottom). We denote
here the molecular KS energy levels by {ηi} to clearly
distinguish them from the atomic KS energy levels, {εi}. We
also explicitly indicate whether the molecular orbitals localize
on one of the atoms by the subscripts L and R. Generally, in
the vicinity of Atom L, the molecular KS potential vL···R

KS (r) is

identical to the atomic potential, ( )r dvL
KS 1

2
+ , up to a

constant, v′, and in the vicinity of R, vL···R
KS (r) is identical to

( )r dvR
KS 1

2
− , up to v″. The difference v″ − v′ is therefore the

interatomic step height, S.100 Furthermore, in the vicinity of
Atom L, the molecular density is nL···R(r), which equals the

(shifted) atomic density, ( )r dnL
1
2

+ (see eq 2), and decays as

( )r dIexp 2 2 L
1
2

∼ − + (see refs 101, 43, 45, and 102−105).
From the KS perspective, the decay of the atomic density is
governed by the square of the ho KS orbital, which is localized
on L, |φL

ho(r)|2. This orbital decays as106

i
k
jjj

y
{
zzzr r dv( ) exp 2 2( )

1
2L

ho 2
L
hoφ η| | ∼ − − − ′ +

(3)

As the exact KS density equals the many-electron density, the
two decay rates are equal, and hence v′ = ηL

ho + IL. Similar
analysis for Atom R yields v″ = ηR

ho + IR. Combining these two
results and recalling that S = v″ − v′, we arrive at an expression
for the interatomic step:68

S I IR L R
ho

L
hoη η= − + − (4)

Importantly, the constraint that the multiplicative KS potential
must yield a single-particle density which exactly equals the
many-electron density leads to the step S in the potential.107

The step is generally nonzero, because the KS energy
differences do not equal the many-electron energy differences,
as mentioned in the Introduction. In the particular case here,
the many-electron energy difference, IR − IL, does not equal
the KS energy difference, ηL

ho − ηR
ho. The step forms at the point

in the electron density where the decay from the left meets the
decay from the right, and the LEIP abruptly changes.
We wish to emphasize that the right-hand side of eq 4

includes the molecular energy levels, {ηi}, and not the atomic
levels, {εi}. Therefore, in general, eq 4 does not allow one to
directly obtain the step height in the molecular potential, S,
relying only on atomic calculations. This equation rather shows
the relationship between S, the molecular KS energies, and the
many-electron energies, IL and IR, associated with each atom.
Equation 4 refers to the general case, where L and R can be

any atoms, and therefore the energies ηL
ho and ηR

ho need not be
assumed equal. The latter is true when L and/or R are closed-
shell atoms. In the particular case that L and R are bonded, the
ho KS orbital stretches over both atoms, and therefore, it
follows that, in the notation adopted here, ηR

ho = ηL
ho. As a result,

eq 4 reduces to the famous result S = IR − IL by Almbladh and
von Barth.65,108

Depending on the atoms L and R, either IL or IR is the
overall IP of the molecule; in the case depicted in Figure 2, it is
IL. Thus, the overall highest occupied molecular orbital
(HOMO) energy is ηL

ho and is equal to the atomic orbital
εL
ho when v′ = 0. Furthermore, due to the IP theorem in

Figure 2. Top: A sketch of the density nL···R(r) in a stretched diatomic

molecule, L···R. Middle: The atomic potentials, ( )r dvL
KS 1

2
+ and

( )r dvR
KS 1

2
− , and their ho and lu KS energy levels. The problem of εR

lu

lying below εL
ho is illustrated. Bottom: The molecular KS potential,

vL···R
KS (r) (blue), compared to the atomic potentials (gray). vL···R

KS (r)
possesses a step S in between the atoms (as well as a complementary
step (down), −S to the right of Atom R, not shown). The molecular
ho and lu KS levels are marked.
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DFT,41,43,46,47,109,110 which we discuss in detail below, εL
ho =

−IL. It then follows that eq 4 reduces to S = IR + ηR
ho. It does

not necessarily follow, however, that S vanishes. A generally
nonzero S stems from the inclusion of the molecular energy,
ηR
ho, opposed to the atomic energy, εR

ho, in eq 4. The atomic
energy εR

ho equals −IR, whereas the molecular energy ηR
ho does

not, as it is elevated relative to the atomic energy by the step
height S: ηR

ho = εR
ho + S.

Our decomposition of this molecule into fragments is
reminiscent of Partition DFT (PDFT)111 in which the exact
KS potential is separated into the KS potential for each
individual subsystem plus the “partition potential”. In the limit
that the subsystems are completely separated−in our case the
two atoms−the partition potential consists of the interatomic
step described above.112 The partition potential is a functional
of the density of each fragment of the system113 and hence is
nonlocal in character.114 In addition, the exact partition
potential is known to contain derivative discontinuities.115 The
perspective allowed by PDFT offers an approach to developing
approximations which capture these discontinuous features,
yielding accurate binding energies of disassociated dia-
tomics115−117 or a reliable description of charge transfer.118,119

The partition potential has also been shown to be a chemically
significant reactivity potential.120,121

II.B. The Uniform Jump Δ. The uniform jump Δ occurs in
the KS potential when the number of electrons, N, varies
continuously and infinitesimally surpasses an integer value. A
fractional number of electrons in our systems of interest may
be considered as a time average of the number of electrons in
an open system, namely in a system which is free to exchange
electrons with its surroundings (see, e.g., ref 122 (§14)). The
ground state of such a system can no longer be described by a
pure quantum-mechanical state. Instead, it is a statistical
mixture, or ensemble, of pure (integer-electron) states.41

In the following, we consider three types of many-electron
systems. First, in this section, we describe in detail a finite
system that is connected to an electron reservoir, which allows
N to change continuously. Second, in Section II.C, we consider
a stretched diatomic molecule L···R, whose total number of
electrons can vary continuously, and for which any additional
charge localizes on Atom R, whereas any charge deficiency
results in a decrease of charge around Atom L. Third, in
Section II.C, we consider a stretched diatomic molecule L···R,
whose total number of electrons is fixed at a given integer
value, but the number of electrons on each atom can become
fractional by transferring charge between the atoms.
We start with a finite system, like an atom or a molecule,

with N = N0 + α electrons, where N0 is an integer number, and
0 ⩽ α ⩽ 1. As mentioned above, the ground state of such a
system is an ensemble, which combines states each with a
different integer number of electrons. For systems with
Coulomb interaction at zero temperature, this ensemble
consists only of states for N0 and N0 + 1 electrons, |ΨN0

⟩

and |ΨN0+1⟩:

(1 ) N N N N1 10 0 0 0
α αΛ̂ = − |Ψ ⟩⟨Ψ | + |Ψ ⟩⟨Ψ |+ + (5)

with the statistical weights of (1 − α) and α, respec-
tively.2,41,123−125 As a direct consequence of eq 5, the
expectation value of any operator Ô in the ensemble state is
O = Tr{Λ̂Ô} = (1−α)⟨ΨN0

|Ô|ΨN0
⟩ + α⟨ΨN0+1|Ô|ΨN0+1⟩.

41 In
particular, the average density of a system with N electrons is

r r rn N n N n N( ; ) (1 ) ( ; ) ( ; 1)0 0α α= − + + (6)

where n(r; N0) is the ground-state density for the N0-electron
system, and n(r; N0+1) is the ground-state density for the
(N0+1)-electron system. Furthermore, the total energy as a
function of N equals

E N E N E N( ) (1 ) ( ) ( 1)0 0α α= − + + (7)

As can be seen in Figure 3 (top), E(N) is piecewise-linear in N:
for any fractional N, the energy is linear, but it can change its
slope when N passes an integer. Consequently, the chemical
potential, μ = ∂E/∂N, is a stair-step function of N. For
example, in the ground state

Figure 3. Top: dependence of the energy E(N) on the number of
electrons, N, for a finite system. The IP and EA are marked on the
graph. Middle: dependence of the chemical potential, μ(N)−which
equals the ho energy level−on N. The fundamental gap, Eg, the KS
gap, Eg

KS, and the uniform jump Δ are marked on the graph. Bottom:
the KS potential, vKS(r), at N = N0

− (gray) compared to the KS
potential at N = N0

+ (blue). The ho and lu energy levels at N = N0
− and

the ho level at N = N0
+ as well as the uniform jump Δ are marked.
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l
moo
n
ooN

I N N N

A N N N
( )

: 1

: 1
0 0

0 0
μ =

− − < ⩽

− < ⩽ + (8)

where I = E(N0−1) − E(N0) is the IP, and A = E(N0) −
E(N0+1) is the EA of the system. Clearly, the chemical
potential is generally discontinuous at integer N; the height of
this discontinuity equals the fundamental gap of the system, Eg
= I − A.
Furthermore, from a combination of the piecewise-linearity

of the energy and Janak’s theorem,126 which states that the ith
KS eigenenergy εi = ∂E/∂f i−the derivative of the total energy
with respect to the occupation of the ith level, f i−we find that
the ho KS energy level, εho(N), equals the chemical potential,
μ(N), and is also discontinuous at integer N (see Figure 3
(middle)). This is the content of the IP theorem in
DFT:41,43,46,47,109,110 for the exact xc potential, infinitesimally
below an integer, εho(N0

−) = −I and infinitesimally above
εho(N0

+) = −A. The IP theorem in KS DFT is an exact result,
for the exact xc potential.
Satisfying the aforementioned IP theorem creates a

challenge for the exact xc potential, vxc(r). From the
perspective of the KS system, increasing N above an integer
means occupying the next KS level, εlu(N0

−). As εlu(N0
−) does

not necessarily equal −A, even for the exact KS potential (see
Figure 3 (middle)), the only thing the exact potential can do in
order to satisfy the IP theorem is to discontinuously change as N
infinitesimally surpasses an integer. However, due to the
continuity of the density with N (see eq 6) and the HK
theorem, the discontinuity of the KS potential can change only
by a spatially uniform constant (see Figure 3 (bottom)), which
is usually denoted Δ. This discontinuity in the KS potential,
vKS(r), can only come from vxc(r), because the Hartree
potential is continuous and the external potential is N-
independent. Therefore,

r rv N v Nlim ( ; ) ( ; )
0

xc 0 xc 0α αΔ = + − −
α→ + (9)

The value of Δ is easy to deduce from the arguments above: it
is the difference between the value that εho(N0

+) ought to have,
namely −A, and the value it has in the absence of discontinuity,
εlu(N0

−): Δ = −A − εlu(N0
−). Together with εho(N0

−) + I = 0,
and dropping here the argument N0

− for brevity, we arrive at
the following familiar form for Δ:

E E I A ( )g g
KS lu hoε εΔ = − = − − − (10)

where Δ is expressed as the difference between the
fundamental gap of the system, Eg = I − A, and the KS gap,
Eg
KS = εlu − εho. The derivative discontinuity is a topic of great

importance and has received much attention over the years
(see refs 41, 42, 48−54, 56−60, 110, 127, and 128). Yet, many
common approximate xc functionals lack this important
feature; advanced approximations are being developed to
reconstruct it (see, e.g., refs 11, 12, 24, 27, 28, 36, 55, 57−60,
110, and 129−152).
II.C. Charge-Transfer Derivative Discontinuity. Let us

now consider a stretched diatomic molecule L···R, where the
separation between the atoms is large enough for the energy
and density of the molecule to satisfy eqs 1 and 2. At first, the
molecule possesses NL

0 electrons on Atom L and NR
0 electrons

on Atom R, so the total number of electrons equals NL···R
0 = NL

0

+ NR
0 . Next, we allow the total number of electrons to vary

continuously: NL···R = NL···R
0 + α (−1 ⩽ α ⩽ 1). We consider

the specific case for which any additional charge localizes on

Atom R, whereas any charge deficiency results in a decrease of
charge around Atom L. As we show by a direct charge-transfer
calculation in Section V below, this case is indeed specific but
not esoteric−it is the prototype case for a donor−acceptor
pair.
Combining eqs 1 and 7 we can conclude that the total

energy of the molecule is piecewise-linear with the number of
electrons (see Figure 4):
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− · ⩽ ⩽
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(11)

The chemical potential of the molecule as a whole, being the
derivative of its energy with respect to NL···R, or equivalently to
α, is a stair-step function discontinuous at integers,
qualitatively similar to the chemical potential depicted in
Figure 3 (middle):
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− < ⩽···
(12)

Notably, here the height of the discontinuity in μL···R is the left-
to-right charge-transfer energy, EL→R

CT = IL − AR, namely the
energy required to remove one electron from Atom L minus
the energy gained by adding an electron to an infinitely distant
Atom R. As for the finite system discussed above, the stretched
molecule L···R also obeys the IP theorem. Namely, the overall
HOMO energy, ηho(NL···R), has to equal μL···R(NL···R). For
NL···R slightly below NL···R

0 , the overall ho energy equals
ηL
ho(NL···R

0 ), which in our case, as explained in Section II.A,
equals −IL. As the overall number of electrons increases above
NL···R

0 , the overall ho level is localized around Atom R and has
to equal −AR. As a result, the molecular potential vL···R

KS (r)
jumps by the constant

I A ( )L R
CT

L R R
lu

L
hoη ηΔ = − − −→ (13)

(cf. eq 10). This quantity was first introduced in ref 62, where
it has been termed charge-transfer derivative discontinuity. ΔL→R

CT

is the difference between the charge-transfer energy, EL→R
CT = IL

− AR, and the corresponding quantity in the KS system (ηR
lu −

ηL
ho) (cf. eq 10).
Finally, we consider a stretched but finite diatomic molecule

in which the atomic separation is large enough to define
individual atoms within the molecule but in which the
electrons localized on the left atom experience the Coulomb
repulsion of the electron localized on the right atom and vice

Figure 4. Dependence of the total energy of a stretched diatomic
molecule L···R on α−the deviation of the total number of electrons
from its integer value, NL···R

0 . The slopes of the graph are associated
with the IP of the left atom and the EA of the right atom.
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versa. The total number of electrons within the molecule,
NL···R

0 , is constant and an integer. When the molecule is excited,
a fraction of q electrons is transferred from Atom L to Atom R.
We define an ensemble consisting of the ground state, |Ψ0⟩, of
the molecule and the first excited state |Ψ1⟩ where the latter
has charge-transfer character, i.e., the nature of |Ψ1⟩ is such
that compared to the ground state, one electron is transferred
from Atom L to Atom R. The statistical operator describing
this ensemble is given by

q q(1 ) 0 0 1 1Γ̂ = − |Ψ ⟩⟨Ψ | + |Ψ⟩⟨Ψ| (14)

Both states, |Ψ0⟩ and |Ψ1⟩, have a fixed (integer) particle
number, N0. The ensemble expectation value of any operator
Ô, by virtue of eq 14, is: O = Tr{Γ̂Ô} = (1−q)⟨Ψ0|Ô|Ψ0⟩ +
q⟨Ψ1|Ô|Ψ1⟩. In particular, the ensemble density is given by

r r rn q q n q n( ; ) (1 ) ( ) ( )0 1= − · + · (15)

where n0(r) and n1(r) are the densities of the ground state and
the first excited state, respectively. Likewise the total ensemble
energy as a function of q equals

E q q E qE E q E E( ) (1 ) ( )L R 0 1 0 1 0= − + = + −··· (16)

where the subscript 0 corresponds to the ground state, whereas
the subscript 1 corresponds to the first excited state. Therefore,
E1 = E0 + ECT; for this system with a large but f inite atomic
separation, ECT = IL̃ − ÃR for q > 0 and ECT = IR̃ − ÃL for q < 0,
where IL̃ is the ionization energy of the whole molecule which
corresponds to an electron localized to the left atom while ÃR
is the molecule’s affinity and corresponds to the addition of an
electron to the right atom once the electron on the lef t atom has
been ionized−this is the nature of a charge-transfer excitation.
Consequently, both IL̃ and ÃR are influenced by the Coulomb
interaction between the left and right atoms; this effect has
previously been omitted because the atoms were assumed to
be infinitely separated: limd→∞ IL̃ − ÃR = IL−AR (as defined
above). By modeling the system with a finite separation we
more closely model a real donor−acceptor pair for short- to
medium-range charge transfer. The difference between IL̃ − ÃR
and IL − AR is the electron−hole electrostatic interaction. For a
large separation between the donor and acceptor, it is usually
approximated as −1/d.41,153,154
Plugging this definition for ECT in this system into eq 16, we

obtain

E q E q I A q( ) ( ) for 0L R 0 L R= + ̃ − ̃ >··· (17)

Analogously, for a charge transfer from R to L, we obtain

E q E q I A q( ) ( ) for 0L R 0 R L= − ̃ − ̃ <··· (18)

Hence, the total energy is piecewise-linear with respect to q
(see Figure 5). Therefore, its derivative, m(q) = ∂EL···R/∂q,
which is the change in energy as a result of transfer of charge, is
a stair-step function:

l
m
ooo
n
ooo

m q
I A q

I A q
( )

( ) : 0

: 0

R L

L R

=
− ̃ − ̃ <

̃ − ̃ > (19)

From the Gross-Oliveira-Kohn (GOK) theorem,155−157 we can
express the charge-transfer energy as such

E I A
E n

q
lim

q N
q

N
q

q

n n
CT L R

0 1
xc

q

0 0
η η= ̃ − ̃ = − +

∂ [ ]
∂→ +

=
+

(20)

where ηi
q is the ith KS energy of the ensemble system. As q→

0+, ηN0+1
q − ηN0

q = ηR
lu − ηL

ho. Therefore, recalling that in the limit
of infinite atomic separation eq 20 is equivalent to eq 13, we
arrive at an expression for the CTDD for the ensemble system,
defined in terms of the derivative of the ensemble xc energy:

E n
q

lim
q

q

n n
L R
CT

0

xc

q

Δ =
∂ [ ]

∂→
→

=
+

(21)

This expression allows one to calculate the CTDD from any
explicit q-dependent xc functional.158−160 In ref 161, ΔL→R

CT −as
it is defined by eq 21−was evaluated experimentally for
donor−acceptor pairs.
Note that in the limit that Atom L and Atom R become

infinitely separated, m(q) equals the difference between the
chemical potentials of the constituent atoms

m q N q N q( ) ( ) ( )R LR
0

L
0μ μ= + − − (22)

with the atomic chemical potentials given by eq 8. The
discontinuity in m(q) around 0, denoted here D m qlim ( )

q 0
=

→ +

− m(−q), equals

D I A I A E EL R R L L R
CT

R L
CT= − + − = +→ → (23)

being the sum of the left-to-right and the right-to-left charge-
transfer energies. It can also be expressed as the sum of the
atomic fundamental gaps: D = Eg,L + Eg,R. Using eq 13, D can
be also expressed in terms of the KS quantities

D ( ) ( )R
lu

L
ho

L
lu

R
ho

L R
CT

R L
CTη η η η= − + − + Δ + Δ→ → (24)

in direct analogy with results presented above. D may also be
expressed solely in terms of the KS gaps and Δ’s of the
constituent atoms using eq 10:

D E Eg,L
KS

g,R
KS

L R= + + Δ + Δ (25)

Hence, for this stretched system, the derivative discontinuity,
D, can equally be expressed in the KS system in terms of the
derivative discontinuities of the individual atoms and also in
terms of the charge-transfer derivative discontinuities of the
system as a whole. We shall see below in Section V that the
interatomic step, S, derived in Section II.A is related to both
the derivative discontinuity of the individual atoms and to the
CTDDs.
Finally, we emphasize two additional results. From eqs 24

and 25, we arrive at the following relation for the CTDDs

Figure 5. Dependence of the total energy of a stretched diatomic
molecule L···R on q−a fraction of an electron transferred from Atom
L to Atom R. The slopes of the graph are associated with the IPs and
the EAs of the constituent atoms.
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L R
CT

R L
CT

L RΔ + Δ = Δ + Δ→ → (26)

which shows the close relationship between them to the atomic
Δ’s. Furthermore, we wish to draw attention to the following
relation, which emerges from eq 23

E E E EL R
CT

R L
CT

g,L g,R+ = +→ → (27)

meaning that the sum of the left-to-right and the right-to-left
charge-transfer energies, between any two distant subsystems,
equals the sum of the fundamental gaps of these subsystems.
Details about the implications of the CTDD to the xc potential
are provided below in Sections IV, V, VI, and VII.

III. NUMERICAL DETAILS
We use a 1D model to investigate the structure of the exact KS
potential. Our 1D models−in Sections IV.A, V, and VI−
employ the iDEA code162 in which the exact, fully correlated
many-electron wave function may be calculated for an arbitrary
external potential. In addition to the ground state, the many-
electron excited states are calculated by solving the many-
electron Schrödinger equation.163 As a result, we have access to
the exact many-electron ground-state and excited-state electron
densities, from which the exact corresponding KS potentials
can be calculated by a numerical inversion of the KS equations.
Our inversion algorithm to calculate the KS potential is that of
ref 162. It can be summarized as follows. Given a target density
ntar(r) and an initial guess for the KS potential, vKS

(0)(r), the
following iterative procedure is performed: For the kth
iteration, a DFT calculation with vKS

(k)(r) is made, and the
density n(k)(r) is obtained. Then, the KS potential for the next
iteration is updated, as follows: vKS

(k+1)(r) = vKS
(k)(r) + λ[(n(k)(r))p

− (ntar(r))
p], where λ and p are parameters (typically, λ = 0.1

and p = 0.05). The procedure continues up to numerical
convergence, which in our case happens when the mean
absolute error between the many-electron and KS densities is
<10−9 Bohr−3. More details for this algorithm can be found in
ref 162.
Results for Section VII were obtained using the ORCHID

program,164 version 3.1, on a natural logarithmic radial grid,
r∈[ec/Z, L], with c = −13, L = 35 Bohr, and Z being the atomic
number. The total energy and the eigenvalues are converged
below 10−6 Hartree. The inversion procedure162 used the
parameters p = 0.1 and λ = 0.72. The convergence criterion for
the inversion procedure is ln(n(r)/ntarget(r)) < 10−4, enforced
for r∈[ec/Z, L′], with L′ = 30 Bohr. Finally, the parameters a
and b required for the alignment of the KS potentials, which
show the asymptotic behavior of ∼a/r + b (see details in
Section VII and the Supporting Information), have been
obtained by a linear fit of the potential vs 1/r at 20 and 30
Bohr.

IV. THE RELATIONSHIP BETWEEN S AND Δ
The properties S and Δ of the exact xc potential discussed in
Sections II.A and II.B, respectively, have been known for a long
time (see refs 41, 44, 49, 65, 67, and 165−167), but whether
these two are completely independent or related properties
remained elusive until recently.62 Indeed, S and Δ are not one
and the same: first, they can be derived from two different
perspectives, as performed in Section II. Second, the EA and
the lu energy, which contribute to Δ (eq 10), are absent from
the expression for S (eq 4). Finally, the shift Δ occurs when
varying the charge of the system, whereas S occurs at a fixed,

integer number of electrons. However, it was realized early on
that both S and Δ occur for a finite system when the decay rate
of the electron density abruptly changes.44,65 This suggests a
close relationship between the two properties. In the following,
we characterize this relationship in detail, by formulating and
subsequently resolving two paradoxes that arise from the
combination of the concepts presented in Sections II.A and
II.B.

IV.A. Uniform Jump Paradox. Paradox 1 − The spatial
uniformity of the jump in the KS potential implies Δ = 0. In
Section II.B, we described a finite system with a varying
number of electrons N and concluded that as N passes an
integer the KS potential jumps by a spatially uniform constant
Δ. Here we address a finite system again, like in Section II.B,
but now we are applying the approach from Section II.A. In
other words, we find Δ by examining the exponential decay of
the density.
If the number of electrons in the system equals an integer N0

or a little bit less, the density decay is determined by the IP of
the system, i.e., rn N( ; )0 ∝ rIexp( 2 2 )− | | (denoted I-decay).
From the KS perspective, the density decay is governed by the

ho orbital squared, r( )ho 2φ| | ∝ rNexp( 2 2 ( ) )ho
0ε− − | |− . As

the exact KS density equals the many-electron density, εho(N0
−)

= −I. If the number of electrons is now slightly increased above
N0 by a small fraction of an electron, α, the density becomes a
linear combination of n(r; N0) and n(r; N0+1), as in eq 6. The
term n(r; N0+1) decays ∝ rAexp( 2 2 )− | | (A-decay), which is
slower than the decay of n(r; N0), because I > A for all known
systems (known as the convexity conjecture2,41,53,123). There-
fore, the A-decay asymptotically dominates the density decay.
From the KS perspective, the decay of the density is dominated
by the now highest, partially occupied orbital (the former lu
orbital). The problem arises when taking Figure 3 (bottom) at
face value, namely assuming that the KS potential indeed
jumps by a completely uniform constant Δ. Then, one may
think that the decay of the highest, partially occupied orbital is

∝ rNexp( 2 2( ( ) ) )ho
0ε− − − Δ | |+ , i.e., the decay rate is

governed by the ho energy, εho(N0
+), relative to the overall

potential shift, Δ (cf. eq 3). Recalling that εho(N0
+) = εlu(N0

−) +
Δ, one may further infer that the density decays ∝

rNexp( 2 2 ( ) )lu
0ε− − | |− . This leads to the paradoxical

conclusion that εlu(N0
−) = −A and hence Δ = 0. In other

words, if the jump Δ is uniform, its height is zero.
To resolve this paradox, we look more closely at eq 6,

keeping in mind that in our case α → 0+. Although n(r; N0+1)
decays slower and is thus the asymptotically dominant term, it
is multiplied by the small coefficient, α. As a result, we have a
competition between the two decay rates: when we reduce α to
0, while looking at a fixed and large r, the region in which the
A-decay is dominant moves away from the nucleus as the term
αn(r; N0+1) vanishes and the term (1−α)n(r; N0) prevails.
The process is illustrated in Figure 6 for an exactly solved 1D
model of an atom with vext(x) = −2.0/(0.4·|x|+1), with 1 + α
same-spin electrons.168 It is useful to look at the natural
logarithm of the density in order to clearly see the decay rates,
as such a region of an exponential decay appears as a straight
line of negative slope. Indeed, in Figure 6(a), we clearly
observe the I- and A-regions of exponential decay. As α
decreases, the A-decay region appears further away from the
nucleus. Next, recalling our conclusion from Section II.A that a
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change in the decay rate of the density (no matter what the
reason) leads to a step in the KS potential, we indeed find in
Figure 6(b) that for all positive α the KS potential is elevated
near the origin, comparing to the (α = 0)-case, and presents
steps far from the origin, at the point where the decay rate
changes and hence where the LEIP changes. In Figure 6(c),
subtracting the (α = 0)-potential from all the potentials of
Figure 6(b), we clearly see a plateau around the origin, in
agreement with previous studies (see, e.g., refs 44, 51, 62, 65,
and 169). As α vanishes, the width of the plateau increases,
approaching infinity. However, at any finite α the plateau width
is finite, and asymptotically the KS potential approaches the
value of 0 (and not Δ), i.e., the shift for finite α is not uniform.
This resolves our paradox: the correct decay rate of the density

in the region of A-decay is ∝ rNexp( 2 2 ( ) )ho
0ε− − | |+ , which

leads to the conclusion that εho(N0
+) = εlu(N0

−) + Δ = −A, as
required; whereas in the region of I-decay the potential is
elevated by Δ. As a result, steps form in the potential as shown
in Figure 6. Thus, in this case, for a finite system with varying
N, the quantities Δ and S have the following relationship:
limα→0

+ S = Δ. For the system presented in Figure 6, this has
been numerically verified as Δ was obtained also from total-
energy differences.
Finally, we wish to add several comments on plateaus in

finite systems. First, the shape of the steps observed includes
characteristic dips clearly seen in Figure 6(c) (cf. refs 62 and
169−172). These features are numerically robust, meaning
that their magnitude is significantly higher than the numerical
error in the inverted potential; their presence in the potential is

required to yield the exact KS density. Second, the value of the
KS potential of a finite system far from its center is an example
for an order-of-limits problem, namely lim|r|→∞ limα→0

+

vKS(r,N0+α) = Δ, whereas limα→0
+ lim|r|→∞ vKS(r,N0+α) = 0.

In other words, if we examine the value of the KS potential at
some finite point |r| while continuously decreasing α to zero,
for a certain α the plateau will be wide enough to reach |r| and
elevate the potential there. Taking then |r| to infinity will result
with the height Δ for the KS potential. Conversely, taking |r| to
infinity first, while keeping α finite, ensures that for any finite
α, no matter how small, we will reach the edge of the plateau,
and the potential value will drop to 0.

IV.B. Charge-Transfer Paradox. Paradox 2 − The transfer
of charge in a diatomic molecule results in a plateau, Δ, around
the acceptor atom. Yet, the overall interatomic step height must
remain S. To further explore the relationship between Δ and S,
we study the stretched diatomic molecule presented in Section
II.A, but now taking into account also the results of Section
II.B. We consider two scenarios that model charge transfer (cf.
Section II.C): (i) The overall number of electrons in the
stretched molecule is increased; the additional charge localizes
on one of the atoms, say, Atom R. (ii) When we increase the
number of electrons on Atom R, we decrease the number of
electrons on Atom L by means of charge-transfer excitation of
the molecule so that the overall number of electrons is
constant. From the results shown in Figure 6(c), we would
expect a plateau of height ΔR to emerge around the acceptor
atom, in our case Atom R (with no significant change around
L), but this is contrary to the results of Section II.A: there
exists a plateau of height S around Atom R, irrespective of any
inf initesimal transfer of charge, to ensure the correct
distribution of charge in the ground-state KS system.173 As S
≠ ΔR, and (thinking of the complementary scenario of right-to-
left charge transfer) S ≠ ΔL either, there appears to be a
contradiction.
To resolve this paradox, we refer again to the density of the

system. For both Cases (i) and (ii), the natural logarithm of
the density in between the two atoms is sketched in Figure
7(a). We expect three regions of exponential decay between the
atoms: going from right to left, the density decay is first
governed by IR and then by AR (changing at point (2); cf.
Figure 6(a)), due to the extra charge on Atom R. Then, the AR-
decay meets the IL-decay at point (1), simply due to the fact
that the two atoms form one molecule. As a result, we expect

Figure 6. (a) The natural logarithm of the electron densities for an
atom consisting of 1 + α same-spin electrons, for varying values of α
(see the legend in panel (b) below). For α > 0, there are two regions
of exponential decay: the I- and the A-decay regions. The smaller the
value of α is, the further from the atom the change in decay. (b) The
corresponding KS potential for various α (see the legend). For α > 0,
the potential has a plateau comprised of two spatial steps that occur at
the points in the density where the decay changes. The plateau
elevates the potential around the nucleus by the amount S. (c) The
difference between the different KS potentials presented in panel (b)
and the KS potential for α = 0 (solid red line in (b)). The height of
the plateau, S, equals the derivative discontinuity, Δ, (solid gray line)
obtained separately.

Figure 7. (a) A diagram of ln(n) far from, and in between, the atoms
of a molecule L···R. Three regions of density decay are present: IR-,
AR-, and IL-regions. Transition from the IR- to the AR-region occurs at
point (2), and transition from the AR- to the IL-region occurs at point
(1). The changes in the density give rise to two steps in the KS
potential (b).
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not one but two steps in the KS potential between the atoms in
this diatomic molecule (Figure 7(b)). The height of the steps
can be deduced analytically,62 similarly to the derivation of eq
4: the step S(2), which depends solely on quantities related to
Atom R, equals ΔR, whereas the step S(1) equals −ΔL→R

CT .
Importantly, the steps S(1) and S(2) combine to yield the overall
step S of eq 4. This resolves the paradox raised above: indeed,
a plateau of height ΔR is expected to form on the receiving
Atom R upon charge transfer or addition, but in conjunction,
in the region of Atom L, the KS potential shifts when the “local
electron number” decreases below an integer. The combination
of these two plateaus yields an overall interatomic step of
height S.
The internal structure of the step S in Case (i) has been

illustrated and extensively discussed in ref 62. The two steps,
S(1) and S(2), have been identified both in a 1D model of a
stretched diatomic molecule and in a 3D (Li ··· Be)3+ ion. Case
(ii) is numerically illustrated in Section V below for a charge
transfer in a stretched 1D diatomic molecule induced by
exciting the system.

V. CHARGE TRANSFER IN A DIATOMIC MOLECULE
Simulation of a charge-transfer process, and particularly
obtaining the exact KS potential that describes the process, is
by no means a trivial task.174 To this end, it is necessary to
exactly obtain not only the ground state of the system but also
its first excited state that corresponds to a charge transfer.
In this section, we present a prototypical 1D stretched

diatomic molecule L···R, which we excite in order to transfer
charge from Atom L to Atom R. Our system consists of an
integer number of same-spin electrons, in this case NL···R

0 = 2.
Figure 8 illustrates the charge-transfer process: the external

potential, vext(x) = −4/(0.6·|x−7.5|+1) − 2/(0.4·|x+7.5|+1), is
asymmetric, chosen such that the ground-state electron density
corresponds to a system with one electron localized on Atom L
and one electron localized on Atom R, whereas in the first
excited state both electrons are localized on Atom R. Hence,
by exciting this system we can initiate a transfer of charge from
L to R. We first find the exact many-electron ground-state
density n0(x) and the first excited-state density n1(x). Then, we
construct an ensemble electron density, which corresponds to
a transfer of a fraction of q electrons from left to right by a
linear combination of the ground-state and excited-state
densities, given by eq 15, where 0 ⩽ q ⩽ 1.174 We emphasize
that all the densities present in eq 15 integrate to an integer
number of electrons.

The GOK theorem ensures a one-to-one mapping between
the density and the local potential for this excited system,
provided that 0 ⩽ q ⩽ 0.5. Hence, there exists a KS system,
which exactly reproduces the electron density of eq 15, and
thus we can obtain this KS potential from the density n(x; q)
by numerical inversion (Section III). In our case, where NL···R

0

= 2, the density is given in terms of the KS orbitals by175

n(x;q) = |ϕ0(x)|
2 + (1−q) · |ϕ1(x)|

2 + q · |ϕ2(x)|
2. When the

system is excited, a fraction of the electron (q) initially
occupying the first excited KS orbital is transferred into the
second excited KS orbital localized in our case on Atom R,
while the overall number of electrons stays constant and an
integer; in this sense, this type of excitation is uncharged (the
number of electrons within the overall system is unchanged),
but in the vicinity of each atom, this excitation corresponds to
a charged excitation (the number of electrons changes locally).
This observation may explain why approximate KS theories,
such as linear response time-dependent DFT (TDDFT),
struggle to accurately describe charge transfer.21,176,177

The exact ensemble xc potential for charge transfer was first
studied by Pribram-Jones et al.178 The authors modeled a spin
singlet which in its ground state consisted of two electrons
localized to one potential well; the first excited state
corresponded to an electron localized each to a distinct
potential well. The authors found an interatomic step in the
exact xc potential upon charge transfer, the overall height of
which acted to align the chemical potentials of the two
wells.178 However, Pribram-Jones et al. did not observe a
plateau which corresponds to Δ localized to the acceptor as in
their ground state both electrons were localized to the donor,
and hence initially no electrons were localized to the acceptor.
Our model charge-transfer system consists of one electron
localized to the donor and another (same-spin) electron
localized to the acceptor in the ground state. Therefore, our
donor−acceptor is more general in character, and hence, upon
excitation we expect to observe the double step structure, one
which corresponds to Δ for the acceptor atom and one to the
CTDD, as described in Section IV.B.
Figure 9(a) shows the natural logarithm of the exact ground-

state electron density, ln(n0(x)), for our diatomic molecule:
each electron occupies its own potential well, and far from the
well the density decays exponentially. There are two regions of
decay between the atoms−the IL- and the IR-decay−and hence
one step at the point where the decay of the density changes
yielding a change in the LEIP; see Section II.A. The height of
this step is given by eq 4. Figure 9(b) shows the KS potential
corresponding to this ground-state density. The potential has
an interatomic step which acts to localize one electron on each
atom in the KS system, as required. Another step of height −S
is expected far to the right of Atom R, when the IL-decay will
prevail over the IR-decay (not shown in the figure). Both steps
together form a plateau of height S around Atom R. Figure
9(c) shows ln(n(x; q)), the natural logarithm of the exact
excited many-electron density, given by eq 15, with q = 5 ×
10−4. For reference, ln(n0(x)) is also shown. There are now
three regions of exponential decay in the density n(x; q): the
IL-, AR-, and IR-decay, as we expected (cf. Section IV.B). These
three regions of decay give rise to two steps in the
corresponding exact KS potential, at the points in the density
where the decay rate changes. Figure 9(d) shows the
corresponding exact KS potential of our excited system with
the two steps apparent, S(1) and S(2) (arrows). The right
(acceptor) atom experiences the jump in the KS potential

Figure 8. Charge transfer in a two-electron system: The external
potential, vext(x), consists of two separated atomlike wells (dashed-
dotted gray). The exact ground-state density n0(x) (dashed blue) is
shown with one electron on each atom. The exact first excited-state
density n1(x) (solid red) is shown with both electrons localized on
Atom R.
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characteristic of the derivative discontinuity, i.e., S(2) = ΔR,
owing to the local number of electrons of Atom R surpassing
an integer by a small amount (q). Simultaneously a plateau
forms in the vicinity of the left donor atom. The height of the
plateau is ΔL→R

CT , i.e., the CTDD associated with transferring an
electron from the left to the right atom (eq 13). S(1) is
therefore equal to −ΔL→R

CT (The minus sign describes the fact
that S(1) is a step down between the atoms, whereas ΔR is a step
up.). The sum of the two steps equals the overall step of eq 4.
Figure 9 is notably similar to Figure 2 in ref 62, where the

same 1D diatomic molecule is modeled, but for a system with a
f ractional number of electrons NL···R = 2.0005 in the ground
state. This means that the approach chosen in ref 62 to reveal
the internal structure of the interatomic step S and find the
CTDD, employing calculations which are much cheaper
numerically, is appropriate. Therefore, there is reason to
assume that modeling of full charge transfer for 3D systems, as
the one analyzed in ref 62 and others mentioned in Section
IV.A, will also yield extremely similar results to those already
obtained by varying the total number of electrons.
To summarize, simulation of a charge transfer by means of

excitation of a 1D diatomic molecule showed that the
interatomic step equals

S R L R
CT= Δ − Δ → (28)

hence has an internal structure, as expected: it consists of the
Δ of the acceptor atom, in our case Atom R, and the (negative
of the) relevant CTDD, ΔL→R

CT . If charge is transferred from
right to left, then a similar picture is expected: the overall step
will split as S = −ΔL + ΔR→L

CT (cf. eq 26). Therefore, also in the
case of a stretched diatomic molecule the relationship between

the interatomic step S and the Δ’s of the constituent atoms is
established (eq 28) via the CTDD (eq 13).

VI. DISCONTINUITIES IN EXCITED FINITE SYSTEMS
WITH AN INTEGER ELECTRON NUMBER

In Section V, we demonstrated that derivative discontinuities
arise upon excitation of a stretched system, which induces
charge transfer. But what happens to a f inite (and not
stretched) system, upon excitation from its ground to first
excited state, not necessarily related to a transfer of charge?
Shall we expect steps in the potential also in this case? To
explore this question, we model a single atom with an integer N
in its ground and excited states, to find whether its KS
potential forms any plateaus upon excitation. This concept was
first proposed by Levy64 and was analyzed numerically by Yang
et al.179 Below we study how the change in the exact KS
potential of the excited ensemble state varies with the
ensemble weight, β, which allows us to compare this scenario
with those studied above.
We model a single atom in 1D with the external potential

vext(x) = −2.0/(0.4|x|+1) with N0 = 2 (again, same-spin
electrons). We calculate the exact ground-state and the first
excited-state density. We then find the ensemble electron
density employing the 1D version of eq 15, where q = β in this
case, for β = 10−4, 10−3, and 10−2, and invert the KS equations
to find the corresponding exact KS potential associated with
each density.
Figure 10(a) shows the natural logarithm of the electron

density for the ground state (β = 0) and for the ensemble

system with β = 10−4, 10−3, and 10−2. The excited density has
two regions of decay in each case: closer to the origin the I-
decay region is present, but then the decay rate changes and
the density decays slower. The rate of decay of this excited
density is determined by I − ℏω01, where ℏω01 is the energy
required to excite the many-electron system from the ground
to the first excited state. Due to this change in the density

Figure 9. (a) The natural logarithm of the ground-state density (solid
red). (b) The exact KS potential corresponding to (a) (solid red).
The step in the potential occurs at the point where the decay of the
density changes. The external potential is shown (dotted gray)−also
in (d). (c) The natural logarithm of the partially excited density
corresponding to q = 5 × 10−4 (dashed blue) and the natural
logarithm of the ground-state density for reference (solid red). Three
regions of decay of the excited density: IL-, AR-, and IR-decay regions
are apparent. At the interface between these regions of the decay the
density decay rate changes suddenly (points (1) and (2)). (d) The
exact KS potential corresponding to the excited density (solid blue).
Two plateaus are present: one corresponding to the derivative
discontinuity of the right atom, ΔR, the other corresponds to the
CTDD, ΔL→R

CT . These steps combine to give an overall step whose
height is given by eq 4.

Figure 10. (a) The natural logarithm of the excited density for varying
values of β and the natural logarithm of the ground-state density (for
reference). The excited density has two regions of exponential decay:
I-decay and (I−ℏω01)-decay. (b) The difference between the exact
excited-state xc potential and the exact ground-state xc potential: Δvxc
= vxc

01(x) − vxc(x). At the point where the exponential decay rate in the
density changes, sharp steps form in the exact KS potential. The
resulting plateau raises the level of the KS potential in the central
region by Δ01 (see text).
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decay rate, we expect steps in the potential of the
corresponding KS system.
The steps are clearly seen in Figure 10(b), which shows

Δvxc−the difference between the xc potential of the excited
system and the ground-state xc potential. In the central region
of the system, the excited KS potential is elevated by a plateau
of height Δ01. The height of the plateau can be analytically
deduced, as before: Δ01 = I − (I−ℏω01) − (εN0+1

β −εN0

β ), where
εi
β is the ith KS energy of the ensemble system. As β → 0+,
εN0+1
β − εN0

β = εlu − ε ho = ℏωog
KS is the energy required to excite

a KS electron from the ho to the lu KS orbital. ℏω01 = ℏωog is
the many-electron optical gap. Thus, Δ01 = Δog and

og og
KS

ogω ωℏ = ℏ + Δ (29)

This equation is the same result found by Levy64 and Yang et
al.179 It is a time-independent way of calculating exact
excitation energies,158 similar to the calculation of the
fundamental gap (discussed above).180

We find that Δog is always relatively small, below 0.03
hartree (<1 eV), for different 1D atoms with a slightly less or
more confining external potential, e.g., vext(x) = −8.0/(|x|+1),
with N = 2−this implies that exciting one KS electron for this
system is indeed a good model for the many-electron excitation
of the two-electron system. Hence, for this system, ℏωog

KS ≈
ℏωog which implies that as long as Δog is small, the ground-
state KS energy levels are reasonably good approximations to
the many-electron excitation energies in their own right, i.e.,
neglecting the contribution of the Hartree-xc (Hxc) kernel
w i th in TDDFT, wh ich has been obse rved by
others.54,163,181,182 For more strongly correlated systems, or
indeed the charge-transfer system above, this is not the case,
and the role of the Hxc kernel or the corresponding Δ
becomes crucial.183−185

From the analysis in the sections above, we conclude that
any electron donor experiences a discontinuous shift in its xc
potential despite the local number of electrons decreasing
below an integer. This discontinuity emerges because a truly
isolated system with a fractional number of electrons cannot
exist in reality; there must be a source of electrons, e.g., an
electron reservoir (the donor), with which a finite system, like
an atom or molecule, can exchange electrons (the acceptor).
Imagine that the chemical potential of the reservoir is adjusted
such that an infinitesimal amount of charge is transferred to the
finite system. The xc potential of the system as a whole
(reservoir plus the finite system) experiences a uniform shift of
height ΔCT, which is the CTDD associated with transferring an
electron from the reservoir to the finite system; see Section
II.C. This shift in the potential is truly uniform as it manifests
as a result of an excitation experienced by the whole system,
like the atom in this section.
As the amount of charge transferred from the reservoir is

steadily increased, a plateau localizes in the vicinity of the
acceptor which is associated with the derivative discontinuity
of that finite system, Δ. In conjunction, the shift in the xc
potential associated with the CTDD localizes to the donor.
This occurs for the diatomic molecule of Figure 9; in this case,
the donor atom acts as the electron reservoir. The charge-
transfer derivative discontinuity, ΔL→R

CT , manifests as a uniform
shift in the xc potential of the donor−acceptor when the
transferred (excited) charge is infinitesimal. As the amount of
charge is increased, a plateau of height ΔR localizes to the
acceptor atom which in the vicinity of just the acceptor looks

to be uniform−|S(2)| = ΔR in Figure 9. In conjunction, a
complementary plateau forms around the donor atom of height
ΔL→R

CT because the donor and acceptor form one system−|S(1)| =
ΔL→R

CT . Consequently, the shift to the xc potential associated
with the derivative discontinuity of the finite system when the
local number of electron increases above an integer, Δ, can
never be truly uniform.

VII. PLATEAUS IN APPROXIMATE XC POTENTIALS
So far we have addressed exact many-electron densities and the
corresponding exact KS potentials obtained from the densities
by means of numerical inversion: but what happens when
working within one of the common approximations to the xc
functional, like the local density approximation (LDA) or a
generalized gradient approximation (GGA)? Does the resultant
approximate KS potential possess any steps or form any
plateaus in the various scenarios discussed above?
The immediate answer to this question is negative. It is well-

known that if one addresses a finite system with a varying
number of electrons, N = N0 + α, with, e.g., the LDA in its
standard implementation (i.e., constructing the density for
fractional N by occupying the last KS level with α electrons),
one obtains a gradually changing xc potential, without any
plateau of the sort presented in Figure 6(c).
However, in the spirit of the present work, it is possible to

obtain the KS potential for fractional N, relying on LDA
densities, also in a different way: First, one solves the system
self-consistently for N0 and separately for N0 + 1 electrons,
within a given xc approximation. Second, one creates the
ensemble density, n(r; N), using eq 6, thus assuring piecewise-
linearity of the density. Third, one obtains the KS potential, up
to a constant, via numerical inversion of the ensemble density.
We obtained this “inverted LDA” (invLDA) potential for the

Li ion (N0 = 2) for varying α. Remarkably, the potentials show
a clear asymptotic behavior of ∼a/r + b far from the nucleus
(with a, b being α-dependent parameters), rather than the
exponential decay of the standard LDA. This allows us to align
each potential such that it decays to 0 (and not to some finite
constant, b) and subsequently subtract from it the KS potential
for N = 2. The resultant differences are shown in Figure 11. We

can clearly see that the invLDA KS potential does form a
plateau of height SLDA = 0.134 hartree in the vicinity of the
nucleus. As α→ 0+, the height of the plateau converges, and its
width logarithmically approaches infinity (cf. refs 62 and 186).
A qualitative understanding of the emergence of plateaus in

the invLDA can be gained by looking at the density decay
rates, presented in Figure 12. Surely, the decay rate of the

Figure 11. Difference between the inverted LDA (invLDA) KS
potential for Li with 2 + α electrons and the KS potential for two
electrons, for various values of α (see legend). As α → 0+, a plateau of
height S is formed around the origin.
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ensemble densities obtained via eq 6 is slower than the decay
rate of the density obtained from a standard LDA calculation
with fractional occupations. Then, clearly, whereas the change
in the decay rates of the latter yields a plateau of height zero, a
density with a slower decay will yield a nonzero plateau.
Next, we establish the quantitative relationship between SLDA

found with invLDA and ΔLDA for Li+ obtained from KS-LDA
quantities. For Li+ with LDA, ILDA = 2.8712 hartree, ALDA =
0.1924 hartree (calculated from total energies of Li, Li+, and
Li2+), εLDA

ho = −2.1899 hartree, and εLDA
lu = −0.2399 hartree.

Hence, according to eq 10, ΔLDA = 0.7288 hartree.
Alternatively, ΔLDA′ = −ALDA − εLDA

lu = 0.0475 hartree. For
the exact xc functional, Δ′ = Δ, but for an approximate one,
like the LDA, the above equality is not necessarily true,
because the IP theorem is not obeyed. In any case, neither
ΔLDA nor Δ′LDA seem to equal SLDA.
We resolve the above conundrum by realignment of the KS

potentials to satisfy the IP theorem.187 This means that for
each α the KS potential is shifted by the amount required for
the ho level to equal the IP. For N0 = 2, this shift is v0 = −ILDA
− εLDA

ho (N0
−) = −0.6812 hartree. Notably, for all α > 0, the same

shift of v1 = −ALDA − εLDA
ho (N0

−+α) = −0.0868 hartree is
required. We denote Δv = v1 − v0 = −0.5945 hartree and recall
that εho(N0

+) = εlu + limα→0
+ S, to find that

S vlimLDA
0

LDAΔ = + Δ
α→ + (30)

For the exact potential, Δv = 0, and we return to the basic
relationship between Δ and S derived in Section IV.B. This
result is presented graphically in Figure 13. Results presented

in this section are for the LDA. Calculations with the local
spin-density approximation (LSDA) and with the Perdew−
Burke−Ernzerhof (PBE) GGA yield similar results and are
detailed in the Supporting Information.
To summarize, within approximate KS DFT calculations for

finite systems with a fractional N there are two, equally
legitimate approaches to obtain the KS potential. They lead to
two qualitatively different results: the standard approach yields
a smoothly varying potential, without steps, which exponen-
tially decays at infinity. The invLDA approach yields steps in
the KS potential, and the asymptotic decay is ∼a/r. We relate
these improvements to the piecewise-linearity in the density,
which is enforced in the invLDA approach. This internal
inconsistency within semilocal xc approximations closely
relates to another inconsistency: the IP of finite systems, like
atoms and small molecules, can be obtained with common xc
approximations from total-energy differences with high
accuracy of a few percent, whereas obtaining the same quantity
directly from the ho energy level results in discrepancies of
∼50% (see, e.g., refs 141 and 164 and references therein);
whereas when the associated Δ is added to the KS energy
difference, the exact many-electron energy difference is
obtained for the exact xc potential (as shown above).

VIII. CONCLUSIONS
In this article, we studied the relationship between the Kohn−
Sham energies and the many-electron energies of various
systems, such as atoms and diatomic molecules, and related
them to the step structures that appear in the exchange-
correlation (xc) potential.
Steps can occur in the exact potential in different scenarios:

(i) a finite system (an atom) in the ground state with a varying
number of electrons (Sections II.B and IV.A); (ii) a finite,
excited system with a constant number of electrons (Section
VI); (iii) a system comprised of subsystems (stretched
diatomic molecule) in the ground state with a varying overall
number of electrons (Sections II.A and V); and (iv) a system
comprised of subsystems that experiences a charge transfer
upon excitation (Sections II.C and V). With these examples we
address the processes of ionization, excitation, dissociation, and
charge transfer.
As a general rule, steps in the potential occur at points where

the exponential decay rate of the density changes and hence
changes the ‘local effective ionization potential’ (LEIP).68 This
rule is true irrespectively of the specific physical or chemical
process the system undergoes, be it adding a small fraction of
an electron to the system, exciting the system, inducing transfer
of charge, or even bringing two subsystems together. In a
sense, the complex step structure of the potential is the price
one pays for the decision to describe an interacting many-
electron system via a noninteracting system with a multi-
plicative potential.107 An expression for the height of the step
in the exact KS potential can be derived from the changes in
the LEIP.
By analyzing the exact KS potential, we show the general

relationship between the step structures in the potential and
derivative discontinuities in the xc energy: in the cases
discussed here, the many-electron energy difference equals
the corresponding KS energy difference plus the associated
derivative discontinuity.
The well-known derivative discontinuity of the xc energy

(Δ) of a system with a varying number of electrons relates the
fundamental gap and the KS gap: Eg = Eg

KS + Δ. This

Figure 12. Natural logarithm of the density for Li with 2 + α
electrons, for various values of α (see the legend). Dashed lines
correspond to densities obtained within the LDA in its standard
implementation, whereas solid lines correspond to densities obtained
as an ensemble linear combination, using eq 6, relying on LDA
densities for two and three electrons.

Figure 13. Difference between the inverted LDA (invLDA) KS
potential for Li with 2 + α electrons and the KS potential for two
electrons, for various values of α (see legend), aligned to satisfy the IP
theorem. The relationship between the plateau height, S, the
alignment potential difference, Δv, and the discontinuity, Δ, (see
text for definitions) is illustrated.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c01093
J. Chem. Theory Comput. 2021, 17, 1390−1407

1401

https://pubs.acs.org/doi/10.1021/acs.jctc.0c01093?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01093?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01093?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01093?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01093?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01093?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01093?fig=fig13&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01093?fig=fig13&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c01093?ref=pdf


relationship manifests in the potential as a uniform shift as the
system’s electron number infinitesimally surpasses an integer
value. For a small finite fraction of an additional electron,
spatial step structures form in the exact xc potential on the
periphery of the system in order to elevate the level of the
potential in the center by Δ; as this additional amount of
electron tends to zero, the plateau created by the steps
becomes the uniform shift.
The relationship between a particular step structure in the xc

potential and derivative discontinuities is not always
straightforward. The infamous interatomic step, S, which
forms in a stretched diatomic molecule in order to correctly
distribute the electron density throughout the system has
usually been regarded as unrelated to the derivative
discontinuity because the system typically consists of a fixed
number of electrons and the height of the step is seemingly
unrelated to the Δ’s of any of the constituent atoms. We
demonstrate that upon the transfer of charge from one atom to
another within the diatomic molecule, the acceptor atom
experiences a shift which corresponds to Δ of that atom owing
to the “local number of electrons” on that atom surpasses an
integer, Δa. Simultaneously the donor atom experiences a shift
which corresponds to the charge-transfer derivative disconti-
nuity (CTDD),62 Δd→a

CT .
We demonstrate that this discontinuity occurs within the

exact KS potential within ensemble DFT of a system which
undergoes charge transfer when excited. Analysis of this
potential can offer valuable insight for the development of
advanced approximations to the xc energy within ensemble
DFT. In this case, we show that S = Δa − Δd→a

CT , and hence the
interatomic step is comprised of two derivative discontinuities,
which are revealed when charge transfer occurs. In addition,
this derivative discontinuity occurs when a fraction of an
electron is added to the overall system, while the additional
charge localizes on one of the atoms. In both cases, ΔCT is
related to the discontinuity of the derivative of the xc energy of
the stretched molecule.
We also show that the many-electron excitation energy from

the ground to the first excited state is related to the KS energy
difference plus the associated derivative discontinuity.64 We
demonstrate this numerically for a single atom and show that
this excitation is well approximated by the ground-state KS
energy differences for this system alone, i.e., in this case the Δ
is small. This implies that the Hartree-xc kernel plays a small
role in yielding accurate spectra for our single atom. This is not
the case for the charge-transfer system, however, as we typically
find the CTDD to be large. Hence, in this case, the Hxc kernel
must have important features which, at least in part,
correspond to the CTDD in the potential. Capturing these
features in approximations to the ground-state and excited xc
potential of DFT and ensemble DFT, respectively, as well as
the xc kernel of time-dependent DFT, is crucial for accurately
obtaining many-electron excitation energies from KS theory.
Finally, we demonstrate that step structures are obtainable

also from approximate xc functionals, as simple as the LDA.
With the “inverted LDA” (invLDA) approach introduced here,
we construct an ensemble of LDA densities with an integer
number of electrons for each. Upon “reverse-engineering”
these densities we find that the corresponding potential
possesses step structures, which resemble those present in the
exact potential. Ensuring that our invLDA potentials obey the
IP theorem, we establish the relationship between the step

height and the derivative discontinuity in approximate xc
functionals.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01093.

Technical details and peripheral information as to
inversion procedure of densities obtained for atoms
and ions within common exchange-correlation (xc)
approximations, as presented in section VII (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Eli Kraisler − Fritz Haber Center for Molecular Dynamics and
Institute of Chemistry, The Hebrew University of Jerusalem,
9091401 Jerusalem, Israel; orcid.org/0000-0003-0139-
258X; Email: eli.kraisler@mail.huji.ac.il

Authors
M. J. P. Hodgson − Department of Physics, Durham
University, Durham DH1 3LE, United Kingdom; Max-
Planck-Institut für Mikrostrukturphysik, D-06120 Halle,
Germany; orcid.org/0000-0002-2256-6860

E. K. U. Gross − Fritz Haber Center for Molecular Dynamics
and Institute of Chemistry, The Hebrew University of
Jerusalem, 9091401 Jerusalem, Israel

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.0c01093

Author Contributions
∥E.K. and M.J.P.H. contributed equally.
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We acknowledge Rex Godby for providing us with computa-
tional resources and Neepa Maitra and Axel Schild for fruitful
discussions. E.K.U.G. acknowledges financial support from the
European Research Council Advanced Grant FACT (ERC-
2017-AdG-788890).

■ REFERENCES
(1) Verma, P.; Truhlar, D. G. Status and Challenges of Density
Functional Theory. Trends in Chemistry 2020, 2, 302−318.
(2) Dreizler, R. M.; Gross, E. K. U. Density Functional Theory;
Springer Verlag: 1990; DOI: 10.1007/978-3-642-86105-5.
(3) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and
Molecules; Oxford University Press: 1989.
(4) Fiolhais, C., Nogueira, F., Marques, M. A. L., Eds.; A Primer in
Density Functional Theory; Springer: 2003; DOI: 10.1007/3-540-
37072-2.
(5) Engel, E.; Dreizler, R. Density Functional Theory: An Advanced
Course; Springer: 2011; DOI: 10.1007/978-3-642-14090-7.
(6) Burke, K. Perspective on density functional theory. J. Chem. Phys.
2012, 136, 150901.
(7) Becke, A. D. Perspective: Fifty years of density-functional theory
in chemical physics. J. Chem. Phys. 2014, 140, 18A301.
(8) Jones, R. O. Density functional theory: Its origins, rise to
prominence, and future. Rev. Mod. Phys. 2015, 87, 897−923.
(9) Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys.
Rev. 1964, 136, B864−B871.
(10) Pearson, R. G.; Pearson, R. G. Chemical hardness and density
functional theory. Proc. - Indian Acad. Sci., Chem. Sci. 2005, 117, 369.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c01093
J. Chem. Theory Comput. 2021, 17, 1390−1407

1402

https://pubs.acs.org/doi/10.1021/acs.jctc.0c01093?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.0c01093/suppl_file/ct0c01093_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Eli+Kraisler"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0003-0139-258X
http://orcid.org/0000-0003-0139-258X
mailto:eli.kraisler@mail.huji.ac.il
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="M.+J.+P.+Hodgson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-2256-6860
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="E.+K.+U.+Gross"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.0c01093?ref=pdf
https://dx.doi.org/10.1016/j.trechm.2020.02.005
https://dx.doi.org/10.1016/j.trechm.2020.02.005
https://dx.doi.org/10.1007/978-3-642-86105-5?ref=pdf
https://dx.doi.org/10.1007/3-540-37072-2?ref=pdf
https://dx.doi.org/10.1007/3-540-37072-2?ref=pdf
https://dx.doi.org/10.1007/978-3-642-14090-7?ref=pdf
https://dx.doi.org/10.1063/1.4704546
https://dx.doi.org/10.1063/1.4869598
https://dx.doi.org/10.1063/1.4869598
https://dx.doi.org/10.1103/RevModPhys.87.897
https://dx.doi.org/10.1103/RevModPhys.87.897
https://dx.doi.org/10.1103/PhysRev.136.B864
https://dx.doi.org/10.1007/BF02708340
https://dx.doi.org/10.1007/BF02708340
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c01093?ref=pdf


(11) Tran, F.; Blaha, P.; Schwarz, K. Band gap calculations with
Becke-Johnson exchange potential. J. Phys.: Condens. Matter 2007, 19,
196208.
(12) Tran, F.; Blaha, P. Accurate Band Gaps of Semiconductors and
Insulators with a Semilocal Exchange-Correlation Potential. Phys. Rev.
Lett. 2009, 102, 226401.
(13) Eisenberg, H. R.; Baer, R. A new generalized Kohn-Sham
method for fundamental band-gaps in solids. Phys. Chem. Chem. Phys.
2009, 11, 4674.
(14) Schimka, L.; Harl, J.; Kresse, G. Improved hybrid functional for
solids: the HSEsol functional. J. Chem. Phys. 2011, 134, 024116.
(15) Chan, M. K. Y.; Ceder, G. Efficient Band Gap Prediction for
Solids. Phys. Rev. Lett. 2010, 105, 196403.
(16) Tozer, D. J. Relationship between long-range charge-transfer
excitation energy error and integer discontinuity in Kohn-Sham
theory. J. Chem. Phys. 2003, 119, 12697−12699.
(17) Maitra, N. T. Undoing static correlation: long-range charge
transfer in time-dependent density-functional theory. J. Chem. Phys.
2005, 122, 234104.
(18) Toher, C.; Filippetti, A.; Sanvito, S.; Burke, K. Self-Interaction
Errors in Density-Functional Calculations of Electronic Transport.
Phys. Rev. Lett. 2005, 95, 146402.
(19) Koentopp, M.; Burke, K.; Evers, F. Zero-bias molecular
electronics: Exchange-correlation corrections to Landauer’s formula.
Phys. Rev. B: Condens. Matter Mater. Phys. 2006, 73, 121403.
(20) Ke, S.-H.; Baranger, H. U.; Yang, W. Role of the exchange-
correlation potential in ab initio electron transport calculations. J.
Chem. Phys. 2007, 126, 201102.
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(48) Sham, L. J.; Schlüter, M. Density-functional theory of the
energy gap. Phys. Rev. Lett. 1983, 51, 1888−1891.
(49) Perdew, J. P. Density functional theory and the band gap
problem. Int. J. Quantum Chem. 1985, 28, 497−523.
(50) Zhang, Y.; Yang, W. Perspective on “Density-functional theory
for fractional particle number: derivative discontinuities of the energy.
Theor. Chem. Acc. 2000, 103, 346−348.
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Improving Band Gap Prediction in Density Functional Theory from
Molecules to Solids. Phys. Rev. Lett. 2011, 107, 026403.
(131) Refaely-Abramson, S.; Baer, R.; Kronik, L. Fundamental and
excitation gaps in molecules of relevance for organic photovoltaics
from an optimally tuned range-separated hybrid functional. Phys. Rev.
B: Condens. Matter Mater. Phys. 2011, 84, 075144.
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(189) Mori-Sańchez, P.; Cohen, A. J.; Yang, W. Localization and
Delocalization Errors in Density Functional Theory and Implications
for Band-Gap Prediction. Phys. Rev. Lett. 2008, 100, 146401.
(190) Capelle, K.; Vignale, G.; Ullrich, C. A. Spin gaps and spin-flip
energies in density-functional theory. Phys. Rev. B: Condens. Matter
Mater. Phys. 2010, 81, 125114.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c01093
J. Chem. Theory Comput. 2021, 17, 1390−1407

1407

https://dx.doi.org/10.1103/PhysRevA.88.052507
https://dx.doi.org/10.1103/PhysRevB.101.115109
https://dx.doi.org/10.1103/PhysRevB.101.115109
https://dx.doi.org/10.1016/S0065-3276(08)60594-8
https://dx.doi.org/10.1016/S0065-3276(08)60594-8
https://dx.doi.org/10.1103/PhysRevLett.100.146401
https://dx.doi.org/10.1103/PhysRevLett.100.146401
https://dx.doi.org/10.1103/PhysRevLett.100.146401
https://dx.doi.org/10.1103/PhysRevB.81.125114
https://dx.doi.org/10.1103/PhysRevB.81.125114
pubs.acs.org/JCTC?ref=pdf
https://dx.doi.org/10.1021/acs.jctc.0c01093?ref=pdf

