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Abstract

For calculating the properties of solids and molecules, density functional theory (DFT) has
become extremely popular because of its inherent computational efficiency. However, de-
spite being in principle exact, an approximation must be introduced into DFT in practice.
The accuracy of DFT has been key to its popularity; however, even for some of the simplest
systems, using common approximations to the exchange-correlation (xc) functional may
give inaccurate results. Therefore, we aim to contribute to the development of improved
approximate xc functionals.

It is logical to begin by studying the most elementary of systems where the common approxi-
mate xc functionals require improvement, as one can model these systems exactly by solving
the many-electron Schrödinger equation. By allowing us to study DFT and time-dependent
DFT (TDDFT) in the absence of approximations for prototype systems, this approach pro-
vides insight into the fundamental principles of the theory, informing the development of
new approximations.

We show that steps arise in the level of the exact xc potential: steps are known to be im-
portant for giving accurate electron and current densities, yet little about their origin is un-
derstood. We show that steps form due to a change in the ‘local effective ionisation energy’
of the electrons: this concept is well defined for strongly localised electrons. We find that
the tendency of an electron to exclude others from its vicinity (electron localisation) is sur-
prisingly high in our finite systems; hence, we develop an approximate functional that uses
a measure of localisation as an ingredient, with the analytical form of the Kohn-Sham po-
tential in the limit of complete localisation. Our functional, termed the mixed localisation
potential, gives accurate electron and current densities for our test systems where local ap-
proximations are less valid. The approximation’s success stems in part from its ability to
reproduce steps in the xc potential.
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Chapter 1

Introduction

Over the course of the past half-century, simulations have become one of the most important
aspects of scientific research. The vast majority of ab intio material, chemical, and solid-state
simulations use density functional theory (DFT) [1, 2] – an exact reformulation of many-
body quantum mechanics – which owes its popularity to the computational benefits it has
over other methods. DFT is even being applied to systems as large and complex as DNA.
DFT works by mapping a real world system of interacting electrons onto an equivalent aux-
iliary system of noninteracting electrons. In principle, one can use the latter system to repro-
duce the densities of the former system exactly, for a minute fraction of the computational
cost. In fact, in most cases, without these computational savings the calculation would not
be possible. However, the success of DFT hinges on approximating one central unknown – to
which various approximations exist. It is the aim of the work set out in this thesis to inform
the development of improved approximations in DFT, in order for the theory to be used
accurately to model a broader scope of phenomena.

As it stands, DFT can be used to accurately model a wide range of ground-state (lowest
energy state) systems. However, experimental observations and theoretical evidence have
shown that the approximations made within the theory become much less secure in the
presence of strong correlation [3, 4, 5, 6, 7] and/or current flow [8, 9, 10, 11]. In particu-
lar, when applied to the flow of electrons through molecules, the approximations made in
time-dependent DFT (TDDFT) [12, 13] lead to a particularly poor description of electronic
properties.

Accurate approximations within (TD)DFT allow for more accurate simulations of chemi-
cals and materials. Recent technological advancements mean the need for a fully quantum
mechanical description of electronic properties in molecules has become critical.

1.1 Our strategy

We identify why the common approximations to the xc functional break down in certain
circumstances, with the goal of contributing to the development of improved approximate
density functionals, hence increasing the accuracy of the theory for challenging situations.
We model simple systems, consisting of a few electrons, using many-body quantum me-
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Chapter 1 Introduction

chanics in order to find the exact electron density1. The aim here is to study TDDFT in the
absence of approximation for these elementary, but broad, scenarios. Each system studied is
designed to either test or illustrate important general phenomena that are representative of
the behaviour of electrons in realistic finite systems.

In order to carry out our investigations, we have developed a code that models electrons
in one dimension2. We can choose any external potential, as well as any static perturbing
field, and propagate the electrons through time. Our code, named iDEA3 [14], is used for
generating all computational results in this thesis (unless otherwise stated).

1.2 Outline

The following chapter outlines the fundamental aspects of quantum mechanics and (TD)DFT
and the approximations made within these theories. Chapter 3 details in which situations
these approximations disagree with experimental evidence – presenting the motivation for
the work set out in the rest of the thesis. Chapter 4 gives a full description of our code and
method.

Chapter 5 details our development of the simplest approximation to the xc functional – a lo-
cal density approximation (LDA) [2]. We construct our LDAs from finite, one-dimensional
systems with regions of homogenous density; they are used throughout the thesis as the
benchmark for what local approximations can, and cannot, achieve, and as a means of deter-
mining which features of the exact xc potential are important for yielding accurate densities
and currents.

Following on from the conclusions we reached in Chapter 5, Chapter 6 is an investigation of
many-electron tunnelling using exact TDDFT. We find universal ‘step’ features in the Kohn-
Sham potential that are missing from local approximations, as well as a large self-interaction
correction (SIC), both due to strong electron localisation. We give insight into how approx-
imate functionals, which aim to include steps and other ‘non-LDA’ features, can be con-
structed.

The prominent SIC of the exact xc potential stems from the tendency of our model electrons
to exclude others from their local vicinity. We find that electron localisation is common in our
finite systems, and that the electron localisation function (ELF), used in DFT calculations, is a
useful indicator of this characteristic. Chapter 7, where we introduce our density functional
– the mixed localisation potential (MLP), builds on our understanding of localisation. The
MLP, used in the Kohn-Sham scheme, gives accurate electron densities for situations where
the usual approximations do not, e.g., systems that require steps in the Kohn-Sham poten-
tial, even in the time-dependent regime, such as disassociated molecules, charge transfer,
electron tunnelling, to name a few. Furthermore, we indicate how the MLP, and the approx-
imations made to construct the potential, can be progressed, capitalising on the promising
performance of the method.

1By calculating the exact electron density, we can ‘reverse engineer’ TDDFT, i.e., work backwards, starting
with the electron density, and inspect differences between approximate and exact TDDFT (detail on this is given
throughout the thesis).

2We detail the exact characteristics of what the code can model in Chapter 4.
3Interacting dynamic electrons approach.
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Chapter 1 Introduction

Finally, Chapter 8 details the origin of steps, as well as other features in the exact Kohn-Sham
potential from fundamental concepts in DFT, and to a lesser extent TDDFT. Here our aim
is to offer an understanding of features of the exact Kohn-Sham potential, that can aid the
development of further improved density functionals.
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Chapter 2

Established theory

2.1 Many-body quantum mechanics

Quantum mechanics is undoubtably one of the most successful theories ever devised. As the
theory is concerned with the nature of the most elementary building blocks of the universe, it
is considered to be a fundamental description of nature. Hence, many phenomena and laws
of physics, which describe the macroscopic world, can be derived from quantum mechanics.

Louis de Broglie first proposed the wave nature of matter in 1924 [15]. This idea was later
combined with work done on quantisation by Planck and Einstein [16, 17] (among others)
about two decades prior. This revolution in thinking would eventually lead to a new the-
ory of matter, replacing the idea of particles with definite positions in space, with a view
of waves and positional uncertainty. This theory, which became known as quantum me-
chanics, quickly established itself within physics by describing nature with unprecedented
accuracy. Below we outline the concepts that underpin many-body quantum mechanics to-
day and discuss the unavoidable approximations made when using the theory to describe
complex systems. Then we introduce density functional theory, which in principle is equiv-
alent to many-body quantum mechanics in its description of certain observables, namely
electron densities and currents, but which differs in its level of approximation and cost of
simulation.

2.1.1 Schrödinger’s equation

The Schrödinger equation,

ĤΨ({r}, {R}; t) = ih̄
∂

∂t
Ψ({r}, {R}; t), (2.1)

describes, in theory, all material properties, provided certain limits (i.e., non-relativistic
speeds), where the many-body Hamiltonian is given by

Ĥ =
N

∑
j=1

[
− h̄2

2me
∇2

j + vext(rj, t)

]
+

N′

∑
j=1

[
− h̄2

2Mj
∇2

j + vext(Rj, t)

]

+
e2

4πε0

[
N

∑
j=1

∑
k>j

1
|rj − rk|

+
N′

∑
j=1

Zj

(
∑
k>j

Zk

|Rj −Rk|
−

N

∑
k=1

1
|Rj − rk|

)]
.
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Equation (2.1) is the governing equation within the theory1. Here, vext is the external poten-
tial applied to the system, me and Mj represent the electron and nucleus mass respectively,
and Zj is the atomic number for a given atomic nucleus. From Eq. (2.1) one can, in theory,
acquire the many-body wavefunction (Ψ; where r denotes the co-ordinates of an electron,
and R denotes the co-ordinates of a nucleus), from which all the properties of the system
can be derived. However, in practice Eq. (2.1) cannot be solved for most systems, even given
certain approximations (see below). The difficulties lie with the interaction terms, which
make solving Eq. (2.1) a computational problem that scales exponentially with the number
of electrons (N) and nuclei (N′). It is therefore vital to make approximations which elimi-
nate, or at the very least alleviate, this scaling problem in order for quantum mechanics to
be a practical theory.

2.1.2 The Born-Oppenheimer approximation

Within electronic structure calculations, one of the most common approximations made is
the Born-Oppenheimer approximation (BOA) [18]. The BOA assumes that, within a given
molecule or atom, the motion of the nuclei and electrons are separable, owing to the mass of
the proton being about 1836 times that of the electron. Therefore, when applying the BOA,
one may consider the interaction of the nuclei with the electrons, and any interactions be-
tween nuclei, to be accounted for by the external potential. Hence, the electron’s response to
changes in the position of the nuclei are instantaneous – this is generally known as the adia-
batic approximation. This simplification is well justified for most systems, and in particular
the systems we study. Therefore, this approximation is used throughout all of the work set
out in this thesis.

A correct application of the BOA allows one’s focus to be on the quantum description of the
electrons. As our goal is an accurate description of electronic properties, we choose the BOA
as the starting point for our ab initio study of electrons within single molecules. However,
while the BOA eliminates approximately half the number of variables on which the many-
body wavefunction depends, the scaling problem persists owing to the electron-electron
interaction.

2.2 Density functional theory

Density functional theory (DFT) is an exact reformulation of many-body quantum mechan-
ics. DFT is a practical theory for calculating the ground-state density and energy of a quan-
tum system by using the electron density to minimise the energy opposed to the many-body
wavefunction. Below we outline the basic concepts of DFT, and detail what methods we use
in our own investigations of finite molecules.

2.2.1 The Hohenberg-Kohn theorem

We have already established that the many-body wavefunction depends on the position of
every electron within a given system. Realistically this could correspond to, of the order of,

1Here we are using Système Internationale units (S.I.). Henceforth we use atomic units (a.u.); h̄ = 4πε0 =
me = e2 = 1.
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1023 variables. As this problem scales exponentially with system variables, this level of com-
plexity makes solving the Schrödinger equation for realistic systems impossible. Hohenberg
and Kohn (HK) made a revolution in this matter in 1964 [1] – an innovation that would later
earn Walter Kohn the 1998 Nobel Prize for Chemistry. They showed that stationary ground-
state systems are fully described by the electron density – a function with only one variable
n(r).

As the system is uniquely defined by the electron density, we can define an energy func-
tional E[n], which when minimised yields the ground-state energy (E0) and density (n),
with

∫
n(r) d3r = N as an enforced constraint (N is the integer number of electrons, and

the integral, with no limits, is over all space – this convention is used throughout the thesis,
unless otherwise stated). The functional may be written as [19]:

E[n] ≡ F[n] + V[n] = min
〈
Ψ
∣∣T̂ + V̂ee

∣∣Ψ
〉
+
∫

n(r) v(r) d3r, (2.2)

where the internal-energy functional F[n] is independent of the external potential v, T̂ is
the many-body kinetic energy operator, V̂ is the external potential operator, and V̂ee is the
electron-electron interaction operator.

The ground-state wavefunction can be considered as that which minimises F[n], whilst
reproducing the ground-state density. For a non-degenerate ground-state, this definition
uniquely determines the ground-state wavefunction in terms of n, without explicitly spec-
ifying v. Hence, the density, opposed to the many-body wavefunction, can be used to de-
termine the ground-state energy of the system. Furthermore, as the HK theorem shows that
the potential uniquely determines the ground-state wavefunction, we can further infer that
two different potentials cannot yield the same ground-state electron density.

As the density defines the system, one can acquire the ground-state energy and density from
minimising the energy functional with respect to the density, as such

δE[n]
δn

= 0. (2.3)

2.2.2 Kohn-Sham theory

In 1965 Kohn and Sham developed a practical application of DFT using a single-particle
theory [2], where the system of interacting electrons is mapped onto an auxiliary system
of noninteracting electrons. The advantages of the Kohn-Sham approach over other for-
mulations of quantum mechanics originate from this mapping. In theory one can acquire
all densities exactly from the noninteracting system owing to the exchange and correlation
potential (usually abbreviated as the correlation or xc potential), which we define below.
The xc potential (an effective external potential experienced by the noninteracting electrons)
ensures that the many-electron effects are taken into account in the noninteracting system.
In fact, if the xc potential is known without any approximation, the many-body effects are
reproduced exactly. In practice, however, the xc potential is seldom known, and certainly
for most systems of interest the xc potential must be approximated.

In detailing the Kohn-Sham approach we will begin with the single-particle kinetic energy,
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which can be found exactly from

Ts[{φi[n]}] = − 1
2

N

∑
i=1

∫
φ∗i (r)∇2φi(r) d3r, (2.4)

where φi is the ith single-particle wavefunction (known as a Kohn-Sham orbital), found from
solving the single-particle Schrödinger equations [known as the Kohn-Sham equations; see
Eq. (2.10)]. Evidently Eq. (2.4) is an explicit orbital functional, and as these orbitals are
functionals of the density, it is therefore an implicit density functional. We now rewrite the
exact energy functional of Eq. (2.2) as

E[n] = T[n] + Vee[n] + V[n] = Ts[{φi[n]}] + U[n] + V[n] + Exc[n], (2.5)

where Exc[n] is the xc energy and U[n] is the Hartree energy (which is known analytically;
see below). Clearly from Eq. (2.5) the xc energy is compensating for the difference between
the many-electron and single-electron kinetic energies, as well as the difference between the
Coulomb energy and Hartree energy.

Using Eq. (2.5) one can rewrite the minimisation procedure for finding the ground-state
density and energy as

0 =
δE[n]

δn
=

δTs[n]
δn

+
δUH[n]

δn
+

δV[n]
δn

+
δExc[n]

δn
=

δTs[n]
δn

+ vs[n]. (2.6)

This minimisation procedure is for a system of noninteracting electrons in an external poten-
tial vs, which yields the same ground-state density and energy as the many-electron system
provided

vs(r) = vext(r) + vH(r) + vxc(r), (2.7)

where vext(r) is the external potential for the many-electron system, vH(r) is the Hartree
potential, given by

vH(r) =
δUH[n]

δn
=
∫ n(r′) d3r′

|r− r′| , (2.8)

and vxc(r) is the xc potential, found from

vxc(r) =
δExc[n]

δn
. (2.9)

Of these potentials only the xc potential is unknown, hence, the accuracy of the method hinges
on approximating this term.

We have so far established that Kohn-Sham theory uses an effective external potential (vs),
known as the Kohn-Sham potential, which reproduces the same electron density as solving
the many-electron Schrödinger equation for the same external potential. This is the only
potential that the noninteracting Kohn-Sham electrons experience, hence, the Kohn-Sham
equations can be written as (

− 1
2∇

2 + vs[n]
)

φi = ε iφi, (2.10)

where ε i is the ith eigen-energy corresponding to φi. The electron density can be calculated
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using the individual single-particle electron densities, as follows

n(r) =
N

∑
i=1
|φi(r)| 2, (2.11)

and the energy of the system can be found from

E[n] =
N

∑
i=1

ε i + Exc −
∫

n(r)
[
vxc(r) + 1

2 vH(r)
]

d3r. (2.12)

2.2.3 The exchange-correlation functional

We will now look more closely at the xc energy functional (Exc[n]), and some of the common
approximations used for it. The xc energy can be broken up into two terms; the first (Ex) is
the energy corresponding to the exchange of particles adhering to Pauli’s exclusion princi-
ple. An analytical form for this energy is known in terms of the Kohn-Sham orbitals (Fock
term; see Section 2.3 on page 24):

Ex[{φi[n]}] = − 1
2 ∑

j,k

∫
d3r

∫
d3r′

φ∗j (r)φ
∗
k (r
′)φj(r)φk(r′)

|r− r′| , (2.13)

however, no such expression is known explicitly in terms of the electron density. The second
term is the correlation energy (Ec), for which no analytic term is known. The exchange term,
in the Kohn-Sham approach, accounts for the decrease in total energy of the interacting
system due to the antisymmetrisation of the many-body wavefunction (as electrons are spin-
half fermions, they obey Pauli’s exclusion principle, meaning no two same-spin electrons can
occupy the same state). And the correlation term accounts for the decrease in repulsive
energy required to account for the overestimation of the repulsive Hartree energy between
any electron pair. (Note, the correlation term also accounts for the difference between the
noninteracting and interacting kinetic energies.)

The concept of exchange holes was introduced as an interpretation of the way that both
exchange and correlation tend to exclude electrons from the vicinity of other electrons. This
has the effect of causing same-spin electrons to ‘avoid’ each other; a concept we refer to as
electron localisation later on. This gives rise to the definition of the xc hole nxc(r, r′), which
describes the decrease in probability of finding an electron at position r′ due to the presence
of an electron at r. The energy associated with this can be calculated from this Hartree-like
expression between the electron density and the hole density:

Exc[n] = 1
2

∫
d3r

∫
d3r′

n(r)nxc(r, r′)
|r− r′| . (2.14)

Equation (2.14) defines nxc(r, r′), and because there is always one electron in total excluded
from the vicinity of r (owing to Pauli’s exclusion principle), we can infer the sum rule∫

nxc(r, r′) d3r = −1 [20].

21



Chapter 2 Established theory

2.2.3.1 Exact properties

While the form of the universal xc functional is unknown, a few exact properties have been
derived; these can be important when one is considering the effectiveness of approximate
xc functionals. We note, however, that when developing approximate xc functionals the
focus of one’s efforts to ensure that their functional satisfies certain exact limits should not
supersede insight which will lead to improved accuracy in the density, even if said insight
violates the known exact properties.

We begin by considering a one electron system; the Kohn-Sham potential must be equal to
the external potential [v(1)s = vext], as both the many-electron system and the Kohn-Sham
system are identical. Hence, from Eq. (2.7) it must follow that v(1)xc = −v(1)H . By substituting
this result into Eq. (2.12), we obtain E(1)

xc = −E(1)
H . This result, which is not satisfied by

some common approximations (discussed below), is necessary for correct cancellation of the
erroneous self-interaction of the electrons. There are many issues that arise when an electron
interacts with itself (see Chapter 3), and hence it is an important constraint to consider.

One of the most elusive properties of the exact xc functional is the derivative discontinuity
of the xc energy with respect to electron number N. Perdew et al. [21] showed that when
applying HK theory to a system that is not constrained by integer numbers of electrons, the
gradient of the xc energy with respect to electron number is discontinuous when passing
through an integer value of N. If one replaces the number-conserving variations (mentioned
before) with a Lagrange multiplier µ, one obtains

δ

δn

(
Eν[n]− µ

∫
n(r)d3r

)
= 0. (2.15)

The Euler-Lagrange equation is therefore δEν/δn(r) = µ(= ∂E/∂N). This discontinuity
in the xc energy corresponds to a ‘jump’ in the xc potential – which, to date, has not been
successfully reproduced by any approximate explicit xc functionals, as its form would need
to be non-analytic. The jump in the potential (∆xc) is a constant shift which occurs as one
passes through an integer value of N, and can be calculated as follows:

∆xc = vxc(r)|N+δ − vxc(r)|N−δ =
δExc[n]
δn(r)

∣∣∣∣
N+δ

− δExc[n]
δn(r)

∣∣∣∣
N−δ

=
∂Exc

∂N

∣∣∣∣
N+δ

− ∂Exc

∂N

∣∣∣∣
N−δ

,

where δ is an infinitesimal amount of an electron.

Next, consider an electron far from any atom, the external potential decays as Z/r, and the
Hartree potential decays as −(N − 1)/r. The Kohn-Sham potential decays as (Z − N)/r,
hence, we can infer that the xc potential must decay as −1/r, as shown for finite systems in
Refs. [22] and [23]. This form of the xc potential can be important for edges of ‘molecule-
like’ systems, as it partially determines the confinement of the electron density. Thus this
property of vxc is important for accurate chemical modelling.

It is known that the exchange energy is always negative. A further constraint on the xc
energy was derived by Lieb and Oxford [24], they showed that

Ex ≥ Exc ≥ −1.68
∫

d3r n(r)
4
3 . (2.16)

However, we note that as our calculations are in 1D, some constraints, such as this one, may

22



Chapter 2 Established theory

take a slightly different mathematical form.

Our list of exact properties could go on, but as stated before, exact constraints are useful for
testing approximate functionals but are by no means crucial.

2.2.3.2 The local density approximation

Below we discuss the common approximations to the xc functional. The most simple ap-
proximation to the xc energy is the local density approximation (LDA). It was first proposed
by Kohn and Sham in their original 1965 paper [2], and has since proven to be one of the
most important and popular approximations to the xc functional. To understand the concept
of the LDA, one must first consider a homogenous electron gas (HEG). The exchange energy
per unit volume for a HEG in 3D is known analytically:

εHEG
x = − 3

4

( 3
π

) 1
3 n

4
3 . (2.17)

By integrating over all space one acquires the total exchange energy, and when applying
Eq. (2.17) to systems that are inhomogeneous, the exchange energy is approximated as

Ex ≈ ELDA
x = − 3

4

( 3
π

) 1
3

∫
d3r n(r)

4
3 . (2.18)

When it comes to the correlation term the procedure is not so simple, as the form of Ec is
not known. The breakthrough came from Ceperley and Adler with their Quantum Monte
Carlo (QMC) simulation of the HEG [25], which gave rise to an accurate expression for εHEG

c ,
parameterised from this calculation [25, 26].

The use of the LDA has been hugely successful for ground-state calculations. This can be
partially explained by a systematic cancellation of errors, owing to the fact that the LDA
satisfies the sum rule of the xc hole – Ec is underestimated and Ex is overestimated.

The LDA has given reliable results for decades, for total energy and geometrical structure
calculations within solid-state physics [27]. However, its performance is far less impressive
for quantum chemistry as the LDA tends to over-bind atoms [28]. In order for quantum
chemistry calculations to be practical, the error in the energy is required to be no worse than
about 0.1 kcal/mol – this is not achievable using the LDA. However, approximate function-
als have been developed that perform better in these scenarios [28] (see below). (Chapter 3
gives an overview of some of the failings of the LDA, among other approximations.)

2.2.3.3 Beyond local approximations

The LDA is concerned only with the electron density at point r, which is a fair assumption
when the density is approximately uniform. However, for molecules the density can be far
from homogenous. As the exact xc functional has a nonlocal dependence on the density, the
gradient of the density must be considered in order to improve the xc energy for inhomo-
geneous systems. This is usually done using the reduced density gradient s = |∇n| n− 4

3 ,
which is dimensionless by necessity. Hence, the LDA xc functional can be improved by
considering

Exc[n] =
∫

εLDA
xc (n)[1 + µ(n)s2 + ...]d3r, (2.19)
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where µ(n) is a function that gives a constant for the exchange component. Approxima-
tions of this type are known as density-gradient expansion functionals. However, there are
problems associated with this approach; one such problem is the divergence of the xc po-
tential far from any atom. This can be shown by considering the form of the density in said
region, which was shown by Perdew to asymptotically decay [n(r) ∝ e−cr] [21, 29]. Hence
we substitute this form into s and find that s = |∇n| n− 4

3 = ce
cr
3 which tends to infinity as

r → ∞.

Perdew, Burke and others remedied this unphysical behaviour by replacing the truncated
series expansion in Eq. (2.19) with a dampening term Fxc[n, s]. Density approximations of
this form are know as generalised gradient approximations (GGAs). The form of Fxc varies,
but the most popular was proposed by Perdew, Burke and Ernzerhof (PBE) [30];

FPBE
x (s) = 1 +

as2

1 + bs2 , (2.20)

where a and b are functions which are either calculated by considering exact constraints of
Exc or from experimental results. GGAs have been successful in extending the applicability
of DFT [31, 32], specifically in chemistry due to the increase in accuracy that the improved
approximation provides. However, GGAs do not always yield reliable electron densities;
see Chapter 3.

2.3 Hartree-Fock approximation

While the Hartree-Fock (HF) method [33, 34] is not a density functional approach, it is
an approximate method for solving Eq. (2.1) (although here we are only considering the
ground state) that has similarities with the DFT approach. The HF approach assumes that
the many-electron wavefunction Ψ(r1, ...rN) can be represented by a Slater determinant of
single-particle wavefunctions Φ1...N (in a similar fashion to Kohn-Sham theory). And hence
the density is calculated by summing over the single-particle HF densities, like Eq. (2.11).
However, unlike Kohn-Sham theory, HF theory is inherently approximate because the wave-
function is constructed from single-particle wavefunctions. These single-particle wavefunc-
tions are known as HF orbitals. Working with this assumption, when one minimises the
energy EHF =

〈
Φ1...N

∣∣Ĥ∣∣Φ1...N
〉

using the Slater determinant Φ1...N opposed to the full
many-electron wavefunction Ψ(r1, ...rN), one obtains the HF equations

− 1
2∇

2φHF
i (r) +

∫
d3r′ vHF(r, r′)φHF

i (r′) = εHFφHF
i (r), (2.21)

where
{

φHF
i
}

are the set of N single-particle wavefunctions, and vHF(r, r′) is a nonlocal ef-
fective potential given by

vHF(r, r′) = vHF
x (r, r′)+ vH(r) = − 1

|r− r′|

N

∑
j=1

φHF
j (r)(φHF

j (r′))∗+
∫

d3r′
1

|r− r′|

N

∑
j=1

∣∣∣φHF
j (r′)

∣∣∣2 .

This potential is comprised of two terms; the nonlocal Fock operator (first term) and the
Hartree potential (second term) [see Eq. (2.8)]. [Note that we have neglected spin from
Eq. (2.21) and above; to include spin, one would simply need to sum over the spin index.]
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As the HF potential is nonlocal, the method is more computationally expensive than DFT.

In HF theory exchange is treated exactly, and hence we use HF calculations on some of our
systems as a means of identifying systems with appreciable correlation2. As exchange is
exact, the self-interaction is exactly cancelled. If we set vHF

x (r, r′) = 0 and solve Eq. (2.21)
self-consistently, we obtain the Hartree approximation, which can also be used to test the
performance of approximate functionals in DFT, i.e., the effectiveness of the self-interaction
correction.

2.4 Summary

Density-functional calculations have become prominent in condensed-matter physics be-
cause of the ability to treat the electrons as noninteracting in the Kohn-Sham approach,
while in principle reproducing the exact electron density of the real interacting system via
an effective potential. However, in practice the exchange-correlation part of this potential
must be approximated. Approximations based on the local density [2], or the local density
and its gradient [30] (among others), are often used to calculate the electron density with
success, however, they are known to break down in a number of important cases [8, 35]; see
Chapter 3.

2.5 Time-dependent density functional theory

Time-dependent DFT (TDDFT) has made it possible for excited states, and truly time-depen-
dent systems to be studied, which opens up many possibilities in terms of system modelling
[36]. Of course, one such example of these types of systems is the transport of electrons
through single molecules [37]. In the following section we outline the theories that underpin
TDDFT.

2.5.1 Runge-Gross theorem

Just as for DFT, in order to construct a time-dependent density functional theory (TDDFT)
we need to show that the time-dependent density n(r, t) is a variable that completely deter-
mines the dynamics of a system without the need for the wavefunction. This was initially
shown to be possible by Runge and Gross [12]. They showed, in a similar fashion to Hohen-
berg and Kohn, that for a given initial state, two different potentials (different by more than
a time-dependent constant) will yield different densities. However, when it comes to using
TDDFT for practical calculations, we would like to replace the interaction with an auxiliary
system of noninteracting electrons, akin to the Kohn-Sham theory in DFT. This was proven
to be possible by van Leeuwen [13].

2From a practical chemistry point of view, correlation is defined as anything beyond the capability of the
Hartree-Fock (HF) approximation. Of course, this means, by definition the HF approximation is completely
missing correlation.
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2.5.2 Time-dependent Kohn-Sham theory

The van Leeuwen theorem [13] shows that the time-dependent density n(r, t), evolving
from an initial state Ψ0, can be exactly reproduced by an auxiliary system of noninteracting
electrons. And, like for Kohn-Sham theory, the electrons experience an effective potential
(time-dependent Kohn-Sham potential) vs[n, Ψ0, Φ0](r, t), which is a functional of the initial
states of the interacting and noninteracting systems (Ψ0 and Φ0 respectively), and the time-
dependent density.

Commonly the initial state is the ground state, and hence the Hohenberg-Kohn theorem
applies. In this case both the initial state of the interacting and noninteracting systems
are functionals of the ground-state density, thus the functional form of the time-dependent
Kohn-Sham potential can be simplified to vs[n](r, t).

The noninteracting, time-dependent Kohn-Sham electrons now obey the time-dependent
Kohn-Sham equations

i
∂

∂t
φj (r, t) =

(
− 1

2∇
2 + vs[n] (r, t)

)
φj (r, t) . (2.22)

And the electron density is calculated via the noninteracting single-particle densities, as
such

n(r, t) =
N

∑
k=1

∣∣φj(r, t)
∣∣2 . (2.23)

The time-dependent Kohn-Sham potential is comprised of three terms, just like the ground-
state [see Eq. (2.7)],

vs[n](r, t) = vext(r, t) + vH[n](r, t) + vxc[n](r, t), (2.24)

where vext is the external potential, which is the same as the external potential experienced
by the system of interacting electrons. vH is the Hartree potential at time t, and vxc is the
time-dependent exchange-correlation (xc) potential. As for the ground-state system, the
only unknown term is vxc[n](r, t).

2.5.3 Time-dependent exchange-correlation functional

While the exact time-dependent xc functional is universal and can reproduce the electron
and current density of a system exactly via a system of noninteracting electrons, the form is
not known and hence must be approximated. The accuracy of TDDFT in simulating realistic
systems hence hinges on these approximations.

Below we outline some of the known exact properties of the time-dependent xc potential.
We also give a brief account of the most common approximations for the time-dependent xc
potential.

2.5.3.1 Exact properties

The ground-state xc potential is known to require a self-interaction correction to prevent
the Kohn-Sham electrons from interacting with themselves via the Hartree potential, this is
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also required in the time-dependent regime. Hence, it must follow that for a one electron
system the xc potential must cancel exactly with the Hartree potential at all times, thus
v(1)xc (r, t) = −v(1)H (r, t).

The total momentum of a system is 〈p(t)〉 =
∫

d3r j(r, t) =
∫

d3r r ∂
∂t n(r, t), where j is the

current density, and since the densities of the interacting and noninteracting systems are the
same, the total momentum for the Kohn-Sham system must match that of the many-body
system. Thus

0 =
d
dt

(〈p(t)〉 − 〈ps(t)〉) =
∫

d3r n(r, t)∇[vH(r, t) + vxc(r, t)],

and as
∫

d3r n(r, t)∇vH(r, t) = 0 it must follow that∫
d3r n(r, t)∇vxc(r, t) = 0. (2.25)

This is known as the zero-force theorem [38].

In a similar fashion we consider the expectation value of the Kohn-Sham Hamiltonian,

Hs = Ts + Vs, (2.26)

where
〈

Ĥs
〉
≡ Hs, Ts is the expectation value of the single-particle kinetic energy and Vs is

the expectation value of the Kohn-Sham potential. Likewise the many-electron Hamiltonian
can be expressed in terms of the kinetic energy and potential operators:

H = T + Vee + Vext, (2.27)

where Vee is the expectation value of the Coulomb interaction, Vext is the expectation value
of the external potential and T is the expectation value of the many-electron kinetic energy
operator.

Hessler et al. [39] apply Heisenberg’s equation of motion to the single-particle Hamiltonian
(Ĥs), as such

Ḣs = −i
〈[

Ĥs, Ĥs
]〉

+

〈
∂Ĥs

∂t

〉
=

〈
∂vs

∂t

〉
, (2.28)

where vs is the Kohn-Sham potential, and the many-electron Hamiltonian (Ĥ);

Ḣ = −i
〈[

Ĥ, Ĥ
]〉

+

〈
∂Ĥ
∂t

〉
=

〈
∂vext

∂t

〉
, (2.29)

where vext is the external potential.

Hessler et al. use the Hohenberg-Kohn theorem [1]

T + Vext + Vee = Ts + U + Vext + Exc, (2.30)

and take the time derivative of each side. Hence, Ėxc = Ṫ− Ṫs + V̇ee − U̇. By substituting in
the above, we find that the evolution of the xc energy only depends on the evolution of the
density:

dExc

dt
=
∫

d3r
dn
dt

vxc. (2.31)
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There are more exact properties of the time-dependent xc potential/functional that we have
not listed here. As for the ground-state, these rules are useful for developing approximate
functionals, but should not be enforced at the cost of the accuracy of an approximation, and
hence are not central to our development of improved functionals.

2.5.3.2 Adiabatic approximation

The exact xc potential is dependent on the entire history of the Kohn-Sham system. De-
spite this, the most common approximation implemented in time-dependent models is the
adiabatic approximation, which assumes only local dependence on the density in time, i.e.,
vxc[n](r, t) = vxc[n(t)](r). This approximation becomes exact in the limit that ∂n

∂t → 0.

The adiabatic approximation is often used in conjunction with the LDA (ALDA), meaning
that the ALDA is local in both space and time. This level of approximation usually proves
to be inadequate to describe highly correlated systems; see Chapter 3 and 5.

2.6 Linear response

When the perturbing field is weak, which is usually the case for spectroscopic experiments,
perturbation theory can be used. In this case the change to the potential is small, hence
n(r, t) = n0(r, t) + δn(r, t), where n0(r, t) is the ground-state electron density. Therefore one
can write the xc potential as

vxc[n0 + δn](r, t) = vxc[n0](r) +
∫

dt′
∫

d3r′ fxc[n0](r, r′, t− t′)δn(r′, t′). (2.32)

Here, fxc is the xc kernel, given by

fxc[n0](r, r′, t− t′) =
δvxc(r, t)
δn(r′, t′)

∣∣∣∣
n=n0

,

when evaluated on the ground-state density.

While the kernel is still a highly complicated entity, it is still more accessible than the full
time-dependent xc potential because it is only a functional of the ground-state density. χ[n0]

is defined as the response of the ground-state, many-electron system to a change in the
external potential, given by

δn(r, t) =
∫

dt′
∫

d3r′ χ[n0](r, r′, t− t′) δvext(r′, t′).

This can also be done in a similar fashion for the Kohn-Sham system. Both the many-electron
and the Kohn-Sham response function must yield the same response in the density. Hence

χ(r, r′, ω) = χs(r, r′, ω) +
∫

d3r1

∫
d3r2χs(r, r1, ω)

[
1

|r1 − r2|
+ fxc(r1, r2, ω)

]
χs(r2, r′, ω).

(2.33)
Equation (2.33) is the central equation within time-dependent linear response theory. From
Eq. (2.33) the response of the density can be found from a perturbation of the external poten-
tial, then, for example, the Fourier transform of the first-order response of n to δvext yields
the excitation energies of the ground-state system.
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The successes and failures of linear response theory are outlined in the following chapter.
We also asses the limits of the commonly used approximations within (TD)DFT.

2.7 Summary

The extension of density functional theory (DFT) to a system evolving from (typically) its
ground state – time-dependent DFT – requires an exchange-correlation potential that de-
pends on the entire history of the electron density. Despite this, in practice, the system’s
history and initial state are neglected because most time-dependent calculations today use
an adiabatic approximation, which assumes dependence only on the instantaneous electron
density [40].
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Limitations of the established theory

The type of electronic processes we are concerned with simulating happen on a time scale
of attoseconds (10−18 seconds) to femtoseconds (10−15 seconds), and on an energy scale of
electron-volts (eV). These events are far too fast and small to see with the human eye and,
until recently, even with the most advanced experimental equipment. In this chapter we fo-
cus, mainly, on situations where the usual approximations used in density functional theory
(DFT) and time-dependent DFT (TDDFT) fail, and hence where improved approximate den-
sity functionals are required. It is important to note that this failure is not a problem with the
theory, but rather of the approximations used for the exchange-correlation (xc) functional.
Cohen et al. write ‘a possible path forward is to have a deeper look at the errors embedded
in currently used functionals to determine the origin of their pathologies at the most basic
level’ [7]. This idea is at the heart of our approach; see Section 1.1 on page 14.

3.1 Problems within density functional theory

Commonly used approximate functionals, like those discussed in the previous chapter, have
major failings when it comes to estimating the energy barriers of chemical reactions [41, 42,
43, 44, 45], the band gaps of materials [46, 47, 48] and the energy of dissociating molecular
ions [49, 50, 51], among others. Hence, theoretical chemistry and calculations of excited
states/band structures are inaccurate when using DFT. This is a serious problem for the
theory. While various methods exist to overcome some of these problems [52, 53, 54, 55, 56,
57, 58], they can be computationally expensive and difficult to implement. The most simple,
organic and efficient means of improvement is to develop more accurate density functionals
(see Section 3.3 on page 34).

The above failings of the commonly used approximate functionals can be understood in
terms of the various errors. The two leading contributions are the delocalisation error [59]
and the static correlation error [60]. The delocalisation error is the tendency of the electron
density to artificially spread out. Whereas the static correlation error stems from the poor
description of correlation by local density approximations (LDAs).1

Both of these errors are associated with the incorrect distribution of fractional charges pre-
dicted by local and semi-local approximations, and can be observed for systems as simple

1This is most prominent for strongly correlated systems, i.e., systems that cannot be modelled using Hartree-
Fock theory [61] (by our definition).
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as H+
2 [62]. Commonly used functionals [e.g., the LDA and generalised gradient approxima-

tions (GGAs); see Chapter 2], are known to fail as the H+
2 molecule is stretched (reaches the

disassociation limit) [21, 49, 50, 51, 63], i.e., local functionals localise the incorrect amount of
charge on each atom; see Fig. 3.1(A) and (B) from Ref. [7]. The LDA, for example, does not
cancel the spurious self interaction of the electrons (see Chapter 2), thus the electron den-
sity spreads out too much and the Hartree potential prevents the electron from localising
correctly (more detail is given on this in Chapter 5).

Figure 3.1: DFT approximations fail. The dissociation of H+
2 molecule (A) and H2 molecule

(C) are shown for calculations with approximate functionals: Hartree-Fock (HF), local den-
sity approximation (LDA), and B3LYP. Although DFT gives good bonding structures, errors
increase with the bond length. The huge errors at dissociation of H+

2 exactly match the error
of atoms with fractional charges (B), and for H2 they exactly match the error of atoms with
fractional spins (D). The understanding of these failures leads to the characterisation of the
delocalisation error and static correlation error that are pervasive throughout chemistry and
physics, explaining a host of problems with currently used exchange-correlation functionals.
(From [Aron J Cohen, Paula Mori-Sánchez, and Weitao Yang. Science, 321(5890):792–794,
2008]. Reprinted with permission from AAAS.)

Hence for disassociated H+
2 , various approximate functionals give an energy that is too low

when the electron is delocalised; see Fig. 3.1(B). Several features of the exact Kohn-Sham
potential are missing from the usual approximations that are associated with these errors,
e.g., the self-interaction correction [64]; discussed in Chapter 2.

Approximations also suffer from the lack of a derivative discontinuity in the xc energy with
respect to the electron number [53], again discussed in Chapter 2, which also relates to incor-
rect charge distribution for separated molecules; see Fig. 3.2(A). The behaviour of a system
due to adding or removing an electron is very difficult for approximate functionals to re-
produce, due, partially to the distribution of the electron being over estimated. This error
grows with the system size because of the increase in delocalisation error [7].
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Figure 3.2: Seeing the delocalisation error. The incorrect convex behaviour of the LDA en-
ergy is seen for the Cl atom with fractional numbers of electrons (A). Despite good agree-
ment with the exact values at the integer points, the convex behaviour means that a lower
energy can be achieved with fractional charges. This leads to an unphysical delocalisation
of the electrons in a simulation of the solvated anion, as shown (in blue) by the difference
of the LDA density between the solvated Cl and solvated Cl− (B). (From [Aron J Cohen,
Paula Mori-Sánchez, and Weitao Yang. Science, 321(5890):792–794, 2008]. Reprinted with
permission from AAAS.)

Owing to the incorrect xc energy predicted by the LDA for systems with fractional charges
(Fig. 3.2), the lowest energy state of the system, like the disassociated molecule, predicted
by using the LDA localises non-integer amounts of charge on each atom, when there should
be integer amounts of total charge on each site.

In order for DFT to become accurate for a wider range of systems, these problems with the
usual approximations in DFT must be overcome.

While DFT based calculations suffer from inaccuracies (above), DFT has been hugely suc-
cessful in describing materials [65]. However, major improvement is required for TDDFT,
which, while it has had major successes [36], fails to describe common situations like elec-
tron excitations, transport and other strongly perturbed, or correlated, systems. Hence, the
rest of this chapter focuses on the limitations of TDDFT.

3.2 Electron transport

Throughout the 1990s improved experimental techniques allowed the flow of electronic
current through single-layer molecular films between two electrodes to become possible
[66, 67, 68], like that shown in Fig. 3.3.
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Figure 3.3: Schematic representation for a conductance measurement of the molecule
(9,10-Bis((2–paramercaptophenyl)-ethinyl)-anthracene): between gold contacts (Ref. [66]).
(Reprinted Figure with permission from [F. Evers, F.Weigend, and M. Koentopp. Phys. Rev.
B, 69:235411, Jun 2004.] Copyright 2016 by the American Physical Society.)

As the integrated circuit (IC) becomes ever more miniature, the need for a fully quantum
description of the flow of electronic currents becomes increasingly important for improving
technology. Below we discuss why the commonly used theories break down for describing
such scenarios.

The story of conductance begins with Ohm’s law, V = IR where R is the resistance, I is the
current and V is the voltage. Ohm’s law describes the ‘classical’ conductance (G = I/V =

1/R) of a current carrying wire. However, experimental evidence [69, 70] has shown that
the conductance of a lead increases in discrete steps of 4π as the width of the contact is in-
creased (a two-atom contact has G = 2G0, whereas a one-atom contact has G = G0) [8]. This
is due to the quantised nature of electrons. Hence the computational and theoretical difficul-
ties associated with modelling electron transport increase for systems where this quantised
nature of the electrons is important, such as nano-sized ICs.

3.2.1 Landauer formulation

The Landauer formulation [71] predicts quantised conductance. In this approach electrons
are modelled to flow along a wire, connected, at each end, to an ideal lead. For this simple
picture the formula reads G(µ) = G0 ∑n Tn(µ), where G and G0 are defined above, Tn is the
transmission eigenvaule of the nth channel in the conductor, and µ is the chemical potential.

The model is crude in that the electrons are considered to be noninteracting, i.e., they only
interact with the wire [72]. For a many-electron problem, like the transport of electrons, the
Coulomb interaction can have a large effect on conductance [73], and hence the Landauer
formulation often fails to reproduce low-conductance experimental results .

The Landauer formulation can be implemented in a more sophisticated way by using the
ground-state Kohn-Sham potential at t = 0, then perturbing the system and allowing the
electrons to evolve in time, eventually reaching a steady state. Hence, some information
about the interaction is included, but by no means are the dynamic interactions of the elec-
trons fully described. Thus, this approach fails when those interactions are of the order of
the other forces in the dynamics of the system (a common situation for transport systems;
see Section 5.5 on page 65), because the interaction is not included in the Hamiltonian di-
rectly (as it is in the many-electron Schrödinger equation), nor is it represented by updating
the time-dependent local effective potential (as for TDDFT). Furthermore, the approach also
suffers from the need to use an approximation for the ground-state Kohn-Sham potential at
t = 0.
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3.3 Problems within time-dependent density functional theory

As for DFT, the inaccuracies of TDDFT are a result of the approximation of the time-depend-
ent xc functional, and not a break down of the theory itself. We discussed, in the previ-
ous chapter, the most common time-dependent approximation, the adiabatic LDA (ALDA).
While approximations beyond the adiabatic approximation exist [74, 75], there are still many
scenarios for which improvement is required [35, 76, 77, 78, 79, 80]. The use of these com-
mon approximations lead to an inaccurate description of charge transfer excitations and the
response of a system to an applied electric field [7, 59].

Analysis of the failures of the usual approximations implemented in TDDFT and ways of
improving them exist [36, 81]. Generally, however, these approximations are least secure
in the following circumstances. Firstly, when correlation is strong in the dynamics of the
system: the description of correlation of approximate functionals is known to be poor for
ground-state DFT, and this issue is exacerbated for time-dependent systems. This is be-
cause correlation is generally much stronger once the system becomes dynamic [82] (many-
electron excited states are mixed into the evolving many-electron wavefunction). One such
example of this is double excitations [83, 84]. A simple thought experiment can be used to
understand why approximations struggle to describe such a situation: in a many-body sys-
tem when the correlation between two electrons is strong, a photon, with sufficient energy
to excite an electron, may cause the other, strongly correlated electron to excite (double ex-
citation). In order for this to happen for two noninteracting electrons, two photons would
be required. Hence, in the noninteracting Kohn-Sham approach, the time-dependent Kohn-
Sham potential must be highly nonlocal, and with a good description of correlation in the
xc potential. This type of nonlocality, and accuracy of correlation, is far beyond the scope of
local and adiabatic approximations.

Secondly, another common physical scenario where the approximations made in TDDFT
struggle to perform well is molecular conductance [84]. Above we briefly discussed the use
of static-DFT within the Landauer formulation, which is common for modelling quantum
transport but gives poor agreement with experiment. There are also inherent issues with the
DFT approach, namely when using an LDA or GGA the incorrect band gap leads to poor
conductance characteristics [80, 85]; see Fig. 3.4. For instance, the current-voltage (I-V) char-
acteristics of organic molecules (including their conductance) often differ from experiment
by 1-2 orders of magnitude [9, 35, 86, 87, 88].
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Figure 3.4: (a) Current I, (b) occupation n, and (c) position of the energy level ε as a function
of bias V. The parameters used here are ε(0) = −5.5 eV, U = 5 eV, EF = −5.0 eV, and T =
300◦K . The curves on the left-hand side are obtained in the weak coupling limit (Γ = 0.02
eV) and those on the right-hand side in the strong coupling limit (Γ = 1.2 eV). (Reprinted
Figure with permission from [C. Toher, A. Filippetti, S. Sanvito, and Kieron Burke. Phys.
Rev. Lett., 95:146402, Sep 2005.] Copyright 2016 by the American Physical Society.)
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Hence further improved approximate xc functionals are required, as the usual approxima-
tions are missing crucial features of the exact xc potential [89]. Two notable examples be-
ing the formation of pronounced spatial steps demonstrated for a quasiparticle wavepacket
added to a model semiconductor [10], and for a one-dimensional He atom in the presence
of a weak oscillatory electric field [11].

Burke et al. offer four sources of error in a typical TDDFT calculation [36]. The errors are
described as follows:

Er. 1 The error in the ground-state: if the starting point of the time-dependent calculation is
poor, then, of course, one would expect the rest of the time-dependent simulation to
be poor.

Er. 2 The lack of nonlocality in one’s approximate xc functional: the exact xc functional can
depend highly nonlocally on the density, hence local and semi-local functionals lack
information needed for potentials that yield accurate densities.

Er. 3 The memory issues with temporally local approximations: adiabatic approximations
suffer from a lack of memory effects, i.e., a local dependence on time.

Er. 4 The many-electron wavefunction diverging too much from the Kohn-Sham wavefunc-
tion: even if the exact time-dependent xc potential is known, the many-electron wave-
function may be so different to the Slater determinant of the Kohn-Sham single-particle
wavefunction, that observables calculated from the Kohn-Sham wavefunction will still
be wrong (other than, of course, the electron densities and currents, and certain other
observables).

As we are primarily interested in the electron and current densities, we are least concerned
with Er. 4. However, that is not to say it is unimportant; the work of D’Amico et al. [90]
and Sharp et al. [91] focuses on how the many-electron wavefunction differs from the Kohn-
Sham wavefunction, and the connection with DFT.

The other three points (above) are relevant to the work presented in this thesis, namely they
affect the electron density directly. Our approach to the problem (see Section 1.1 on page 14)
addresses the above three errors in the following ways:

1. Error 1 is addressed by modelling the ground-state system first, and finding the exact
Kohn-Sham potential, so we can observe nonlocal features missing from the common
approximations. The importance of these features in the time-dependent regime can
then be determined by evolving the system using only the ground-state Kohn-Sham
potential and any external field (i.e., we purposely do not use the time-dependent
Kohn-Sham potential). Hence this allows us to see which time-dependent features of
the exact Kohn-Sham potential are important; see Section 5.5 on page 65.

2. We address Er. 2 in a similar way to Er. 1. By having access to the exact Kohn-Sham
potential, important nonlocalities can be identified in the exact Kohn-Sham potential.
It is then a case of determining approximations to vxc that capture these nonlocalities
(nonetheless, still a difficult task).

3. Finally we address Er. 3 in the same way as Er. 2, as we have access to the fully time-
dependent Kohn-Sham potential.
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3.3.1 Rydberg and charge transfer excitations

The linear response approximation is often used within TDDFT (see Section 2.6 on page 28),
despite the above issues. [This includes the calculation of excited states and energies, which,
as an excited electron can escape the molecule, includes the ionisation energy (I) of the sys-
tem.] A Rydberg atom is an atom that is highly excited and is extremely sensitive to elec-
tric/magnetic fields [92, 93], and hence the Rydberg exited states are exceedingly difficult
to calculate using linear response. Due to the high energy of Rydberg atoms, some of their
electrons are very close be being unbound, and hence can have an energy that is almost
the ionisation energy. They have many remarkable properties, including the experimentally
detectible radius of the atom which can be of the order of millimetres [93].

The energy of the highest occupied molecular orbital (HOMO) of the exact Kohn-Sham sys-
tem is minus the ionisation energy of the many-electron system [εN

s (N) = −I]. However,
this is extremely difficult for approximate functionals to get right, in part because of the
derivative discontinuity of the xc energy with respect to electron number (discussed above).
The problem arises from the non-anayltical behaviour of the exact Kohn-Sham potential
with the addition of an infinitesimal amount of an electron through an integer value. With-
out the correction of the derivative discontinuity the energy gap between the ionisation
energy and the electron affinity will be wrong. Furthermore, local approximate xc poten-
tials decay far too rapidly to zero (opposed to the exact which decays as −1/r), and hence
under-bind the electrons by as much as 5eV (for N2) [94]. Thus, when the system is excited,
the high energy states (such as Rydberg states) become unbound far too quickly. Correct-
ing the decay of the xc potential in the ground state would fix this problem for TDDFT to
some degree [95, 96] – this stresses Er. 1 above. One should note that error associated with
inaccurate ground-state potentials is by no means unique to the problem of Rydberg states
[97, 98].

The failure of TDDFT in describing charge transfer excitations is demonstrated in Ref. [99].
They show how TDDFT cannot give correct charge transfer with local xc functionals – stress-
ing Er. 2 above.

3.3.2 Beyond linear response

While TDDFT has many successes within the linear response regime (see Section 2.6 on
page 28) [100, 101], there are many physical scenarios beyond the scope of this approxi-
mation, namely when the system explores many excited states, e.g., double excitation [75]
(discussed above).

In theory, with an accurate xc functional, TDDFT is very well suited to this kind of problem.
However for TDDFT to be a powerful tool for modelling such things as laser pulses, the
approximate functional must have a good description of correlation. Developing approxi-
mate functionals with a good description of correlation is therefore an important goal for us,
and hence modelling and understanding systems where correlation is significant is crucial.
Casida writes ‘response theory still depends upon the perturbed system being initially in
the ground stationary state. Real-time TDDFT not only opens the possibility to go to infinite
order in response theory, but also means that the perturbed system can be taken well beyond
the initial ground stationary state [102]. Indeed the simplicity of TDDFT calculations makes
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it difficult for other methods to compete in this type of application’ [94].

3.4 Summary

While density functional theory, and its time-dependent extension, have had great success
in modelling useful materials, there remain many, important scenarios where the approx-
imations used within the theories become less secure and hence yield inaccurate electron
densities and currents. One possible way forward is to improve the approximations to
the exchange-correlation functional by identifying which features of the exact potential are
missing from the usual approximations and developing methods to incorporate these fea-
tures in future improved approximate functionals.

In the following chapter we introduce our code, which we use to study the nature of many-
electron systems. These systems are designed to inform the development of improved ap-
proximate functionals.
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Method

4.1 The iDEA code

All of the results presented in this thesis were calculated using our iDEA code [14]. Below we
outline the details of the code, and how it can be used to explore the nature of interacting
electrons in molecules, and assist with our investigation into the approximations within
time-dependent density functional theory (TDDFT). iDEA is a ‘reverse engineering’ code,
that calculates exact Kohn-Sham potentials by first calculating the exact electron density in
real space (this can also be done for simpler models like the Hubbard model [103, 104, 105];
not using iDEA).

4.1.1 Structure of iDEA1

We first solve the many-electron Schrödinger equation for our chosen system2 (e.g., de-
fined by our external potential and number of electrons), which, by necessity, must con-
sist of two or three electrons3. The interacting ground-state many-electron wavefunction
[Ψ0(x1, ..., xN)], including full correlation effects, is calculated by first evolving an arbitrary,
exchange-antisymmetric trial wavefunction through imaginary time [106] in the chosen ex-
ternal potential, including the interaction term. The amount of imaginary time required to
fully converge the ground-state wavefunction (see Appendix A.3.1 on page 122) is depen-
dent on the chosen external potential. However, typically, the amount of imaginary time is
of the order of 102 a.u. The wavefunction remains antisymmetric after the imaginary time
propagation – this is essential for a fermionic system. The antisymmetry is maintained by
the use of our ‘cut-down’ matrices4. These matrices exploit the antisymmetry of the wave-
function in order to compress how it is stored in the computer. As a result, we can use
a more accurate spatial grid for the same computational effort, as well as maintaining the
antisymmetry of the wavefunction.

1This section is based on collaborative work that has been submitted for publication: M. J. P. Hodgson, J. D.
Ramsden, J. B. J. Chapman, P. Lillystone and R. W. Godby, ‘Exact time-dependent density-functional potentials
for strongly correlated tunneling electrons’, Physical Review B (Rapid Communications) 88, 241102(R) (2013). Matt
Hodgson participated fully in the development of the code and the formulation and analysis of the research and
executed the calculations shown in the paper, and prepared the first draft of the paper.

2Computationally solving the Schrödinger equation was originally implemented in iDEA by Piers Lillystone,
modified by Jacob Chapman and Matt Hodgson, then optimised by Jack Wetherell.

3It is not possible, with present computational power, for us to model more than 3 electrons exactly.
4Created by James Ramsden.

39



Chapter 4 Method

Our electrons are spinless and obey Pauli’s exclusion principle, hence each Kohn-Sham elec-
tron will occupy its own distinct Kohn-Sham orbital. In this way, we can maximise the rich-
ness of exchange and correlation in our systems for a given computational effort, allowing
our model to represent a system consisting of as many electrons as is feasible. For exam-
ple, two spin-half electrons form a spin singlet, and therefore only one Kohn-Sham orbital is
occupied; whereas our spinless electrons each occupy an orbital.

Our many-body spinless electrons interact via the softened Coulomb term
(∣∣xi − xj

∣∣+ γ
)−1

[107], as is appropriate in one dimension. This form of the Coulomb interaction most faith-
fully represents three dimensional electrons in a one-dimensional lead, where γ is deter-
mined by the width of the nanowire; see Appendix A.2 on page 121.

We then apply any static perturbing potential and evolve the ground-state wavefunction
through real time. The Crank-Nicolson method [108] is used for both imaginary- and real-
time propagation. The Crank-Nicolson equation is

(
Î + i

2 δtĤ
)

φ(t + δt) =
(

Î − i
2 δtĤ

)
φ(t), (4.1)

where Î is the unity operator, δt is the time step and φ can be any wavefunction. We find
that this method is numerically stable, provided one abides by δt . 1

N δxN , where N is
the number of electrons (1, 2 or 3). In imaginary time t → −it; generally we find that the
algorithm is faster and more stable for imaginary-time propagation. We partly attribute this
to the fact that complex numbers (used for real-time propagation) are more computationally
taxing to manipulate than real numbers (used for imaginary-time propagation).

The interacting density is

n′ (x, t) = N
∫

dx2...dxN |Ψ (x, x2..., xN , t)|2 . (4.2)

Once calculated, we ‘reverse engineer’ n′(x, t) to find the exact ground-state, and subse-
quently time-dependent Kohn-Sham potential for our system. We do this by solving the
noninteracting Kohn-Sham equations, while iteratively correcting the Kohn-Sham potential
until the exact many-electron density matches the noninteracting density; see Fig. 4.1.5

5This reverse engineering algorithm was implemented in iDEA by Matt Hodgson.
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Figure 4.1: The algorithm used in iDEA to reverse engineer the exact Kohn-Sham potential
for a given system.

At t = 0, before the system becomes dynamic, the ground-state Kohn-Sham potential de-
scribes the system. We determine this by iteratively correcting a trial potential using

vs → vs + µ
[
n (x)p − n′ (x)p] , (4.3)

where 0 < µ ≤ 1, n (x) is the ground-state density produced by vs, and n′ (x) is the target
ground-state density (in this case the exact many-electron density). This iterative procedure,
which builds on that set out in Ref. [109], clearly has the correct fixed point n = n′ for
any p and µ, and we find especially rapid convergence when p ≈ 0.05 and µ = 1; see
Appendix A.1.1 on page 120. We monitor the convergence using the integrated absolute
error in the density,

fn =
∫ ∞

−∞

∣∣n (x)− n′ (x)
∣∣dx. (4.4)

The use of a small value of p focuses the emphasis of the iterative procedure on the low-
density regions, where substantial adjustments to the potential are needed, while avoiding
oscillatory instabilities arising from unduly large adjustments to the potential in the high-
density regions. Reducing fn below 10−11 a.u. is rapid, requiring around 1500 iterations. We
have found this method to be robust, accurate and fast, for a variety of systems.

We use the same numerical methods, where appropriate, for the noninteracting and inter-
acting calculations, to minimise numerical error. The time-dependent Kohn-Sham potential
allows the dynamics of the density to be completely described by the single-particle Kohn-
Sham orbitals, which obey the 1D version of Eq. (2.22), on page 26, and yield the electron
density through the 1D version of Eq. (2.23), on page 26.

When our system becomes dynamic we implement a variant of the reverse-engineering al-
gorithm of Ramsden and Godby [10], where we iteratively correct a time-dependent Kohn-
Sham vector potential, As, at each time step; see Fig. 4.2.6

6This reverse engineering algorithm was implemented in iDEA by Matt Hodgson.
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Figure 4.2: The algorithm used in iDEA to reverse engineer the exact time-dependent Kohn-
Sham potential for a given system.

For this method we temporarily switch to an electromagnetic gauge in which the time-
dependent Kohn-Sham potential is split into a static scalar potential (the ground-state Kohn-
Sham potential plus the external applied field) and a time-dependent vector potential

v′s(x, t > 0) = vext(x) + vHxc(x, 0)

A′s(x, t > 0) =
∫ t

0+
dt′

∂

∂x
vHxc(x, t′ > 0),

where the notation 0+ denotes integrating from a time infinitesimally after zero; see Ap-
pendix A.1.2.1 on page 120. The vector potential is introduced into the Hamiltonian by
adding it to the momentum operator in the usual way. Working in this gauge reduces com-
putational cost by eliminating the need for a spatial integration in every iteration of the
algorithm, as well as improving numerical stability. The vector potential is obtained using
the iterative procedure

As → As + ν
j (x, t)− j′ (x, t)

n′ (x, t)
, (4.5)

where (typically) ν = 0.5, which causes the noninteracting current density, j, produced by
As, to converge towards the interacting current density, j′. We calculate j and j′ directly
from their respective time-dependent charge densities, via the continuity equation, ∂tn +

∂x j = 0, using a numerical time derivative of the charge density and a numerical integration.
This use of the continuity equation guarantees that the two densities n and n′ automatically
match at each time, in addition to j and j′, as required.

Having calculated these potentials we transform them to the gauge where the vector poten-
tial is zero, so that the time-dependent Kohn-Sham potential is represented completely by a
time-dependent scalar potential, as is conventional for finite systems.

The main functions of iDEA are shown in Algorithm 1 below.
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Algorithm 1 This algorithm describes the main function of iDEA. (Italics represents time-
dependence, hence not required for a ground-state calculation.)

1: Define the system by the choice of external potential
2: Evolve a trial antisymmetric wavefunction through imaginary time to find the ground-

state, fully correlated many-electron wavefunction
3: Apply our choice of perturbing field
4: Evolve the many-electron wavefunction through real time
5: Calculate the exact electron density (and current) from the many-electron wavefunction
6: Reverse-engineer the exact electron density to find the exact ground-state Kohn-Sham

potential
7: Reverse-engineer the exact time-dependent electron and current densities to find the time-

dependent Kohn-Sham potential

4.1.2 Testing iDEA

Having written the code, testing is of the utmost importance. Below we outline some of the
tests carried out to check iDEA. We generally rely on analytic results to test that our code is
correct, as a result we note that no single test can be done to ensure that all aspects of the
code work.

4.1.2.1 Ground-state density and energy test

As there exists an analytical solution for noninteracting electrons in a harmonic oscillator,
we test iDEA using a potential of the form vext =

1
2 ω2x2. It is straightforward to calculate the

ground-state density and energy for N noninteracting electrons in this potential well. This
serves as a test of iDEA, as the energy is readily available from the imaginary-time propaga-
tion of the wavefunction; see Appendix A.3.1, on page 122, for more detail. Figure 4.3 shows
the energy as the trial wavefunction converges towards the ground-state wavefunction for a
system of two noninteracting electrons in the harmonic potential above. (Generally we find
converged results for δx ≤ 0.1.)
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Figure 4.3: The many-body ground-state energy (E0) for two noninteracting electrons in a
harmonic well ( 1

2 ω2x2) calculated using iDEA with the interaction term set to zero (red dot-
ted). The analytically known energy is 2ω = 0.4 (solid green). E0 converges exponentially
towards the correct answer as the trial wavefunction is propagated through imaginary time
(t′ = −it).

The energy correctly converges to the analytical value, given by E0 = ω ∑1
n=0

(
n + 1

2

)
= 2ω.

The ground-state density for this system is also very accurate compared to the exact solution,
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which is of the form n(x) =
√

π
ω

(
2x2 + 1

)
e−ωx2

. However this does not allow us to test the
interaction between the electrons nor the time-dependent aspects of the code, nor does it
test the reverse engineering.

4.1.2.2 Time-dependent density test

To test the time-dependent code we continue to use the harmonic potential (stated before),
but now for a time-dependent system. Consider three noninteracting electrons in a harmonic
well, where the external potential is vext =

1
2 ω2x2 − ε0x (a harmonic potential with a linear

electric field). We can express this external potential as a ‘shifted’ harmonic well, because
ω2

2

(
x− ε0

ω2

)2− ε2
0

2ω2 = 1
2 ω2x2− ε0x = vext. Hence by considering the ground-state solution of

the shifted potential as the starting excited state of the non-shifted well, we can time-evolve
the system using ψk(x, t) = ∑n ck,nφn(x)e−iεnt, where ψk(x, t) is the wavefunction of the kth

electron in the shifted well, φn(x) is the nth eigenfunction of the Hamiltonian of the non-
shifted system and εn is the corresponding eigenenergy; see Appendix A.3.2, on page 123,
for detail. Figure 4.4 shows the electron density calculated using iDEA and our analytical
solution.
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Figure 4.4: The electron density of three noninteracting electrons in a harmonic well with an
applied linear electric field, calculated using iDEA at t = 0 (red solid, left-hand density) and
for t = π/ω (dashed green, right-hand density). The analytical densities overlap exactly
with the iDEA densities. Grey dotted line represents the external potential.

These noninteracting densities also obey the harmonic potential theorem (HPT) [110] (in-
cidentally, interacting electrons also obey the HPT, but that is not being tested here) and
oscillate with the correct frequency (calculated classically; see Appendix A.3.2 on page 123).
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Figure 4.5: The current density of three noninteracting electrons moving a harmonic well,
calculated using iDEA (solid red) and also from our analytic wavefunctions (dashed green).
They match well at all times [t = π/(2ω) shown; the time corresponding to the maximum
current].

The analytical current here is calculated via a different numerical procedure (from the wave-
function) compared to iDEA (which uses the electron density); see Appendix A.3.2 on page 123
– both currents match well for all times as required.

4.1.2.3 Coulomb interaction test

We further test iDEA by comparing the ground-state of two interacting, spinless electrons in
a harmonic well (same external potential as above) to that given by the analytical solution
of the same system, known as Hooke’s atom [111]. We find that the two electron densities
correspond; see Fig. 4.6.

0

0.1

0.2

0.3

0.4

0.5

-8 -4 0 4 8

V e
xt

, n
(x

)(
a.

u.
)

x (a.u.)

Figure 4.6: Two interacting, spinless electrons in a harmonic well. The red solid line is the
many-electron density from iDEA, and the green dashed line is the analytical density [111],
they overlap exactly. The blue dotted line is the noninteracting density; the interaction acts
to ‘push’ the peaks in the electron density apart. (The grey line is the external potential.)

4.1.2.4 Reverse engineering test

For our final test we artificially set the interaction strength to zero. Hence, as the Kohn-
Sham system and the many-electron system are identical, the Hartree-exchange-correlation
potential must be zero. This may serve as a test for our reverse-engineering code. We choose
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to study a system of three electrons, that, once again, do not interact with each other and
correctly find that vxc(x, t) = 0. While this test is necessary for the code to be correct it is
not sufficient to prove that it is. Therefore, we also reverse engineer the electron density
corresponding to a spin-singlet, i.e., two spin-half electrons in one Kohn-Sham orbital, as,
in this case, the Kohn-Sham potential can be analytically found [11, 82, 112, 113]. Once
again, we find that the reverse engineering algorithm correctly finds the exact Kohn-Sham
potential.

We also note that as our reverse engineered densities (for any system) are accurate ( fn <

10−11 a.u.), and the Hohenberg-Kohn theorem states that no two potentials can yield the
same ground-state density, we can be confident that the reverse engineering algorithm finds
the exact Kohn-Sham potential. (This is also true for the time-dependent Kohn-Sham po-
tential, however, numerical error grows as the density evolves through time.) However, we
note that as tiny variations in the density (possibly smaller than our 10−11 error) may lead
to large features in the Kohn-Sham potential, our results must be converged with respect to
grid spacing.

4.2 Our approach to improving density functionals

We propose to study simple systems, consisting of a few electrons, in order to derive a
fundamental understanding of the Kohn-Sham potential in scenarios where the common
approximations become less secure (see above). For example, by identifying what is missing
from the common approximations in prototype systems we have the opportunity to develop
improved approximations to the xc potential that do incorporate important features of the
exact xc potential that are absent from common approximations, and hence give improved
densities.

Table 4.2 shows our proposed classes of systems for our investigations, and the purpose of
each class of system.

Class of system Purpose
Homogenous ‘slab’ systems To find a local density approximation

Tunnelling electrons Examine exact time-dependent KS potential
Localised electrons The role in approximate density functionals

Molecules Study origin of steps in KS potential

Table 4.1: Table to show the class of system studied in the thesis and the purpose for study-
ing such a class of system. (KS stands for Kohn-Sham.)
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Local density approximation from
finite systems1

In this chapter we develop the simplest approximation to the exchange-correlation (xc) func-
tional – a one dimensional local density approximation [2] (LDA). The LDA is a common ap-
proximation for density-functional calculations, however it is usually constructed from the
homogenous electron gas (HEG). As an alternative approach, below we construct a set of
three LDAs from finite systems consisting of a few electrons (one, two and three electrons).

Fully self-consistent density-functional calculations, using our LDAs, serve as a means of
determining the scenarios where local approximations struggle to capture exchange and
correlation accurately, hence providing the required systems needed to develop improved
approximate functionals.

5.1 Introduction

The LDA [2] is the most common approximation to the xc potential vxc. The LDA is tra-
ditionally based on knowledge of the energy of the infinite three-dimensional (3D) homo-
geneous electron gas [114] (HEG), in which the electrons are commonly viewed as delo-
calised. Although local approximations have had major success in many cases [115, 116],
they fail in other situations. A notable failing is the inability to correctly cancel the spu-
rious electron self-interaction [3, 96, 99] (discussed in Chapter 3), an error introduced by
the Hartree potential. Also, the xc potential far from a finite system decays exponentially
in an LDA [3, 23], rather than following the Coulomb-like −1/r decay present in the ex-
act vxc [22, 23]; see Section 2.5.3.1 on page 26. These failings lead to errors in the Kohn-
Sham orbitals [20]. Many time-dependent density functional theory (TDDFT) calculations
are performed by applying the LDA adiabatically (ALDA), which further ignores the de-
pendence of vxc on a system’s history and initial state, focusing instead on the instanta-
neous electron density. Local approximations are known to break down in a number of cases
[36, 54, 117, 118, 119, 120, 121, 122, 123, 124, 125], in particular where there is strong correla-

1This chapter describes collaborative work that has been submitted for publication: M. T. Entwistle, M. J. P.
Hodgson, J. Wetherell, B. Longstaff, J. D. Ramsden and R. W. Godby, ‘Local density approximations from finite
systems’, submitted (2016). Sections 5.1-5.4 are adapted from that paper. Matt Hodgson participated fully in the
formulation and analysis of the research, and in the collaborative writing of the paper. Mike Entwistle executed
most of the calculations shown in the paper, and prepared the first draft of the paper.
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tion in ground-state systems and/or strong current flow when extended to time-dependent
systems; see Section 3.3 on page 34.

In this chapter we introduce a set of LDAs constructed from systems of one, two and three
electrons. In contrast to a conventional LDA which is constructed through accurate (but
not exact) quantum Monte Carlo (QMC) simulations of the HEG approaching the thermo-
dynamic limit [114], our approach is to obtain a set of LDAs constructed from exact finite
systems resembling the HEG. We refer to these finite systems as ‘slabs’ to emphasise that
the electron density is dominated by a region of homogeneity, but decays exponentially
to zero near the edges. We compare these LDAs with one another and with conventional
HEG-based LDAs. We illustrate our approach in one dimension (1D), complementing other
1D LDAs that have been constructed through QMC calculations, either with a softened
Coulomb interaction [126] or a specified transverse confining potential [127, 128], or through
other approaches [129, 130].

We employ our iDEA code [14] – described in Chapter 4 – which determines the exact,
fully-correlated, many-body wavefunction for a finite system of electrons interacting via
the appropriately softened Coulomb repulsion [107] (|x− x′|+ 1)−1; see Appendix A.2, on
page 121, for more detail. We then find the corresponding exact Kohn-Sham system through
our reverse engineering algorithm [14]. The electrons are treated as spinless to more closely
approach the nature of exchange and correlation in many-electron systems. We then apply
the LDAs to a variety of ground-state systems and find that they yield accurate densities
for systems dominated by either the exchange energy or by the self-interaction correction.
We demonstrate that the LDAs break down as correlation becomes strong, including when
applied adiabatically to a time-dependent system.

5.2 Constructing the LDAs

5.2.1 The finite model homogeneous systems

We choose a set of finite locally homogeneous systems in order to replicate the HEG from
which traditional LDAs are usually constructed. To generate these slab systems we use our
optimisation code which uses iDEA to find the correct external potential vext for a target in-
teracting system with a desired electron density nT(x). After making an initial guess for
the system, the exact many-body wavefunction is calculated and vext is refined iteratively,
following the method used for the Kohn-Sham potential in iDEA; see Eq. (4.3) in Subsec-
tion 4.1.1 on page 39.

The slab systems are chosen such that the majority of the density is approximately uniform
over a plateau region of value n0 with the edges of the system decaying rapidly to zero
[Fig. 5.1(a)]. We therefore choose a target density of the form nT(x) = n0e−10−11(mx)12

, where
m is a scaling factor chosen so that the density integrates to the appropriate number of
electrons (1, 2 or 3). The external potential required to obtain the desired density profile
has a non-trivial spatial dependence [Fig. 5.1(b)]. A set is created from both two and three-
electron slab systems and the densities cover a typical range (up to 0.6 a.u.) that will be
encountered when the LDAs are applied to test systems.
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Figure 5.1: (a) The exact many-electron electron density (solid lines) for a selection of the
slab systems. The density is of the form n(x) = n0e−10−11(mx)12

, to generate a uniform plateau
region that decays exponentially at the edges. (b) The optimised external potential (dashed
green line) for a typical two-electron slab system [middle density in (a), n0 ≈ 0.33].
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5.2.2 Generating the LDAs

Having characterised the many-electron slab systems we then find the corresponding Kohn-
Sham systems through our reverse-engineering code. By calculating the exact xc energy Exc

for each slab system we obtain a set of data points for the exact xc energy per electron
εxc = Exc/N in terms of the electron density of the plateau regions, i.e., at this stage ne-
glecting the inhomogeneous regions of the slab systems. We then apply a fit to determine a
functional form of εxc(n) for the two-electron (2e) (shown in Fig. 5.2) and three-electron (3e)
slab systems. These initial LDAs are refined below.
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Figure 5.2: The exact εxc (red crosses) for the 2e slab systems with the assigned values for
the electron density being that of the plateau region n0. The fit applied (solid green line) is
of the form εxc = (A + Bn + Cn2)nD, where A, B, C and D are constants. This initial LDA is
subsequently refined by applying it to the slabs themselves (see text).

To approximate the xc energy of an inhomogeneous system the LDA focuses on the local
electron density at each point in the system:

ELDA
xc [n] =

∫
n(x)εxc(n)dx, (5.1)

where εxc(n) is the xc energy per electron of a HEG of density n in a traditional LDA; see
Section 2.2.3.2 on page 23. This approximation becomes exact in the limit of the HEG, i.e.,
the systems from which an LDA is constructed. In the same spirit, we require our LDAs that
have been constructed from finite slab systems to yield the exact xc energies when applied
to those same slab systems.

We apply the initial LDAs to the 2e and 3e slab systems. Small errors in the xc energy ∆Exc

are found due to the inhomogeneous regions of the slab systems being ignored when the
LDAs were originally constructed. We use the calculated errors to determine refined forms
for εxc in the LDAs, εxc(n)→ εxc(n)− ∆Exc(n)/N:

2e : εxc(n) = (−0.74 + 0.68n− 0.38n2)n0.604 (5.2)

3e : εxc(n) = (−0.77 + 0.79n− 0.48n2)n0.61. (5.3)

These refined forms for εxc reduce ∆Exc from 2%− 3% to below 0.5% when applied to the
slab systems. This refinement process is thus determined to be sufficient.
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When the LDAs are applied to inhomogeneous systems it is the xc potential that is the
crucial quantity used to determine the electron density. vxc is the functional derivative of
the xc energy which in the LDA becomes:

vLDA
xc (x) =

δELDA
xc [n]

δn(x)
= εxc(n(x)) + n(x)

dεxc

dn

∣∣∣∣
n(x)

. (5.4)

The following expressions are therefore obtained from Eq. (5.2) and Eq. (5.3) respectively:

2e : vxc(n) = (−1.19 + 1.77n− 1.37n2)n0.604 (5.5)

3e : vxc(n) = (−1.24 + 2.1n− 1.7n2)n0.61. (5.6)

5.2.3 An LDA from one-electron slabs

So far we have constructed LDAs from systems of two and three interacting electrons. Ow-
ing to the absence of the Coulomb interaction it is simple to construct one-electron (1e) slab
systems. In a 1e system the Hartree energy is entirely self interaction and so the xc energy is
entirely self-interaction correction:

εxc = Exc = −EH = −1
2

∫ ∫ n(x)n(x′)
|x− x′|+ 1

dxdx′, (5.7)

where the electron density is of the same form as the 2e and 3e slab systems,
n(x) = n0e−10−11(mx)12

; see Subsection 2.5.3.1 on page 26.

A selection of slab systems is chosen and εxc is calculated to build up a set of data points.
An initial fit is found and the same refinement process used in the 2e and 3e slab systems is
applied. From this an expression for εxc and vxc follows:

εxc(n) = (−0.803 + 0.82n− 0.47n2)n0.638 (5.8)

vxc(n) = (−1.315 + 2.16n− 1.71n2)n0.638. (5.9)

5.2.4 Comparison of 1e, 2e and 3e LDAs

We now compare the 1e, 2e and 3e LDAs that have been developed. The strong similar-
ity between the three LDAs can be seen in the refined curves for εxc [Fig. 5.3(a)]. This is
remarkable considering physical correlation is absent in one-electron systems and εxc con-
sists entirely of self-interaction correction. Whilst the three curves effectively overlap at low
densities, they deviate slightly at higher densities [inset of Fig. 5.3(a)] with these deviations
being numerically significant. There is a clear progression from 1e to 2e to 3e.

This is also seen in the refined curves for vxc [Fig. 5.3(b)]. The 1e and 2e overlap at high
densities with the 3e curve deviating slightly.

5.2.5 The one-dimensional homogeneous electron gas

Various parameterisations [3, 26, 131] of QMC calculations show that in the case of a 3D
HEG, the exchange energy per electron εx is dominant over the correlation energy per elec-
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Figure 5.3: (a) The refined curves for εxc in the 1e (dashed red line in both plots), 2e (solid
green line in both plots) and 3e (dotted blue line in both plots) LDAs. Inset: close-up of the
three curves at higher densities. The slight deviations at higher densities are numerically
significant. There is a clear progression from 1e to 2e to 3e. (b) The refined curves for vxc in
the 1e, 2e and 3e LDAs. The closeness of the three curves, in each case, is striking.

tron εc, particularly for higher densities. We solve the Hartree-Fock (HF) equations to deter-
mine the exact εx for a 1D HEG consisting of an infinite number of electrons interacting via
the softened Coulomb repulsion u(x− x′):

εx = − 1
8π2n

∫ πn

−πn
dk
∫ πn

−πn
dk′u(k− k′), (5.10)

where the Fourier transform of u(x− x′) is integrated over the plane defined by the Fermi
wave vector kF = πn, for a HEG of density n.

Using Eq. (5.10) we calculate εx for a set of HEGs covering the range of densities used in the
LDAs. We then apply a fit to determine a functional form of εx for the 1D HEG. From this
we find that the εx curve in the 1D HEG is surprisingly close to the εxc curves in the 1e, 2e
and 3e LDAs (Fig. 5.4). This suggests that εx is the dominant term in εxc in the case of a 1D
HEG, even more so than in the 3D case.

In Ref. [126], QMC calculations of a 1D HEG of electrons interacting through a slightly dif-
ferent softened Coulomb interaction are used to determine a functional form for εc. We
evaluate εx using the method of Eq. (5.10) for this HEG, and find εc to be of the order of
a few percent of εxc, except in the low-density limit. Assuming this result to be applicable
to our own (very similar) 1D HEG, we conclude that the εxc curve constructed from a HEG
for our softened interaction would be close to the three εxc curves for our LDAs constructed
from finite systems (Fig. 5.4). That is, in 1D, an LDA constructed from small finite systems
is very similar to one constructed from the infinite HEG.
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Figure 5.4: The exact exchange energy εx (dotted-dashed dark-grey line) of a 1D HEG of
density n. The εxc curves in the 1e (dashed red line), 2e (solid green line) and 3e (dotted
blue line) LDAs are repeated from Fig. 5.3 for comparison. Inset: close-up of the four curves
at higher densities. All four curves are remarkably similar, indicating the importance of
exchange in 1D, and showing the similarity of the different LDA approaches in 1D systems.

The concept of constructing LDAs from finite systems may be readily extended to higher
dimensions, and test calculations show this to be feasible. We find that an LDA constructed
from one-electron systems in 3D, for example, exhibits a form for εxc that is qualitatively
similar to that of a traditional LDA constructed through QMC calculations.

5.2.6 Physics of the slab systems

To determine what fraction of εxc for the (many-electron) slab systems is due to εx and what
fraction is due to εc, we apply the HF method self-consistently to the 2e and 3e slab systems
(as defined by the external potentials). We find the HF method reproduces accurate densities
for high-density slab systems but breaks down for low-density slab systems. This suggests
that correlation (which the HF method neglects) increases as we progress to lower densities,
which is consistent with the 3D HEG. This agrees with earlier QMC studies of silicon that
show the xc hole in lower density regions can have non-local features and hence is impos-
sible to reproduce accurately with a semi-local functional, which implies that lower density
regions are generally more correlated [132].

In both the 2e and 3e slab systems, we calculate εx to be the dominant component in εxc, with
εc increasing as we move to lower density slab systems. However, we see that the correlation
energy remains small (< few%) in all the slab systems, a feature which is common to all our
1D test systems. The breakdown of the HF method suggests the slab systems are extremely
sensitive to this small amount of electron correlation. In this sense, the low-density slabs are
in fact systems of relatively strong correlation.

Traditional LDAs become exact in the limit of the HEG, i.e., when applied to the systems
from which they were constructed. Our finite LDAs are, by definition, exact for the total
energy when applied non-self-consistently to the slab systems, but it is of interest to examine
the self-consistent application of our LDAs to the slabs; explored below.

We find that in high-density slab systems the electron density is well matched due to the
external potential being the dominant component in vs. This becomes less so as we move to
lower densities in which the ‘base’ of the external potential becomes wider [see Fig. 5.1(b)
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for a 2e slab case]. Consequently, erroneous dips and bumps form in the plateau regions of
the LDA electron density.

To examine the errors in the density we analyse vxc. As well as missing out the long-range
vxc fields that are present in the exact system, we find the LDAs break down in the critical
central region where the vast majority of the electron density is. We can attribute this to the
exact vxc being highly nonlocal in these systems whereas the LDAs only depend on the local
density.

The self-consistent energies of our slab systems are accurate with errors below 1%, despite
the self-consistent density being far from exact. Hence, as shown in Ref. [133], errors in the
density can be cancelled by errors inherent in the approximate energy functional. How-
ever, the derivative of the energy functional is less forgiving of these errors, leading to an
inaccurate xc potential and density.

Electron localisation [113, 134] is the tendency of an electron in a many-body system to ex-
clude other electrons from its vicinity (see Chapter 7). The electron localisation function
(ELF) [135, 134, 136], provides a useful indicator of localisation: ELF = 1 is complete local-
isation, i.e., the chance of finding one electron in the vicinity of another is zero. ELF ranges
from 0 to 1, and a HEG has ELF = 0.5. For comparison we apply the exact ELF developed by
Dobson [135] (using our knowledge of the many-body wavefunction) to the 2e slab systems.
We find that the electrons are extremely localised towards the edges of the systems but as
we approach the interface between the electrons strong delocalisation occurs (Fig. 5.5). The
plot shows that as we move to a high-density slab system, this dip in localisation increases
in depth and occupies a greater proportion of the overall system. (This is also observed in
the 3e slab systems, however there is an extra localisation peak and dip due to the third
electron.)
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Figure 5.5: The exact many-body electron density (dashed black line) and ELF (dotted blue
line) for a low-density two-electron slab system (n0 ≈ 0.16). Also plotted are the exact
many-body electron density (solid red line) and ELF (dotted-dashed green line) for a high-
density two-electron slab system (n0 ≈ 0.51). In both systems, we find that the electrons
are extremely localised towards the edges but as we approach the interface between the
electrons (where they are more likely to be found near one and other) strong delocalisation
occurs. In the high-density slab system, this dip in localisation is deeper and occupies a
greater proportion of the overall system.

Our results show two major differences in electron localisation between the slab systems and
the HEG. First, the ELF is constant across a HEG and is independent of the density. It varies
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between (many-electron) slab systems of different densities and is position-dependent. Sec-
ond, the slab systems have regions of very high localisation. In the HEG, the ELF is de-
fined to be 0.5 in this case, but our results (e.g., Fig. 5.4) indicate that the physical nature
of the correlation (in the broad sense) in a HEG is, in fact, much more akin to that in rela-
tively strongly localised systems – such as our finite slab systems – than is often supposed.
That is, in a HEG, at densities much greater than those required to obtain strict localisa-
tion through Wigner crystallisation, a degree of localisation exists which might be termed
incipient Wigner crystallisation.

5.3 Application to exchange-dominated systems

In the previous section we observed the dominance of the exchange energy in the slab sys-
tems. In this section we investigate the capacity of our LDAs to describe systems dominated
either by the exchange energy or by the self-interaction correction.

5.3.1 Two-electron triple well

We begin the testing of the LDAs by studying a ground-state system where the electrons are
highly localised: two electrons subject to an external potential consisting of a deep, central
well and two identical, shallow, side wells (two-electron triple well). The exact many-body
electron density, which we calculate using iDEA, is compared to the density that is obtained
when we apply the 2e LDA self-consistently and the density obtained when we use the
noninteracting approximation [Fig. 5.6(a)]. The LDA does a remarkable job of matching
the exact electron density. The Hartree potential acts to drive the electrons apart, with the
xc potential then making the density accurate. However, the noninteracting approxima-
tion wrongly predicts both electrons occupying the central well, due to the first two single-
particle energy states being lower than the potential barrier between the central well and
the side wells. The HF method performs very well in this system due to strong exchange.

To understand these results we analyse the xc potential2. The large dips in the exact vxc

[Fig. 5.6(b)] corresponding to the peaks in the electron density are primarily due to the self-
interaction correction, i.e., occurring in regions of high electron localisation. The LDA does
quite an extraordinary job of replicating this which explains the success in approximating
the electron density. This is a particularly striking feature as traditional LDAs do not per-
form well in highly localised systems, as they are unable to accurately describe the self-
interaction correction. The discrepancy in vxc in the low density regions, at the interfaces of
the wells in vext, is due to the LDA being dependent on the local density and hence not ac-
counting for nonlocal effects. These nonlocal features in the exact vxc lead to, amongst other
things, lower peaks in the density in the side wells [inset of Fig. 5.6(a)]. As expected, the
LDA incorrectly predicts vxc decaying exponentially rather than following a Coulomb-like
−1/x decay.

We now look at how well each of the LDAs describe the self-interaction correction in this
system. To do this we compare the electron density as predicted by each LDA to the exact

2The exact vxc is obtained up to an additive constant, which we choose so that vxc asymptotically approaches
zero as |x| → ∞.
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Figure 5.6: A triple well containing two electrons. (a) A comparison of the exact many-body
electron density (solid red line), the density obtained from applying the 2e LDA (dotted-
dashed blue line) and the density obtained when we use the noninteracting approximation
(dotted black line, shifted down by 0.5 to more easily distinguish between the different
densities), along with the external potential (dashed green line). The LDA approximates
the density remarkably well, whilst the noninteracting approximation incorrectly predicts
both electrons occupying the central well. Inset: close-up of the exact density and the 2e
LDA density at the interface between the left-hand side well and the central well. (b) The
exact vxc (solid purple line), along with the vxc obtained from applying the 2e LDA (dashed
light-blue line). The LDA replicates the self-interaction correction remarkably well, seen in
the large dips in vxc. However, it misses out nonlocal features present in the exact vxc. (c)
Detail of the peak of the exact many-body electron density (solid red line) in the central
well along with the densities obtained by applying the 1e (short-dashed dark-green line),
2e (dotted-dashed blue line) and 3e (dotted purple line) LDAs. All three LDAs accurately
describe the self-interaction correction.
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Table 5.1: The total energies and xc energies calculated self-consistently using the LDAs and
their associated errors for the two-electron triple well. All three LDAs perform very well in
both cases.

LDA ELDA (a.u.) ∆E (a.u.) % Error ELDA
xc (a.u.) ∆Exc (a.u.) % Error

1e -0.698 -0.008 -1 -0.474 -0.007 -1
2e -0.697 -0.007 -1 -0.472 -0.005 -1
3e -0.698 -0.008 -1 -0.472 -0.005 -1

many-body electron density in the highly-localised central well [Fig. 5.6(c)]. The 2e LDA
is the most accurate, closely followed by the 1e LDA and then the 3e LDA. However, in
general, we find that the N-electron LDA (N = 1, 2 or 3) does not necessarily perform best
when applied to an N-electron system. In the majority of systems we study, the 1e LDA
most accurately describes the self-interaction correction, followed by the 2e LDA and then
the 3e LDA.

The final quantities we use to compare the merits of the LDAs are the approximations to
E and Exc, due to the fundamental importance of energy calculations in DFT. To do this we
first calculate the exact E for the two-electron triple well system through iDEA and from this
we calculate the exact Exc. We obtain E = −0.690 a.u. and Exc = −0.467 a.u.

For each LDA we take the self-consistently calculated electron density to determine the self-
consistently calculated energies. The set of self-consistently calculated E, ELDA, along with
the error relative to the exact E, ∆E and the corresponding percentage error, % error are
given in Table 5.1. Also given are the set of self-consistently calculated Exc, ELDA

xc , along with
the error relative to the exact Exc, ∆Exc and the corresponding percentage error, % error. The
results show that all three LDAs do an impressive job of approximating E and Exc.

5.3.2 One-electron harmonic well

We now study a ground-state system in which exchange and correlation consist exclusively
of the self-interaction correction: one electron subject to a harmonic external potential (one-
electron harmonic well). The electron behaves as a quantum harmonic oscillator with the
density forming a single peak in the centre of the well. This exact electron density is com-
pared to the density that is obtained when we apply the 1e LDA self-consistently and the
density obtained when we set vxc = 0, i.e., Hartree theory (HT)3 [Fig. 5.7(a)]. Much like in
the two-electron triple well, the LDA gives a result which closely matches the exact electron
density. It captures the central peak in the density and correctly predicts its rate of decay
towards the edges of the system. It is worth noting that all three LDAs give very similar
results with the 1e LDA performing the best by a small margin. We choose to only illus-
trate the 1e LDA here. Again, using HT gives a poor performance which misses out both
of these features. Both the HF method and the noninteracting approximation are exact in a
one-electron system.

In a one-electron system the exact vxc is just the negative of the Hartree potential vH. Much
like the LDAs’ remarkable success in the two-electron triple well, in which vxc is mostly self-

3The vxc = 0 approximation (Hartree theory) provides a benchmark against which we test the LDAs’ ability
to describe the self-interaction correction; see Section 2.3 on page 24.
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Figure 5.7: A harmonic well containing one electron. (a) A comparison of the exact many-
body electron density (solid red line), the density obtained from applying the 1e LDA
(dotted-dashed blue line) and the density obtained when we use HT (dotted black line),
along with the external potential (dashed green line). Again, the LDA approximates the
density remarkably well. It captures the central peak in the density and correctly predicts
its rate of decay towards the edges of the system. This is a significant improvement on HT.
(b) The exact vxc (solid purple line) for the one-electron harmonic well, along with the vxc
obtained from applying the 1e LDA (dashed light-blue line). vxc in this system is entirely
self-interaction correction and the LDA performs well, much like it did in the two-electron
triple well in which vxc was mostly self-interaction correction. The LDA accurately describes
the dip in vxc in the centre of the system, however, there is an error relative to the exact
vxc. Again, the LDA incorrectly predicts vxc decaying exponentially rather than following a
Coulomb like −1/x decay.
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Table 5.2: The total energies and xc energies calculated self-consistently using the LDAs and
their associated errors for the one-electron harmonic well. Whilst the % errors in the total
energy and the xc energy are larger than in the two-electron triple well, the relative errors
are of the same order. Again, all three LDAs give similar results.

LDA ELDA (a.u.) ∆E (a.u.) % Error ELDA
xc (a.u.) ∆Exc (a.u.) % Error

1e 0.138 0.011 9 -0.225 0.012 5
2e 0.139 0.012 9 -0.223 0.014 6
3e 0.137 0.010 8 -0.224 0.013 5

interaction correction, it also performs well at approximating vxc in this system [Fig. 5.7(b)].
The LDA accurately describes the dip in vxc in the centre of the system, however, there is an
error relative to the exact vxc. Again, the LDA incorrectly predicts vxc decaying exponentially
rather than following a Coulomb like −1/x decay. (We have tested the LDA in a variety of
harmonic wells as we vary the angular frequency ω and we obtain similar results.)

As for the two-electron triple well, we perform energy calculations to obtain E = 0.127 a.u.
and Exc = −0.237 a.u. We calculate ELDA for each LDA along with ∆E and the % error. This
is displayed in Table 5.2. Also given is the calculated ELDA

xc for each LDA along with ∆Exc

and the % error. Whilst the % errors are noticeably larger in this system than in the two-
electron triple well (see Table 5.1), it is the relative errors ∆E that are important. (Adding a
constant to vext will change the % errors but not ∆E.) These are of the same order as those in
the two-electron triple well, with all three LDAs performing similarly.

5.3.3 Summary

We observe our LDA calculations to yield accurate electron densities for a variety of exchan-
ge-dominated systems, even when the LDA is constructed from one-electron systems. The
most striking aspect of our LDAs are their ability to accurately describe the self-interaction
correction. This is remarkable as local approximations are traditionally known to be inca-
pable of accurately describing this feature. However, we note that some systems exhibit
highly nonlocal features in the exact exchange-correlation potential, such as potential steps
and other features in low density regions [137, 138]; see Chapters 7 and 8. These absent
nonlocal features in vLDA

xc can lead to inaccurate electron densities for ground-state systems,
as well as for time-dependent systems; see Section 5.4.2 and Section 5.5.

5.4 Application to more strongly correlated systems

In the previous section we observed the capacity of our LDAs to describe exchange and the
self-interaction correction. We now study systems in which correlation is stronger, a feature
which should challenge local approximations.

5.4.1 Two-electron harmonic wells

We now consider a pair of systems which demonstrate the effect on the LDAs when elec-
tron correlation increases: two electrons confined to a harmonic external potential. First,
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for purposes of comparison, we consider a strongly-confining harmonic external potential
(ω = 0.4 a.u.) so that the system is dominated by exchange, and correlation is very low
(strongly-confined harmonic well). We contrast this with a weakly-confining harmonic ex-
ternal potential (ω = 0.01 a.u.) in which correlation increases significantly, as kinetic energy
diminishes (weakly-confined harmonic well).

In the strongly-confined harmonic well, the HF method is almost exact due to the near ab-
sence of electron correlation. The exact electron density is compared to the density that is
obtained when we apply the 2e LDA self-consistently and the density obtained when we use
the noninteracting approximation [Fig. 5.8(a)]. We find that our LDA performs very well in
this system, which is consistent with the other two exchange-dominated systems in the pre-
vious section. (All three LDAs perform similarly.) Again, we analyse vxc and find that the
LDA misses out key nonlocal features, e.g., a central bump in the exact vxc, formed from
the superposition of two steps (yielded by a single interaction term), which acts to drive the
electrons further apart, leading to a discrepancy in the electron density; see Chapters 7 and
8. Even though vext is the dominant component in vs, the Coulomb interaction is key to push
the electrons apart, which is evident by comparing the exact density and the LDA density
to the noninteracting approximation.

As we move to the weakly-confined harmonic well, we find that correlation increases. This
is evident in the electron density produced by the HF method becoming worse, which
we compare with the exact density, the density obtained when we apply the 2e LDA self-
consistently and the density obtained when we use the noninteracting approximation [Fig-
ure 5.8(b)]. Despite the LDA being constructed from slab systems in which correlation is
significant, we find that it completely breaks down in this system. It incorrectly predicts
three peaks in the electron density and appears to closely approximate a slab-like system.
The noninteracting approximation performs much worse than in the strongly-confined har-
monic well.

We analyse vxc and find that, unlike in the strongly-confined harmonic well in which the
LDA underestimated the central bump present in the exact vxc, it does worse in this system
by incorrectly predicting a central dip in vxc [Fig. 5.8(c)]. This, along with the LDA vastly
underestimating the two other dips in vxc, leads to the three peaks that are seen in its approx-
imation to the electron density. Again, the LDA incorrectly predicts an exponential decay of
vxc towards the system’s edges.

Finally, we perform energy calculations to obtain E = 0.068 a.u. and Exc = −0.215 a.u. for
the weakly-confined harmonic well. We calculate ELDA for each LDA along with ∆E and the
% error. This is displayed in Table 5.3. The LDAs give good approximations to E despite
poor electron densities [133].

We calculate ELDA
xc for each LDA along with ∆Exc and the % error for the weakly-confined

harmonic well. This is also displayed in Table 5.3. Clearly the LDAs perform much worse at
approximating Exc than they do at approximating E. Whilst we find the errors are substan-
tially larger than in the strongly-confined harmonic well (error ∼ 2% for all three LDAs),
one might expect a larger error on the basis of the inaccuracy of the density given by the
LDAs [see Fig. 5.8(b) for the 2e LDA].
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Figure 5.8: Two-electron harmonic wells with weak and stronger correlation. (a) A com-
parison of the exact many-body electron density (solid red line), the density obtained from
applying the 2e LDA (dotted-dashed blue line) and the density obtained when we use the
noninteracting approximation (dotted black line), along with the external potential (dashed
green line) for the strongly-confined harmonic well. The LDA performs very well in this
exchange-dominated system. (b) A comparison of the exact many-body electron density
(solid red line), the density obtained from applying the 2e LDA (dotted-dashed blue line),
the density obtained when we use the noninteracting approximation (dotted black line) and
the density obtained when we use the HF method (short-dashed dark-grey line), along with
the external potential (dashed green line) for the weakly-confined harmonic well. The LDA
completely breaks down in this strongly-correlated system. (c) The exact vxc (solid purple
line) for the weakly-confined harmonic well along with the vxc obtained from applying the
2e LDA (dashed light-blue line). The LDA incorrectly predicts a central dip in vxc. This,
along with the LDA vastly underestimating the two other dips in vxc, leads to the three
peaks that are seen in the electron density.
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Table 5.3: The total energies and xc energies calculated self-consistently using the LDAs
and their associated errors for the weakly-confined harmonic well. The LDAs give good
approximations to E despite poor electron densities, which we attribute to a cancellation of
errors. They perform much worse at approximating Exc.

LDA ELDA (a.u.) ∆E (a.u.) % Error ELDA
xc (a.u.) ∆Exc (a.u.) % Error

1e 0.072 0.004 6 -0.182 0.033 15
2e 0.066 -0.002 -3 -0.186 0.029 13
3e 0.063 -0.005 -7 -0.191 0.024 11

5.4.2 Tunnelling system

We now extend our study to a highly correlated time-dependent system in which there is
strong current flow: two electrons confined to an external potential consisting of two wells
separated by a long flat barrier, vext = αx10− βx4, where α = 5× 10−11 a.u. and β = 5× 10−5

a.u. For t > 0 a perturbing electric field vpert = −εx, where ε = 0.01, is applied [Fig. 5.9(a)]
to induce quantum tunnelling (tunnelling system) [14].

The Pauli exclusion principle, combined with the Coulomb repulsion, forces the electrons
to localise in opposite wells resulting in a small-density barrier (central) region. This is well
matched, both when we apply the 2e LDA and when we use the noninteracting approxi-
mation [Fig. 5.9(b)]. We apply the HF method and find this to be an exchange-dominated
system. Again, the LDA accurately describes the large self-interaction correction present
in the highly-localised wells. As in the strongly-confined harmonic well, there is a central
bump present in the exact vxc, which is due to the superposition of two steps; see Chapter 8,
Section 8.7.1 on page 110. The LDA misses out this key feature, which acts to drive the
electrons apart, leading to higher peaks in the exact electron density.

The application of the electric field initially causes the electrons to oscillate within their re-
spective wells. Eventually the electron in the left hand well begins to tunnel through the
potential barrier towards the right hand well. Correlation increases as the electrons begin to
explore different orbitals. We apply the LDA adiabatically, vALDA

xc [n](x, t) = vLDA
xc [n(t)](x),

to examine how well it approximates the dynamic electron density once there has been suf-
ficient tunnelling (t = 40 a.u.), along with the result that is obtained when we use the non-
interacting approximation [Fig. 5.9(c)]. Whilst the LDA still manages to replicate the exact
density well, it fails in the critical central region which indicates that the tunnelling rate is
too high. However, it is an improvement on the density that is obtained when we neglect
the Coulomb interaction.

To explore this we first define the tunnelling rate as the rate at which the total electron
density in the left hand side (LHS, x < 0) of the system decreases with time. (This is deemed
to be a sufficient approximation as the electrons start in a highly localised ground state.) We
now plot the exact total electron density in the LHS as a function of time, the approximation
produced from applying the LDA and the result obtained when we use the noninteracting
approximation (Fig. 5.10). The exact and ALDA tunnelling rates increase as the LHS electron
gains kinetic energy, before decreasing in response to an increase in the Coulomb repulsion;
whereas the noninteracting tunnelling rate continues to increase. It is clear that the LDA
over-predicts the rate of tunnelling. By taking the gradients of the three curves, we measure
the magnitude of the LDA tunnelling rate to be, on average, nearly twice that of the exact
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Figure 5.9: A tunnelling system containing two electrons. (a) The unperturbed external
potential vext = αx10 − βx4, t = 0 (dashed green line), and the perturbed external potential
with the electric field −εx, applied for t > 0 (solid blue line). (b) A comparison of the
exact many-body electron density (solid red line), the density obtained from applying the
2e LDA (dotted-dashed blue line) and the density obtained when we use the noninteracting
approximation (dotted black line) for the system’s ground-state, t = 0. The Pauli exclusion
principle, combined with the Coulomb repulsion, forces the electrons to localize in opposite
wells resulting in a small-density barrier (central) region. The LDA and the noninteracting
approximation both match this well. (c) A comparison of the exact many-body electron
density (solid red line), the density obtained from applying the 2e LDA (dotted-dashed blue
line) and the density obtained when we use the noninteracting approximation (dotted black
line) at a later time, t = 40 a.u., once there has been sufficient tunnelling. Whilst the LDA
still manages to replicate the exact density well, it fails in the critical central region which
indicates that the tunnelling rate is too high.
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Chapter 5 Local density approximation from finite systems

tunnelling. Although this is a large reduction in the erroneous tunnelling rate obtained
when we use the noninteracting approximation.

Dynamic potential steps have previously been shown to be important nonlocal features
which give rise to accurate electron densities [6, 138, 139]; we explore the exact Kohn-Sham
system in Chapter 6. We observe a dynamic step to grow in the exact vxc (and hence vs) in
the central density minimum, which in turn controls the tunnelling rate. Unsurprisingly,
this characteristic is missing from the LDA vxc. In order to slow the tunnelling rate to an
appropriate amount, a better approximate functional will be needed; one that takes into ac-
count the current density, which is particularly sensitive to interaction in this system; see
Chapter 7. We observe this through the LDA current density quickly deviating from the
exact current density, which is reflected in the time-dependent density.

We find that at early times, errors in the time-dependent density depend heavily on how
well the ground state is approximated. Therefore, we find that accurately describing ground-
state features is crucial. At later times, the error in the LDA density grows primarily due to
increasing correlation.
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Figure 5.10: The exact total electron number in the LHS (x < 0) of the system nL (solid red
line), the approximation produced from applying the 2e LDA adiabatically (dotted-dashed
blue line) and the one obtained when we use the noninteracting approximation (dotted black
line). The tunnelling rates are therefore given by the gradients of the curves. It is clear that
the LDA overestimates the rate of tunnelling. By taking the gradients of the three curves,
we measure the magnitude of the LDA tunnelling rate to be, on average, nearly twice that
of the exact tunnelling rate. At early times, this error is due to the LDA missing out key
ground-state features. At later times, it is primarily due to increasing correlation as the
electrons explore different orbitals. The noninteracting approximation further overestimates
the tunnelling rate.

5.4.3 Summary

Similar to traditional local approximations, we have found that our LDAs are unable to accu-
rately describe systems in which correlation is significant. The transition from the strongly-
confined harmonic well to the weakly-confined harmonic well demonstrates that whilst the
LDAs can successfully be applied to exchange-dominated systems, an increase in the corre-
lation energy causes them to become severely inaccurate. This is also observed in the tun-
nelling system, in which starting from a highly localised ground state, the approximation
to the electron density becomes worse as correlation increases with time. Therefore, despite
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Chapter 5 Local density approximation from finite systems

the low-density slab systems being strongly correlated, correlation effects in test systems do
not appear to be captured by the LDAs.

5.5 Landauer-style formulation

Next we explore the tunnelling system (above) more fully, and how various approximations
perform for this challenging situation.

We discussed in Chapter 3 a basic, noninteracting model for current carrying, many-electron
systems – the Landauer formulation. We also considered the slightly more sophisticated ap-
proach of using the ground-state Kohn-Sham potential at t = 0, then allowing the system to
evolve with an applied, external field (added to the ground-state Kohn-Sham potential), i.e.,
excluding all changes to the Kohn-Sham potential once the system becomes dynamic – an
approximation more primitive than the adiabatic approximation. Both of these approaches
are simple, and, as shown in Chapter 3, break down for systems where the interaction be-
tween the electrons plays a large role in the dynamics.

We asses the accuracy of the Landauer approach for our tunnelling system, and we simulate
the system for a much longer time, 160 a.u. However, we note that we do not simulate the
system for long enough for a steady state to be reached, and hence we refer to this as a
‘Landauer-style formulation’.

When the left electron is allowed to tunnel for ∼ 160 a.u., we find that the interacting,
localised electron experiences the Coulomb repulsion, which reduces the tunnelling rate
(as seen above), and eventually reverses it. Figure 5.11 shows the exact tunnelling as a
function of electron number (same as above), as well as the ALDA, the noninteracting4 and
the Landauer-style tunnelling rates for the same system. (The reverse in tunnelling does not
occur for noninteracting electrons for t < 160 a.u.)

The Landauer-style formulation we use takes the exact ground-state Kohn-Sham potential
(above we describe the exact ground-state Kohn-Sham potential), then we apply the per-
turbing electric field (−0.01x), and we do not update the potential; we term this the ‘ex-
act Landauer’. Therefore, we are giving the Landauer-style formulation the best possible
chance. Even so, the formulation fails to predict the long term effects of the interaction be-
tween the electrons (not a surprising result), i.e., it fails to predict the reverse in tunnelling
at the correct time.5 The approximation performs well for early times, showing that the
ground-state potential is important early on, however, eventually time-dependent effects
start to dominate the system; see Section 6.3 on page 71.

4By noninteracting, we mean that interaction is neglected entirely in the simulation.
5We find that by modelling this system with the Landauer-style approximation for a much longer time, the

reverse in tunnelling does eventually occur, however, far later than for the exact simulation.
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Figure 5.11: The integrated density of the left-hand subsystem for two electrons in a tun-
nelling system, for the exact (solid red), ALDA (dashed green), Landauer-style (dotted
blue), and noninteracting (dotted-dashed black). The Coulomb repulsion causes the left,
tunnelling electron to be forced back into the left well after ∼ 60 a.u. This total reversal
of the tunnelling does not occur for the noninteracting electrons, nor does it occur for the
Landauer-style approximation. The ALDA does reverse the tunnelling, but substantially
later than it should, ∼ 80 a.u.

A Landauer formulation that is more representative of calculations commonly found in the
literature is to use the LDA ground-state Kohn-Sham potential instead of the exact. In this
case the approximation, unsurprisingly, performs much worse – giving similar results to
simply neglecting interaction all together. For early times, using the exact ground-state xc
potential in the Landauer-style formulation performs well compared to using the LDA xc
potential. This shows that the nonlocal features of the exact ground-state xc potential are very
important in describing the dynamics of the interacting system as tunnelling begins. Hence,
for an approximation to work well in the time-dependent case, it not only has to replicate
the nonlocal features in the exact time-dependent Kohn-Sham potential, which give rise to
the correct dynamics (here reversed tunnelling), but also the nonlocal ground-state features;
see Er. 1 in Section 3.3 on page 34.

The use of the adiabatic approximation (ALDA) improves the accuracy of the simulation,
however, the density is still far from exact; the reverse in tunnelling occurs much later and
the initial tunnelling rate is too large (see above). In order to improve the accuracy of this
simulation, we must first identify what the ALDA is missing from the xc potential compared
to the exact. Hence in the next chapter we model this tunnelling system exactly.

5.6 Summary

The ‘usual’ local density approximation (LDA), originally proposed by Kohn and Sham, is
the most basic approximation to the exchange-correlation (xc) functional, but one that has
performed surprisingly well for solid state physics in the past. However, problems arise
from using such a simple approximation to the xc potential. Our 1D LDA is constructed
from finite systems, unlike the usual LDA. This novel method of constructing the LDA yields
a reasonable description of exchange [specifically the self-interaction correction (SIC)], even
when the LDA is constructed from a single electron. We showed that while our LDA does
well for strongly localised systems, due to a good description of SIC, when correlation is
strong our LDA performs poorly, e.g., when applied adiabatically to a time-dependent sys-
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tem (in this case dynamic electron tunnelling). Furthermore, we show that nonlocal features
of the exact Kohn-Sham potential are not correctly accounted for by local approximations.

Finally, we used our LDA adiabatically, along with an ’exact Landauer’ approach6, to demon-
strate that important features of the exact xc potential, needed for accurate electron and
current densities, are missing from these approaches when modelling many-electron tun-
nelling. Hence, a functional that can reproduce these features is required for a more accurate
simulation. However, one must first identity these features. Hence, the tunnelling system
studied in this chapter is modelled using exact time-dependent density functional theory
next.

6By ‘exact Landauer’ we refer to using the exact ground-state Kohn-Sham potential at t = 0, then we apply a
perturbing field and allow the system to evolve, without updating the time-dependent potential.
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Chapter 6

Many-electron tunnelling1

In this chapter we study a tunnelling system using exact time-dependent density functional
theory (TDDFT) because of the poor performance of local approximations at modelling such
systems; see Chapter 5, Sections 5.4.2 and 5.5 on pages 62 and 65. Hence, we use our iDEA
code to find the exact, time-dependent Kohn-Sham potential for this highly correlated sys-
tem, in order to determine what features of the exact potential are absent from the local
approximations.

6.1 Introduction

Electron tunnelling and reflection are features of all molecular devices, but many-electron
aspects of these processes are generally not included in transport calculations. Fundamental
studies of tunnelling in strongly correlated systems, such as Coulomb blockade [140], have
shown the importance of a time-dependent description of electronic correlation. Strong cor-
relation and tunnelling both pose particular challenges [141] for the usual approximations
in TDDFT which remain to be addressed. To accurately model electron transport there is
a need for studies of the xc potential for systems of multiple electrons with strong corre-
lation and quantum tunnelling. We calculate the exact xc potential of a one-dimensional
interacting model system, intended to inform the development of improved approximate
functionals suitable for realistic three-dimensional systems.

6.2 Our tunnelling system

To determine the Kohn-Sham potential we adjust the potential experienced by noninteract-
ing electrons such that they reproduce, at all times, the charge and current densities of the
interacting system, calculated by exact numerical propagation of the time-dependent many-
electron Schrödinger equation; see Chapter 4. Our iDEA code describes two electrons in one
dimension, where our spatial and temporal grid spacings are δx = 0.05 a.u. and δt = 0.002
a.u. We treat our electrons as spinless, in order to maximise the richness of the exchange

1This chapter describes collaborative work that has been published: M. J. P. Hodgson, J. D. Ramsden, J. B.
J. Chapman, P. Lillystone and R. W. Godby, ‘Exact time-dependent density-functional potentials for strongly
correlated tunneling electrons’, Physical Review B (Rapid Communications) 88, 241102(R) (2013). Sections 6.1-6.3
are adapted from that paper. Matt Hodgson participated fully in the formulation and analysis of the research,
and executed the calculations shown in the paper, and prepared the first draft of the paper.
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Chapter 6 Many-electron tunnelling

and correlation for a given computational effort; our two electrons occupy different Kohn-
Sham orbitals. The form of the interaction used is (|x− x′|+ 0.1)−1, which represents a 3D
nano-wire with a diameter of 1 a.u.; see Appendix A.2, on page 121, for detail.

We first describe our system through many-body quantum mechanics. Our confining po-
tential consists of two wells separated by a long flat barrier, vext = αx10 − βx4, where
α = 5 × 10−11 a.u. and β = 1.3 × 10−4 a.u. For t > 0 a polarising uniform electric field
−εx, where ε = 0.1, is applied (Fig. 6.1), driving the electrons to the right. This is the same
as the tunnelling system in Chapter 5 except we have chosen to use a much stronger electric
perturbing field and hence increased the tunnelling barrier; the reason for this is explained
below.
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Figure 6.1: The unperturbed external potential (vext = αx10 − βx4, t ≤ 0, solid red) and
its perturbed counterpart (the uniform field −εx added, t > 0, dashed green) (top figure).
The interacting charge density (bottom figure) at t = 0 and at a later time t = 5.3 a.u. The
inset shows a close-up of the density in the tunnelling region; at the later time a minimum
appears in the density (arrow) as a result of an interference effect (see text).

As suggested by the form of the ground-state charge density, the Pauli exclusion principle,
for two spinless electrons, tends to localise the electrons in opposite wells, and this effect is
enhanced by the Coulomb repulsion. Thus, the barrier region of the system has vanishingly
small density (Fig. 6.1).

Accuracy in our simulations is limited by the build-up of noise over time in the reverse
engineering algorithm. Figure 5.11 in Section 5.5 on page 65 clearly shows that the time-
dependent features of the vxc[n](x, t) become crucial for an accurate description of the den-
sity in the tunnelling system at t ∼ 40 a.u. for a field strength of ε = 0.01. However, our
reverse engineering algorithm struggles to produce highly accurate results for such a long
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simulation. Therefore, we find the exact time-dependent Kohn-Sham potential for the tun-
nelling system of this section, i.e., with a much stronger field, ε = 0.1, where important fea-
tures manifest earlier in the simulation – before noise becomes noticeable. Then we reverse
engineer the system of Section 5.5 (with ε = 0.01) up to t = 40 a.u., with the understanding
that, while the potential may be less accurate, feature(s) responsible for the reverse in tun-
nelling (see Section 5.5) will still be discernible and may correspond to the accurate features
of the system described here. (Note the differences between this system and the one studied
in the previous chapter; the perturbing field strength has been increased, hence the potential
barrier between the electrons is larger to ensure the electron tunnels from the well.)

The initial application of the electric field begins to establish oscillatory motion of the elec-
trons within their respective wells. Prolonged exposure to the E-field causes the left electron
to tunnel through the potential barrier towards the right well, experiencing the Coulomb re-
pulsion. This then allows a current to build in the low-density barrier region. The strength
of the E-field relative to the confining potential means that both electrons acquire consid-
erable kinetic energy within their respective wells. In the right-hand well this results in
standing-wave-like ‘ripples’ in the density, due to interference between the waves incident
on, and reflected from, the right-hand wall. (This phenomenon does not itself rely on the
interaction; we have checked that similar interference ripples occur for a single electron in a
single perturbed well.) When tunnelling begins, the time-evolution of the density is affected
by the Coulomb repulsion, as the two electrons try to distance themselves from one another
within the right-hand well.
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Figure 6.2: A zoomed view of the interacting charge density (n) in the central region (short
dashed blue) and the noninteracting charge density (dotted purple), together with the inter-
acting current density (j) (solid red) and the noninteracting current density (dashed green),
at t = 5.3 a.u. The regions of particularly high current-to-charge ratio are indicated by
arrows; the modification of this ratio by the Coulomb interaction is evident.

Figure 6.2, which is a further close-up, shows the charge and current density in the central
part of the tunnelling region, for t = 5.3 a.u. (see below for details on why this time was
chosen), together with the corresponding quantities in the absence of Coulomb interaction.
Two effects are evident. First, as the left electron tunnels into the right well, the effect of the
Coulomb repulsion is to suppress the current density on the right-hand side of the region
shown. Second, the arrows in both Fig. 6.1 and Fig. 6.2 indicate locations where the ratio of
current density to charge density is particularly high.

70



Chapter 6 Many-electron tunnelling

6.3 Steps in the exact Kohn-Sham potential

Time-dependent density functional theory (TDDFT) describes the evolution of the interact-
ing electron density using an auxiliary noninteracting system, with an effective potential vs

which we now calculate.

The nonlocal density-dependence of the xc potential is already apparent in the ground state.
Owing to the double-well external potential and the Coulomb repulsion, our electrons begin
in a highly localised state, which means that the dominant effect in the ground-state xc
potential is the full cancellation of the spurious self-interaction described by the Hartree
potential, vH. Accurate self-interaction corrections of this sort are, generally, thought to be
beyond the capability of the usual LDA [142]. Our LDA – constructed from finite systems
– provides a surprisingly good SIC; see Chapter 5. However, it still fails to give a proper
description of electron tunnelling, showing that SIC is not the only important feature of the
exact vxc missing from local functionals.

The ground-state Hartree-xc (Hxc) potential, vHxc = vs − vext, because it includes both the
self-interaction and its exact cancellation, most clearly displays the remaining important fea-
tures of the Kohn-Sham potential. The Hxc potential (Fig. 6.3) shows a highly-non-LDA
‘bump’ (arrow in Fig. 6.3) between the wells in the region of low charge density; as well as
oppositely-signed xc electric fields within each well2, which together push the Kohn-Sham
charge density peaks apart to account for the inter-well Coulomb repulsion. Neither of these
features is present in local approximations, showing the failure of the LDA in this system.
These ground-state nonlocal features are also important for the dynamics early in the simu-
lation; see Section 5.5 on page 65.
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Figure 6.3: The Hxc potential in the ground state (t = 0) and at later times t = 3.5 a.u. and
5.3 a.u. Steps form and grow as a result of minima in the charge density in the regions of
finite current density. The distinctive ‘bump’ in the ground-state Hxc potential remains to
serve its initial purpose (arrow).

In the time-dependent regime, the self-interaction continues to be exactly cancelled within
the Hxc potential. The locally varying corrections to vHxc in the region of highest density
remain minimal. Figure 6.4, the time-dependent xc potential alone, shows clearly how
vxc(= vHxc − vH) in the left and right wells provides the necessary self-interaction correc-
tions, changing its form in accordance with the moving and tunnelling charge density.

2By removing the self-interaction correction from the xc potential we have calculated the strength of the
linear xc electric field in the regions of highest charge density |εxc| ≈ 0.016 a.u.
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Figure 6.4: The xc potential at t = 0 and 5.3 a.u. In addition to the features noted in vHxc, the
changing strength of the self-interaction correction as the left electron tunnels into the right
well is evident.

For the time-dependent Hxc potential (Fig. 6.3) the first feature occurs at the position of the
central density minimum, xmin (initially 0). As the left electron tunnels through the barrier,
current builds in the central region, and so xmin moves to the right, as already observed
in Fig. 6.2. The build-up of current in the vicinity of the density minimum means that the
current-to-charge ratio is large. In the Kohn-Sham regime this high ratio is replicated by a
prominent time-dependent step in the level of the xc potential by a positive constant, that
later becomes negative due to the change in sign of the current density (Fig. 6.3).

After enough time has elapsed, further steps form in the right-hand region, as a direct result
of the standing-wave effect, associated with the points of high current-to-charge ratio iden-
tified above. This ratio, u (x, t) = j (x, t) /n (x, t), the velocity field, can account for the steps
observed in the time-dependent Kohn-Sham potential, since it is clear from Eq. (4.5) that
the velocity field and the time-dependent Kohn-Sham potential are closely linked: in partic-
ular, a feature in the velocity field will in general be associated with a feature in the time-
dependent Kohn-Sham potential. From u it is apparent that when the current-to-charge ratio
is very high, i.e., for density minima, there is a peak in the velocity field, which will translate
into a time-dependent peak in the Kohn-Sham vector potential. When subsequently trans-
forming each of these peaks to the gauge in which As = 0 in order to obtain the Kohn-Sham
scalar potential (see Section 4.1.1 on page 39), we integrate its time derivative spatially, giv-
ing rise to a step, particularly if the peak is narrow, as will generally be the case at density
minima. However, the mere presence of a density minimum is not a sufficient condition
for a step: without the effect of the Coulomb repulsion, j and j0 in Eq. (4.5) can be equal
without the need for a correction in the potential. To achieve any feature, the density in
the neighbourhood of its minimum must be modified by the interaction; in this case this
arises primarily from direct inter-well Coulomb repulsion. The arrows in Fig. 6.2 indicate
those density minima that are significantly reduced in value by the Coulomb interaction. In
Chapter 8 we explain the formation of steps at some density minima from DFT fundamen-
tals.

72



Chapter 6 Many-electron tunnelling

-1
-0.5

0
0.5

1
1.5

2
2.5

3

-10 -5 0 5 10

-0.2

0

0.2

0.4

0.6

u(
x,
t)

(a
.u

.)

V
H

xc
(t)

-V
H

xc
(t=

0)
(a

.u
.)

x (a.u.)

Figure 6.5: For t = 5.3 a.u. the velocity field (dashed green, many-body and Kohn-Sham
coincide), together with the difference between the Hxc potential at t = 5.3 a.u. and the
ground-state Hxc potential (solid red). The peaks in the velocity field align with the steps in
the potential. The largest features correspond to the density most affected by the Coulomb
interaction.

Figure 6.5 demonstrates the correlation between peaks in the velocity field and the step func-
tions in the potential. The largest steps are in the central region where the density has been
significantly altered by the Coulomb repulsion. Peaks further from the centre correspond
to smaller steps because the strong initial localisation of the electrons reduces the effect of
the Coulomb interaction on the velocity field. Our analysis of the origin of steps in the
Kohn-Sham potential is quite general; in particular, we have checked that it also explains
the time-dependent steps observed in Ref. [10]. Since the two ingredients of the velocity
field, the current and charge densities, are always available in a TDDFT calculation, ac-
counting for prominent features of the velocity field should be given strong consideration
in the development of improved approximate functionals for use in general time-dependent
systems.

Finally, we reverse engineer the system for a field strength of ε = 0.01 and β = 5× 10−5

– the same system of Section 5.5. As stated above, the xc potential for later times is less
accurate due to noise in the reverse engineering algorithm with an integrated absolute error
in the current density ∼ 10−2 and an error in the density ∼ 10−1. However, this level of
accuracy is enough for us to observe that steps continue to play a key role in determining
the dynamics of the system; see Fig. 6.6. This shows that the features missing from the ALDA
in Section 5.5 are nonlocal steps. The dynamic step occurs at t ∼ 40 a.u. and develops over
about 10 a.u., it acts to reduce the energy of the left well relative to the right, allowing the
electron to tunnel back into the left-hand well – for the many-body system, this is done by
the Coulomb repulsion. (Note, for consistency, we use the interaction term of Chapter 5
here, i.e., γ = 1.)3

3Here, and the rest of this chapter, is the sole work of Matt Hodgson.
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Figure 6.6: The exchange-correlation (xc) potential for the tunnelling system for t = 45 a.u.
(solid red), t = 46.5 a.u. (dashed green), t = 48 a.u. (dotted blue) and the ground state
(dotted-dashed grey). A dynamic step forms at t ∼ 40 a.u. over about 10 a.u.; this step acts
to reverse the tunnelling of the left electron. Note that the accuracy of the xc potential here is
less than for the potential above, because we have reserve engineered this system for much
longer. The integrated absolute error in the current density is ∼ 10−2 and ∼ 10−1 for the
electron density.

6.4 Summary

We found the exact time-dependent Kohn-Sham potential for strongly correlated tunnelling
electrons. The exact Kohn-Sham potential exhibits pronounced, time-dependent spatial
steps that are important for a proper description of tunnelling. These steps are highly non-
local in space and time, and are far beyond the scope of local and semi-local functionals,
like the local density approximation and the generalised gradient approximation. We found
that the steps occur at minima in the density, corresponding to peaks in the velocity field
(current density divided by electron density). We noted that not all minima in the electron
density correspond to steps; further insight into why steps form at some density minima
is given in Chapter 8. The SIC is also a prominent feature of the exact time-dependent xc
potential, due to the strong localisation of the electrons.

We then calculated the exact Kohn-Sham potential for the tunnelling system of Section 5.5
within numerical accuracy. We found that a dynamic spatial step grows over a relatively
long time in order to force the the tunnelling Kohn-Sham electron back, like the electron in
the exact system. Hence, showing that the nonlocal feature absent from the adiabatic local
density approximation is a spatial step.

The localisation of the electrons relative to each other (one electron per well) is an important
concept for features like the self-interaction correction. The act of the left localised electron
tunnelling towards the right localised electron is also key in giving rise to steps in vxc, sug-
gesting that localisation is an important concept for our studies. Hence in the next chapter
we explore the degree of localisation in our systems and the role it plays in approximating
density functionals.
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Chapter 7

The role of electron localisation in
density functionals1

7.1 Introduction

Steps in the xc potential observed in the previous chapter, occur, in part, due to strong elec-
tron localisation; this is explained more fully in Chapter 8. The localisation of the electrons
also gives rise to the need for a strong self-interaction correction. Electron localisation is an
important concept, for example, when considering chemical bonds, however the notion of a
‘localised electron’ is not always well defined when one is working with quantum mechan-
ics. Hence first we explore the concept in detail. In the rest of the chapter we demonstrate
how electron localisation, driven by the Coulomb interaction and the Pauli principle, can
form a powerful ingredient in approximations for the Kohn-Sham potential.

7.2 Localisation2

Electron localisation describes the tendency of an electron to exclude other same-spin elec-
trons from its vicinity (i.e., the position entanglement of like-spin electrons) [136, 143]. We
choose to start from the idea that localised electrons tend to avoid one another, whereas de-
localised electrons will share the same region of space. Localisation is driven by Pauli exclu-
sion, a repulsion which acts to localise like-spin electrons in separate regions. The Coulomb
interaction further enhances the tendency to localise [135]. The electrons’ attempts to avoid
each other increases the kinetic energy, which, however, is minimised by spreading elec-
trons over as large a volume as possible. It is the balance between these factors that makes
electron localisation challenging to quantify.

1This chapter describes collaborative work that has been published: M. J. P. Hodgson, J. D. Ramsden, T. R.
Durrant and R. W. Godby, ‘Role of electron localization in density functionals’, Physical Review B (Rapid Commu-
nications) 90, 241107(R) (2014). Sections 7.4-7.7.1, 7.7.3, 7.7.4 and 7.7.6 are adapted from that paper. Matt Hodgson
participated fully in the formulation and analysis of the research, and executed the calculations shown in the
paper, and prepared the first draft of the paper. We also give thank to Daniele Torelli for his assistance with
some of the calculations in this chapter.

2This section and Section 7.3 are adapted from collaborative work that has been submitted for publication:
T. R. Durrant, M. J. P. Hodgson, J. D. Ramsden, and R. W. Godby, ‘Electron localization in static and time-
dependent systems’ arXiv preprint arXiv:1505.07687, (2015). Matt Hodgson participated fully in the formulation
and analysis of the research, and in the collaborative writing of the paper. Tom Durrant executed most of the
calculations shown in the paper, and prepared the first draft of the paper.
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An understanding of electron localisation is useful chemically, placing the ubiquitous con-
cepts of chemical bonds and localised electron pairs on a formal footing [144]. Although
measures of localisation provide an understanding of bonds and electron pairs made up
of electrons of opposite spin, these details are revealed by looking at the localisation of like-
spin electrons, which provides the regions in which localised opposite-spin electron pairs
can be found. Localisation also describes a fundamental aspect of electron correlation that
approximate DFT functionals should take into account [59, 113, 145, 146, 147].

We stress that localisation is a true many-body property of electrons, dependent on the posi-
tions of all electrons, and not accessible through the spatial character of any one Kohn-Sham
orbital. Although many early efforts focused on the extent of molecular or Kohn-Sham or-
bitals, it was soon realised that these orbitals are not unique and that quite different choices
could be selected [143].

7.3 Measures of localisation

The traditional method of approximating the localisation in a system is the ELF of Becke and
Edgecombe [136]. Reference [143] provides a comprehensive review of the ELF. Originally
developed for Hartree-Fock calculations, the method can also be applied to Kohn-Sham
orbitals.

To produce the ELF, Becke and Edgecombe scaled their measure of local localisation with
that of a homogeneous electron gas (HEG) of the same local density. Hence, ELF ranges
from 0 to 1, where 1 represents total localisation and 0.5 represents the degree of localisation
in a HEG of the same density. Later work by Dobson [135] provides an alternative way
of calculating the ELF directly from the wavefunction. And as we have access to the many-
electron wavefunction for our system, we choose to use the more accurate Dobson ELF [148]
below.

ELF calculations have been widely used, but less is known about their accuracy. By con-
struction, ELF is exact in Hartree-Fock theory. Previous work on molecules has suggested
that ELF can perform poorly for density functional calculations where correlation is strong
[149], by comparison with the accurate configuration interaction (CI) method. It remains
unclear if this is caused by approximate ELF’s reliance on a single Slater determinant, or
is instead due to approximate exchange-correlation (xc) potentials leading to an incorrect
degree of localisation.

Durrant et al. evaluate the performance of the above mentioned ELFs for finite, ground-
state and time-dependent systems in Ref. [148]. We find that the Dobson and Becke and
Edgecombe ELF perform well for the ground state. However, once the system is strongly
perturbed, the approximate form of the ELF – based on exact Kohn-Sham orbitals – reports
a less accurate representation of localisation.

In the rest of this chapter we use the concept of localisation, and to a lesser extent the ELF
itself, to construct an approximate density functional. We note that for a practical density
functional calculation, an approximate ELF could be used to describe localisation in the
system. However, in order for an approximate functional, that relies on a good description
of localisation, to yield accurate electron densities, the measure of localisation would need
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to be secure in the presence of strong correlation. Hence, efforts to include more accurate
measures of localisation, secure for correlated systems, are desirable [150].

7.4 Application to density functionals

Previously we established that density functional theory (DFT) is the most widely used tool
for the simulation of many-electron systems in numerous fields of physics, chemistry and
materials science. Its success hinges on approximations to the xc part of the Kohn-Sham
functional. Particular attention has been given to improving the time-dependent xc poten-
tial, used within time-dependent DFT (TDDFT), where the use of adiabatic functionals of
the electron density ignores the role of currents and memory effects; see Chapters 3 and 5.

In this chapter we use the concept of localisation (see Sections 7.2 and 7.3), to introduce a
new functional that utilises localisation as an ingredient – the mixed localisation potential
(MLP) – for simulating ground-state and time-dependent electronic systems within DFT.
The functional combines an expression for the exact Kohn-Sham potential in the limit of
complete electron localisation with a measure of the actual localisation. We find accurate
self-consistent charge densities, even for systems where the exact xc potential exhibits non-
local dependence on the density, such as potential steps. We compare our results to the
exact Kohn-Sham potential for each system. The self-interaction correction is accurately
described, avoiding the need for orbital-dependent potentials.

7.5 The single orbital approximation

Our starting point is the Kohn-Sham potential of Refs. [82] and [112], originally derived for
a system of two spin-half electrons in their spin-zero ground state; see also Appendix B.1
on page 126. We observe that the logic applies exactly to any one-electron system, and, in-
deed, in a general system, to all regions of space where the electron density is dominated
by any one Kohn-Sham orbital3. For such a region the Kohn-Sham equations may be ap-
proximated as

(
− 1

2∇2 + vs
)√

n = εk
√

n for the dominant orbital φk, where n ≈ |φk|2 in
the region, yielding the ground-state Kohn-Sham potential, which we term the single orbital
approximation (SOA),

vSOA =
∇2n
4n
− (∇n)2

8n2 . (7.1)

(Here the zero of energy in the Kohn-Sham system is at εk.)

We begin by considering Eq. (7.1) as an approximation to the universal Kohn-Sham func-
tional. We find that the SOA not only works well for the strongly localised orbital regions,
but also accounts for nonlocal features and corrects self interaction in the Kohn-Sham po-
tential in regions of low localisation. We compare the SOA to the exact Kohn-Sham potential
for a variety of ground-state and time-dependent systems that exhibit nonlocal behaviour
in the xc potential. We then extend our approach by combining the SOA with a potential
suited to delocalised systems, in proportions depending on the strength of localisation: the

3In such situations, symmetry may cause the exact Kohn-Sham orbitals to extend throughout the system. As
the localised limit is approached these orbitals become degenerate and can be rotated within the Hilbert space
onto effectively localised orbitals while remaining eigenfunctions of the Hamiltonian.
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mixed localisation potential (MLP), introduced in Eq. (7.2) below, which is amenable to self-
consistent use in DFT calculations.

7.6 The mixed localisation potential

A useful approximate functional must give accurate densities when applied self-consistently
without prior knowledge of the exact density. The SOA is not suited to self-consistency,
as it is ’unanchored’ to the external potential, i.e., the SOA approximates the Kohn-Sham
potential and not just the xc part, hence the external potential is not fixed throughout the
self-consistent iterative procedure. However, by mixing the SOA with a suitable reference
potential we can better approximate the Kohn-Sham potential:

vMLP = f vSOA + gvref, (7.2)

where f (x) and g(x) depend on the localisation. We term this the mixed localisation potential
(MLP).

For complete localisation (ELF = 1), f = 1 and g = 0. Similarly for the HEG (ELF = 0.5)
vref = vLDA, and hence f = 0 and g = 1 (assuming the LDA performs well for delocalised
regions of density). The precise mapping between the ELF and f must be that appropriate
to the reference potential used. We can also infer, from the sum rule of the xc hole [20], that
f + g ≈ 1. (Note, we use this relationship to replace g with 1− f .)

7.7 Calculations

Our seven test systems consist of either two or three spinless electrons in one dimension
of varying degrees of electron localisation. As before, spinless electrons maximise the rich-
ness of exchange-correlation for a given computational effort, with each electron occupying
a distinct Kohn-Sham orbital. The electrons interact through the appropriately softened
Coulomb repulsion (|x − x′| + 1)−1; this form of the interaction represents a nanowire of
diameter 6 a.u.; see Appendix A.2, on page 121, for detail. The calculations are performed
using our iDEA code [14], which determines the exact Kohn-Sham potential from the fully
correlated ground-state or time-dependent many-electron wavefunction.

7.7.1 Double well (System 1)

We begin by studying a ground-state system where the electrons are highly localised: two
spinless electrons subject to an external potential consisting of two identical spatially-sepa-
rated wells together with a potential step – in the external potential – between them that shifts
the level of the right well relative to the left [Fig. 7.1(a)]. In the absence of interaction, the
electrons would simply occupy the two lowest single-particle states, which are both located
in the left-hand well. The Coulomb repulsion, however, localises the electrons, with one
electron per well. To reflect this (as originally noted by Almbladh and von Barth [151]),
the xc part of the Kohn-Sham potential must incorporate a second spatial step between the
wells, ensuring one electron per well through the ordered filling of the Kohn-Sham orbitals.
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(We explore the mechanism that gives rise to steps in the xc potential fully in Chapter 8.)

We calculate the exact Kohn-Sham potential for this system and compare to that given by the
SOA [Eq. (7.1)], evaluated for the exact density [Fig. 7.1(b)]. The anticipated new step in the
exact Kohn-Sham potential [arrow in Fig. 7.1(b)] appears, located at the density minimum:
the ’interface’ between the two electrons where the localisation is lowest. The SOA replicates
this xc step quite well4, despite being at its least secure in this region of low localisation. The
SOA’s ability to form this potential step is particularly impressive in this region of very low
electron density, showing the proper sensitivity of Eq. (7.1) to tiny variations in the density
[inset in Fig. 7.1(b)]. The self-interaction correction, which is the dominant new feature in
the exact vxc within the wells, is very well reproduced by the SOA, owing to its exactness in
the limit of complete localisation.
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Figure 7.1: Double well (System 1) — (a) The exact many-body electron density (red solid
line for all three plots) with the external potential (dotted-dashed purple). A potential step
gives the right-hand well a lower ionisation energy, while the Coulomb repulsion ensures
one electron per well. (b) The exact Kohn-Sham potential [blue dotted, also in (c)]; an xc
potential step (arrow) forms at the minimum in the electron density. The SOA potential
(green dashed) replicates the position and magnitude of the step well. Inset: detail of the
density in the neighbourhood of the two steps. The delicate features that give rise to the
steps in vs are visible at x = −3 a.u. and x = 10 a.u. (c) The self-consistent MLP potential, for
f = 0.6, (short-dashed dark green) with the corresponding electron density (dashed black),
which matches the exact density very well.

For a highly localised system, such as System 1, any failure of the LDA to correct the self-
interaction (see Section 7.8 later) would make its use as a reference potential damaging in
the regions of high density, and in the regions of low density any LDA-like potential will
have small Hartree and exchange-correlation (Hxc) terms. Thus vext is a superior choice of

4Tests indicate that the step in the exact and SOA potentials always forms at the density minimum; more
detail given in Chapter. 8.
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reference potential5.

We use the MLP to solve, self-consistently, for two electrons in the double well system, using
the standard potential-mixing iterative procedure of DFT. We choose the simplest approx-
imation for f (x) – a constant throughout space. For multiple spinless electrons we must
have some delocalisation, especially at the ’interface’ between the electrons, implying that
f < 1. We have investigated a range of values of f , and find the density to be accurate
when f is in the range 0.6− 0.99 [Figure 7.1(c)]. (Note that for our spinless electrons in this
double-well system the Kohn-Sham potential is approximately the external potential plus a
new step. Therefore, vMLP is unaffected by assuming f to be lower than 1 for the regions of
strong localisation, as it is simply mixed with the external potential.)

Here, f (x) = 0.6 (consistent with the partial delocalisation in the interface region) repro-
duces the features of the exact vs with remarkable accuracy, including the alignment of the
wells and the magnitude and position of both steps, correctly allowing one electron to oc-
cupy each well6. (In addition to the step, vMLP also exhibits a high, narrow peak, arising
from f being approximated as a constant, but this has little effect on the electron density,
owing to the density being very small in this region.)

7.7.2 Dissociated molecule (System 2)

Next we consider a system with an external potential that represents a dissociated molecule
(System 2): two separated atoms where vext = − 1.0

|x−5|+1 −
4.0

|x+5|+2 . Our dissociated molecule
behaves similar to System 1; the external potential is such that two noninteracting electrons
both localise on the left-hand atom, whereas electrons that interact via the Coulomb repul-
sion localise on different atoms – one electron in the left well, one in the right well; see
Fig. 7.2(a). Hence, as for System 1, a step must form in the exact Kohn-Sham potential in
order for the Kohn-Sham electron density to match the many-body density; see Fig. 7.2(c).

In Chapter 3 we detail why local approximations are notorious for localising the incorrect
amount of charge density on each atom of a dissociated molecule. A solution to this problem
is to develop an approximate functional that can reproduce steps in the xc potential, as a step
is the most effective way of localising the correct amount of charge on each atom without
introducing new errors into the density [151], such as the delocalisation error discussed in
Chapter 3. As seen for System 1, the MLP is capable of producing accurate steps in the xc
potential. Thus we now apply the MLP to our model molecule. We also apply our LDA to
the same system.

Figure 7.2(b) shows the self-consistent LDA and MLP densities compared against the exact.
As expected, the LDA incorrectly localises non-integer amounts of charge density on each
atom, i.e., the total amount of electron density on the left atom is 1.25, and hence 0.75 for
the right atom, according to the LDA density; see, also, Fig. 7.3. Despite the challenging be-
haviour of the exact Kohn-Sham potential for this system, the MLP density agrees extremely
well with the exact, localising one electron on each atomic site; see Fig. 7.3. For this system
we have used f = 0.35 and vref = vext. Note that this system has stronger delocalisation

5In this case, we can approximate Eq. (7.2) as vMLP = f vSOA + (1− f )vext = vext + f vHxc
SOA, showing that the

role of f is to adjust the SOA Hxc potential.
6For potentials with sufficiently high steps, the SOA correctly places both electrons in the lower well, even if

each Kohn-Sham electron begins in a different well at the start of self-consistency.
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than System 1 because the potential wells are closer together, hence f is lower. However,
one should note that, once again, the MLP is accurate for a range of f – 0.35− 0.99, with
f = 0.35 yielding the most accurate form for the Kohn-Sham potential; see Fig. 7.2(c).
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Figure 7.2: Dissociated molecule — (a) the external potential (dotted-dashed purple) with the
ground-state density (solid red) and the noninteracting density (dashed blue). Two inter-
acting electrons dissociate such that there is one electron’s worth of charge on each atom.
(b) The self-consistent LDA density (dashed-dotted black), with the exact density (solid red)
and MLP density (green dashed). The LDA predicts non-integer amounts of charge in the
region of each atom, whereas the exact localises exactly one electron’s worth of charge on
each site. The MLP density overlaps exactly with the exact. (c) The exact, LDA and MLP
Kohn-Sham potential. The success of the is due to the nonlocal step in the potential. The
LDA fails due to its inability to reproduce nonlocal features of the xc potential.

Figure 7.2(c) shows the exact Kohn-Sham potential for this system together with the MLP
and LDA Kohn-Sham potentials. As for System 1, a step forms at the density minimum to
allow for correct filling of the Kohn-Sham orbitals. Once again the MLP success in yielding
an accurate electron density is due to its ability to reproduce steps in the xc potential. The
failure of the LDA here is due its inability to capture the nonlocal features of the potential.

By taking the cumulative integral, from the left-hand side of the system, of the exact, MLP,
LDA and noninteracting electron densities [N(x) =

∫ x
−∞ n(x′) dx′], shown in Fig. 7.3, we

can see how the exact density has precisely one electron’s worth of charge on each site.
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Figure 7.3: Dissociated molecule — the cumulative integral of the electron density, N(x), for
the exact/MLP (solid red) and LDA (dashed green). The self-consistent MLP density lies
exactly over the exact. The LDA overestimates the amount of charge on the first site con-
siderably, and the error persists. The blue dotted line shows N(x) for the noninteracting
density – the LDA performs better then this, but is still far from exact.

As predicted (see Chapter 3) the LDA does not yield one electron’s worth of charge on each
atom. By design, the noninteracting cumulative integrated density shows two electrons in
the first potential well. The MLP, however, matches the exact strikingly well, demonstrating
the improvement in the electron density when a nonlocal functional is used over the local
approximation.

7.7.3 Single well (System 3)

Next we consider a system where the localisation of the electrons drops significantly below
1: two spinless electrons confined to a single well. This will establish the performance of the
MLP functional well outside the limit in which the underlying SOA is exact. Figure 7.4(a)
shows the Dobson ELF for this system together with the exact electron density and the MLP
density, showing that the electrons are significantly delocalised in the central region. In this
region the exact potential has a ‘bump’ which acts to push the density peaks apart, together
with long-range Hxc fields on either side; the raw SOA contains both features, though their
magnitude is overestimated in the delocalised region.

In forming the MLP, we are guided by the ELF in the region of low localisation and have
explored a range of values for f of 0.2− 0.3. For simplicity, we continue to use the external
potential as our reference. The MLP yields high accuracy for the Hxc potential in this central
region. The central bump in the potential is accurate across our range of f , and the corre-
sponding densities are in good agreement with the exact. We find that f = 0.25 reflects the
delocalisation in the central region (approximately the average of the ELF in this section),
and hence yields a highly accurate vHxc

MLP in the central region [see Fig. 7.4(b)].
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Figure 7.4: Single well (System 3) — (a) The many-body electron density (solid red), self-
consistent MLP density (dashed blue), external potential (short-dashed green) and ELF
[L(x) – dotted black]. Note the large dip in the localisation of the electrons in the centre
of the well. (b) The exact Hxc potential (solid red) together with the Hxc potential from the
self-consistent MLP, for f = 0.25 (dashed blue; also f = 0.2 and 0.3 in grey). The MLP Hxc
potential is in very good agreement with the exact in the centre; the two potentials differ at
the edges as a result of approximating f as a constant.

For the edges of the system the approximate and exact potentials differ; this is attributable
to the approximation of f (x) as a constant tailored to the central delocalised region, causing
vHxc

MLP to subdue the long-range Hxc fields. To improve this result one would need to have a
spatially varying f , dependent on localisation, which introduces more of the SOA into these
outer regions. Nevertheless, even with a constant f and a simple vref

s the MLP performs
remarkably well, far from its exact limit.

7.7.4 Polarised three-atom chain (System 4)

We study a chain of three atoms (one electron per well), with an applied electric field in
the ground state; see Fig. 7.5(a). We chose this system to test the MLP primarily due to the
charge imbalance predicted by the LDA, which fails to screen the field sufficiently [152, 153],
since it lacks ultra-nonlocal density-dependence of the exact vxc [154, 155].

We find that the exact xc potential partly counteracts the applied external electric field, prin-
cipally through two potential steps [Fig. 7.5(b)]. The SOA predicts complete screening of
the applied bias via similar steps, aligning the lowest Kohn-Sham eigenvalue within each
potential well.
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Figure 7.5: Polarised three-atom chain (System 4) — (a) The electron density for a chain of three
atoms (one electron per well) in the many-body picture (solid red for each plot), with the
external potential (dotted-dashed purple). (b) The exact Kohn-Sham potential [dotted blue,
also in (c)]; xc steps act to screen the external electric field. The SOA Kohn-Sham potential
(dashed green) is also shown; this predicts complete screening of the electric field. (c) The
self-consistent MLP density (dashed black) and Kohn-Sham potential (short-dashed dark
green), mixing in the external potential with f = 0.17.
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For this system, we would expect strong localisation, except in the two crucial ‘interface’
regions where the Kohn-Sham potential exhibits a step, and therefore use the external po-
tential as reference as discussed for System 1. A range of values of f (x) from 0.17 to 0.99,
applied self-consistently in the MLP, yield accurate densities, with f (x) = 0.17 yielding the
most accurate screening in the MLP potential. [We note in passing that a position-dependent
f (x) that increases to 0.99 at the edges produces more accurate Hxc fields in the two outer
wells, causing the density in these wells to become more accurately polarised.]

The MLP solution correctly finds one electron’s worth of charge on each site. Next we apply
our one-dimensional LDA of Chapter 5 to this system, and find that the LDA incorrectly
localises non-integer amounts of total electron density on each site; see Fig. 7.7. Figure 7.6
shows the external potential with the exact ground-state density, the density given by the
LDA, and for reference, the noninteracting density7.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

-20 -10 0 10 20

n
(x
)/
V

e
x
t
(a

.u
.)

x (a.u.)

Exact
LDA

Noninteracting
External potential

Figure 7.6: Polarised three-atom chain — the external potential (dotted-dashed black) with the
ground-state density (solid red). Three interacting electrons dissociate such that there is one
electrons worth of charge on each atom, despite the polarising electric field. Due to this
field, noninteracting electrons (density shown – dotted blue) occupy the lowest two wells,
and the LDA (density shown – dashed green) predicts non-integer amounts of charge in the
region of each atom. The MLP density overlaps exactly with the exact; see Fig. 7.5(c).

As for the dissociated molecule, we take the cumulative integral of the electron density for
this system. It is apparent from Fig. 7.7 that the exact electron density integrates to an inte-
ger amount on each atom in the chain. However, this is not the case for the LDA density.
Although it is an improvement over the noninteracting electron density, just as for the dis-
sociated molecule, the LDA is far from exact. Note that for this system the MLP density
almost perfectly localises the electron density, and hence the MLP cumulative integrated
density overlaps with the exact for Fig. 7.7.

7Here, and the rest of this section, is the sole work of Matt Hodgson.
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Figure 7.7: Polarised three-atom chain — the cumulative integral of the electron density, N(x),
for the exact/MLP (solid red) and LDA (dashed green). The self-consistent MLP density
lies exactly over the exact. The LDA underestimates the amount of charge on the first site
considerably, and the error persists. The blue dotted line shows N(x) for the noninteracting
density – the LDA performs better then this, but is still far from exact.

Our results here imply that local approximations, that are missing the steps we observe
here, are incapable of producing accurate electron densities owing to their inherent lack of
nonlocal density dependence. Hence, the need for nonlocal functionals, such as the MLP, is
clear.

7.7.5 Correlated atoms (Systems 5 and 5’)

In this section we study how secure the SOA is in the presence of strong correlation. Gen-
erally, we find that 1D atoms, defined by their external potential vext = − Z

|x|+α
, have strong

correlation. (The degree of correlation in the system is deduced by comparing the exact elec-
tron density to the Hartree-Fock density; as in Chapter 5, Section 5.2.5 on page 51.) In this
section we study two atoms that each confine two spinless electrons to varying degrees. The
first system [see Fig. 7.8(a)], where Z = −1.5 and α = 1 (System 5), has little correlation,
with the Hartree-Fock approximation yielding an accurate electron density.
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Figure 7.8: Weakly-correlated two-electron atom (System 5) — (a) The external potential (dashed
green) with the exact electron density (solid red). The Hartree-Fock density coincides with
the exact. The ELF (dotted grey) shows that an electron is localised in the centre with signif-
icant delocalisation either side of it (the SOA is least secure in these regions). (b) The exact
Hartree-exchange-correlation potential (Hxc) (solid red) and the Hxc potential given by the
SOA (dashed green). Note the quantitive similarities between the two potentials.

Figure 7.8(b) shows the Hartree-xc (Hxc) potential for this system with the Hxc potential
predicted by the SOA given the exact electron density. Despite overestimating the central
peak in the potential due to strong delocalisation in this central region, the form of the SOA
Hxc potential is correct.

For comparison, we now change how confined the electrons are in the atom by using Z =

−0.02 and α = 20 in the external potential; see Fig. 7.9(a). For this less confining system
the correlation is much stronger as the excited energy levels of the Kohn-Sham potential are
closer together, as in Chapter 5, Section 5.4 on page 59. Hence, the Hartree-Fock approxima-
tion does not reproduce the electron density.
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Figure 7.9: Strongly-correlated atom (System 5’) — (a) The external potential (dashed green)
with the exact electron density (solid red). The Hartree-Fock density (dotted-dashed blue)
gives a poor account of the density in the central region. The ELF (dotted grey) shows
electron delocalisation in the centre of the density. However, the system is more localised
than System 5; see Fig. 7.8(a). (b) The exact Hartree-exchange-correlation potential (Hxc)
(solid red) and the Hxc potential given by the SOA (dashed green). Note the quantitive
similarities between the two potential, and how they are more accurate than for System 5,
despite the system having stronger correlation.
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Figure 7.9(a) shows the exact electron density, note that the form of the density is quite
different to that of Fig. 7.8(a). The SOA Hxc potential is once again compared to the exact.
Despite the electron density being distinctly different to that shown in Fig. 7.8(a), the exact
Hxc potential is notably similar, hence the dependence of the xc potential on the density is
challenging for approximations. Despite this, the SOA correctly yields, once again, a peak
in the Hxc potential. However, as there is a large degree of delocalisation for this region, the
peak is overestimated. Incidentally, the more confining atom (above) causes the electrons to
delocalise more, but to be correlated less, than for this atom. Yet, as the SOA Hxc potential
is more accurate for this atom, this implies that the accuracy of the SOA depends not on
correlation, but on electron localisation.

The ELF for both these systems shows the need for a spatially varying f – the SOA is exact
for the regions where ELF(x) = 1 and needs to be suppressed in the delocalised regions.

7.7.6 Time-dependent molecule (System 6)

We now consider the extension of our functional to the time-dependent regime. Consider
two electrons confined to a symmetric double well (inset of Fig. 7.10). For t ≥ 0 an ap-
plied E-field (−0.1x) forces the left electron towards the right electron. After sufficient time
has elapsed (5 a.u.), an appreciable dynamic spatial step has formed in the corresponding
Kohn-Sham potential between the electrons – at the electron density minimum – in order to
replicate the effect of the Coulomb repulsion, as we showed in Chapter 6. We demonstrated,
in Chapter 6, that there is a local dependence between the dynamic spatial steps and peaks
in the velocity field (u = j/n), making u the natural focus when considering appropriate
functional development. We therefore extend Eq. (7.1) to include the extra terms that come
about from solving the time-dependent Kohn-Sham equations for a single orbital, following
Ref. [82], giving

vSOA(r, t) =
∇2n
4n
− (∇n)2

8n2 −
∫ r

−∞

∂u
∂t
· dr′ − 1

2 u2. (7.3)
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Figure 7.10: Time-dependent molecule (System 6) — Inset: ground-state external potential (dot-
ted green) and ground-state density (dashed black). Main panel: exact vs(x, t) − vs(x, 0),
at t = 5 a.u. (solid red), together with the corresponding quantity for the MLP (dashed
blue): both replicate the potential step introduced by the time-evolution (arrow). Here
f (x, t) = 0.2.

In the MLP, f in principle becomes time-dependent, but for simplicity we choose it to be
constant in space and time. In order to focus on the purely time-dependent part of the MLP,
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we add the difference between the MLP potential at time t and the MLP potential just after
application of the external field at t = 0 to the exact ground-state Kohn-Sham potential, and
allow the Kohn-Sham orbitals to propagate through time, recalculating the MLP densities
on each time step.

Once again we find that a range of values for f , 0.1− 0.3, give accurate current and charge
densities, even in the barrier region, with f (x, t) = 0.2 most accurately replicating the po-
tential. Figure 7.10 shows vs(x, t)− vs(x, 0), at t = 5 a.u. (the latest time studied due to noise
build-up in the time-dependent reverse engineering algorithm), together with the same po-
tential given by the time-dependent MLP for f = 0.2. Several features are replicated by the
MLP, most importantly the time-dependent xc potential step that is clearly far outside the
ability of the adiabatic LDA; see Chapter 5. The details of the time-evolution of this step
differ between the exact and MLP potentials, especially at earlier times. Nonetheless, the
general features of the exact Kohn-Sham potential, as well as the time-dependent charge
and current densities, are reproduced by the MLP. The ability of the time-dependent MLP to
produce time-dependent steps is important for reproducing the dynamics of non-adiabatic
systems, such as that demonstrated in Section 5.5 on page 65 and in Section 6.3 on page 71.

7.7.7 Return to the tunnelling system

Finally we apply the time-dependent MLP, fully self-consistently (including the ground-state),
to the tunnelling system of Chapter 5. Note that for our previous time-dependent MLP
calculation we used the exact ground-state (in order to focus on the MLP’s ability to replicate
time-dependent features of the exact Kohn-Sham potential), however, here we are initially
calculate the MLP ground-state and then evolve the Kohn-Sham equations using the time-
dependent MLP.

Because of the relatively good performance of our ALDA for this system (see Section 5.5),
we use it as the reference potential (previously we have used the external potential). As is
appropriate for the MLP, we mix the LDA with the SOA using f . First, we calculate the
ground-state MLP density and potential. We find that f (x) = 0.5 gives an accurate density
for the ground-state of this system and an accurate potential in the tunnelling region; this
value of f is consistent with the degree of delocalisation at the ‘interface’ between the two
localised electrons in the double well. However, as before, a large range of values of f yield
an accurate density (0− 0.99 – only in the ground state).

The time-dependent MLP uses the velocity field (u = j
n ); the inclusion of this term can pose

a difficult numerical challenge because of the small value of n(x, t) at the edges of the sys-
tem. Therefore, we switch electromagnetic gauge in order to increase numerical stability in
our MLP code. By adding χ = −

∫ r
−∞

∂u
∂t · dr′ to Eq. (7.3) one can remove the numerically

troublesome integral term from the expression. Hence, in this gauge, ASOA = −u = − j
n ;

see Appendix B.2 on page 126.8 Because of the simplicity, and physical interpretation of
this term (displacement current = vector potential × electron density), one should consider
its form when developing approximate time-dependent density functionals; see, again, Ap-
pendix B.2.

Figure 7.11 shows the total amount of electron density in the left-hand side of the tunnelling

8Note that the MLP code is one-dimensional, so we use the 1D versions of these expressions.
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system (same as Figs. 5.10 and 5.11 on pages 64 and 66). As seen in Chapter 5, the left
electron initially tunnels towards the right electron, however, the Coulomb repulsion causes
a reverse in the direction of tunnelling, beginning at t ∼ 40 a.u. We modelled this same
tunnelling system using our Landauer-style approximation, our ALDA and noninteracting
electrons in Section 5.5. We found that the noninteracting, and Landauer electrons experi-
enced no reverse in tunnelling. Whereas the ALDA predicted a reverse in tunnelling that
was too late. The time-dependent MLP – with vref = vLDA, and f (x, t) = 0.5 – yields good
tunnelling behaviour. Here, we continue to use the ground-state value of f for all times.
This is justified by the fact that in the many-electron system the localisation does not vary a
large amount due to the electrons remaining well separated because of the Coulomb inter-
action. However, we note that in a general system, f should vary in time in accordance with
the localisation of the electrons.
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Figure 7.11: Time-dependent two-electron tunnelling system — The integrated density of the
left-hand subsystem for two electrons in a tunnelling system, for the exact (solid red), ALDA
(dashed green), noninteracting (dotted-dashed black), and the time-dependent MLP (dotted
blue). The Coulomb repulsion causes the tunnelling to reverse at t ∼ 40 a.u. (This reversal of
the tunnelling does not occur for the noninteracting electrons.) The ALDA does reverse the
tunnelling, but substantially later than it should (∼ 80 a.u.; see Fig. 5.11 on page 66). How-
ever, the MLP reproduces the behaviour well, ‘forcing’ the electron backwards, partially via
a dynamic spatial step. Numerical noise begins to dominate the system at t ∼ 55 a.u.

The MLP achieves the reverse in tunnelling, in part, due to the SOA’s ability to form a
dynamic potential step, like the exact; see Fig. 6.6 on page 74. However, it is this nonlocal
behaviour of the MLP which makes modelling this system for times greater than ∼ 50 a.u.
very difficult because of the increase in numerical noise.

7.8 SOA exact properties

We briefly discussed the importance of approximate functionals satisfying exact properties
in Chapter 2. We noted that the need for one’s approximate functional to be exact in certain
limits should not come at the cost of non-exact properties that lead to improved electron
densities. After all, producing accurate electron densities and energies is the goal of DFT.
However, we take the opportunity here to examine which exact limits the SOA satisfies, as
this is important for how applicable of the SOA is to certain physical systems.

Of course the SOA satisfies all exact properties for a single occupied Kohn-Sham orbital, as
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the SOA is exact in this limit. However, the question remains; in systems with more than
one occupied Kohn-Sham orbital, which exact properties are still satisfied reasonably well?
(This is also explored in Chapter 8.)

We have already discussed the success of the SOA at cancelling the self interaction of the
electrons when they are localised. However, as they delocalise the SOA becomes less valid.
Figure 7.12 shows the xc potential of the SOA, our LDA and the exact. The LDA is calculated
self-consistently for our system but the SOA is given the exact density as an input (as the
SOA cannot be solved self-consistently).

The system is similar to that of Subsection 5.3.1 on page 55, it is comprised of two spinless
electrons in a triple well; one electron localises in the central, deep well, and the second
electron spatially delocalises and splits the electron density – 50% in the left-most well, and
50% in the right-most well. Despite spatially delocalising, the electron is localised relative
to the other central electron. Hence, the SOA applies well in the regions of high electron
density and thus has a self-interaction correction in very close agreement with the exact.
The LDA is not so successful at reproducing the self-interaction correction; see Fig. 7.12.
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Figure 7.12: The exchange-correlation potential (exact – solid red, LDA – dashed green and
the SOA – short-dashed black), in the region of the left outer well of the triple well external
potential (see Fig. 5.6). The Self-interaction correction is the dominant feature, here the SOA
performs extremely well, whereas the LDA overestimates it.

The exact xc potential is known to decay as −1/x from any atom [22, 23]. Figure 7.13 shows
the xc potential for a single-well external potential containing two spinless electrons. Once
again the SOA, LDA (calculated using the exact density and self-consistently respectively)
and the exact are shown, as well as a plot of −1/x. As expected the SOA has the correct
form and matches the exact very well away from the central density, due to the tendency of
electrons to localise at the edge of a finite system. The LDA decays far too rapidly to zero
due to the local form of the functional, and thus will predict densities that are too confined
within the well.
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Figure 7.13: The exchange-correlation potential far from an atom. The exact (solid red)
decays as −1/x (long-dashed green), the SOA (dotted black) also decays with the correct
form, owing to the increase in localisation far from any atom. The LDA xc potential is also
shown (dashed blue), the local dependence of the functional means that the potential decays
far too rapidly.

7.9 Furthering the mixed localisation potential

In Section 7.7.5 we showed that the SOA can reproduce the quantitative features of the exact
potential well, even for challenging electron densities. However, in order for the MLP to
yield a qualitatively accurate potential using the SOA, a spatial varying f is required.

When considering an f that varies in space, one must account for the possible constant shift
in the potential of each term in the MLP. It is known that the Kohn-Sham potential tends
to zero as |x| → ∞, therefore vMLP should also. However, by considering the asymptotic
form of the electron density far from any molecule [n(x) ∝ e−2

√
2Ix [21, 29], where I is the

ionisation energy of the molecule] it is simple to show that vSOA(|x| → ∞) = I. Assuming
that our vref(|x| → ∞) = 0, which it will for choices such as the external potential or the
LDA, it must follow that in order for the constant shift of vSOA not to effect the spatial form
of the MLP when f = f (x), i.e. if v′SOA = vSOA + c, then v′MLP = g(x)vref + f (x)(vSOA + c) =
vMLP + c f (x) 6= vMLP unless c = 0. Hence we must ensure that the SOA goes to zero for
large x, insuring that the MLP potential does also, thus we rewrite Eq. (7.2) as

vMLP = f (x)(vSOA − I) + (1− f (x))vref. (7.4)

As further investigations are required to determine a good approximate form for f (x) and
f (x, t), the above form of the MLP should be taken into account.

7.10 Summary

The importance of localisation in our finite systems is evident from the above, hence we con-
structed an approximate density functional with localisation as an ingredient. Our starting
point was the Kohn-Sham potential for a spin-singlet (a completely localised pair of oppo-
site spin electrons), which is analytically known. We first use this form of the Kohn-Sham
potential as an approximation to the universal Kohn-Sham potential, we termed this the
single orbital approximation (SOA). For reasonably localised electrons, the SOA reproduces
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important features of the exact Kohn-Sham potential well, such as spatial steps – unlike any
other functional – and the self-interaction correction. However, for regions of medium to
low localisation we mixed the SOA, at each point in space and time, with a reference poten-
tial (such as the LDA) in proportions based on the degree of localisation at that point – we
termed this the mixed localisation potential (MLP). The MLP gives accurate, self-consistent
electron densities and currents for some of the systems that the usual approximations find
challenging, such as the disassociated molecule or a polarised chain of atoms, as well as sys-
tems with considerable delocalisation (a single atom). The time-dependent MLP, used fully
self-consistently, can yield the nonlocal features necessary for an accurate electron density
and current for strongly correlated systems like our simple tunnelling system.

The MLP calculations we present are accurate despite the use of the most simple choices for
the reference potential and mixing of the SOA with the reference potential, even for the time-
dependent regime. Hence future development of the MLP should focus, initially, on these
simplifications, and the most effective ways of including a measure of localisation as a way
of mixing the SOA with the reference potential. The MLP has shown promising results here.
However, for the MLP to be used for practical density-functional calculations of molecules
and solids, further investigations into f are required. This has been undertaken recently by
Torelli and others [156], yielding promising results.

So far we have found that step structures are very important features in the exact (time-
dependent) exchange-correlation potential. We have shown them crucial for some common
static and dynamic systems, and proposed an approximate density functional which can
reproduce them. However, little about the origin of these steps is known. In the next, and
final, results chapter, we derive a fundamental understanding of these subtle features.
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Chapter 8

The origin of steps in the Kohn-Sham
potential1

The mixed localisation potential (MLP) promises accurate densities for systems where the
common approximations struggle, such as a disassociated molecule, a chain of hydrogen
atoms and strongly perturbed systems, via its ability to reproduce steps, and other impor-
tant features of the xc potential. However, a more fundamental understanding of the way
that the MLP uses localisation as an ingredient is desirable.

In general, as well as for the improvement of the MLP, understanding the position, height
and shape of steps in the exact Kohn-Sham potential is important for developing approxi-
mate functionals. Therefore, in this chapter we look at the origin of steps structures (ground-
state and time-dependent) from fundamental principles.

We then develop, from fundamental principles, practical arguments for determining the
position of steps, and give a range for the magnitude of the step in order for the potential to
yield accurate densities.

Finally, we investigate other features of the exact Kohn-Sham potential that manifest as a
result of superimposing steps, for static and dynamic systems.

8.1 Introduction

Density functional theory (DFT) and time-dependent DFT (TDDFT) have been applied wid-
ely to calculate the properties of ground-state and time-dependent systems of interacting
electrons. In some cases the approximations made in practice perform extremely well; in
others they become less valid, and hence the accuracy of the approach suffers.

Steps in the exchange-correlation (xc) potential (a jump in the level of the xc potential over
a relatively short distance) have been shown to be crucial for an accurate description of the
electron density for a variety of ground-state and time-dependent systems [10, 11, 14, 113,
151, 157, 158, 159, 137, 160, 161], such as tunnelling electrons and charge transfer/excitations.

1This chapter describes collaborative work that has been published: M. J. P. Hodgson, J. D. Ramsden and
R. W. Godby, ‘Origin of static and dynamic steps in exact Kohn-Sham potentials’, Physical Review B 93, 155146
(2016). Sections 8.1-8.7 are adapted from that paper. Matt Hodgson participated fully in the formulation and
analysis of the research and executed the calculations shown in the paper, and prepared the first draft of the
paper.
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Atomic structure calculations by van Leeuwen et al. [157] demonstrated that steps arise at
the boundaries between atomic shells. Yang et al. [161], using ensemble DFT, showed how,
as more atomic Kohn-Sham orbitals are occupied, steps form in the exact xc potential. How-
ever, much remains to be understood regarding their position, shape and magnitude.

Common approximate functionals struggle to model systems such as those above, as well as
molecular dissociation, Van der Waals interaction and open-shell molecules [162]; see Chap-
ter 3. Therefore improved functionals must be developed, thus understanding features, such
as steps in the xc potential, is of great importance; see Chapter 7.

We study the nature of steps that form in the Kohn-Sham potential for asymmetric ground-
state and time-dependent, ‘molecule-like’ systems (where the external potential tends to
zero far from any atom), and expand the concept to symmetric systems. We examine the
precise shape, height and position of steps, and show how steps combine to make other
features in vxc, even in the time-dependent regime.

In Section 8.2 we begin our analysis by considering the thought experiment of Almbladh
and von Barth [151], where a step in the xc potential forms for a finite system of two spin-
half electrons. By analysing the effect of the step on the electron density, we deduce the
principles underlying the position, height and shape of steps, applying even when multiple
Kohn-Sham orbitals are occupied. We then extend these ideas to the time-dependent regime.
We derive, from these principles, arguments for the position and magnitude of steps, to aid
the development of approximate functionals which have the ability to produce steps in vxc,
such as the MLP of Chapter 7.

In Sections 8.3-8.6 we model finite systems in one dimension using our iDEA code [14]
in which we find the exact xc potential by first solving the time-dependent many-electron
Schrödinger equation to obtain the fully correlated wavefunction. From this we calculate the
exact electron density for ground-state, and subsequently time-dependent, systems. We then
reverse-engineer the Kohn-Sham potential via an optimisation algorithm which matches the
noninteracting density to the interacting density. Our main calculations use spinless elec-
trons in order to explore systems with more exchange-correlation for a given computational
cost, i.e., with each electron occupying a different Kohn-Sham orbital (same as before). Our
focus will be on nano-wires and devices for which one-dimensional descriptions are appro-
priate, and hence we use the appropriately softened Coulomb repulsion (|x′ − x| + 1)−1, as
before (Appendix A.2 on page 121).

8.2 The Almbladh-von Barth thought experiment

When using DFT to simulate neutral molecules, such as that described below, the use of
local and semilocal density functionals to approximate the xc potential gives rise to errors
that affect observables such as binding energy curves and energy surfaces. These errors arise
in part due to the inability of such approximations to correctly predict the amount of charge
on each atomic site [21, 49, 63], therefore it is essential for the development of improved
functionals to understand the role of the xc step in accurately localising the Kohn-Sham
electrons within the molecule.

We consider a one-dimensional double-well external potential, representing two separated
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open-shell atoms, where the right well has single-particle energy states that are lower than
those of the left well. Owing to their Coulomb repulsion, two spin-half, interacting electrons
occupy different wells; however two noninteracting electrons would both occupy the right-
hand well; see Fig. 8.1(a). Hence, a step must form in the Kohn-Sham potential to allow the
Kohn-Sham electron density to match the many-body density. This system has been studied
for many years, originally by Almbladh and von Barth [151] and Perdew [49].

If we consider each individual well separately, as a subsystem, then the ground-state en-
ergies are equal to minus the ionisation energies of the respective atoms [163] (wells) since
vext(|x| → ∞) = 0. (IR represents the ionisation energy of the right well and IL is that of the
left well. Considering the left and right atoms as individual systems, or subsystems, is valid
for well separated atoms, and in the disassociation limit the concept is exact.)
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Figure 8.1: Two spin-half electrons in two separated wells — (a) The external potential (dotted-
dashed blue), together with the electron density for two interacting, spin-half electrons (solid
red). The horizontal grey lines show the bound single-particle energy states of the potential
and the number adjoining each energy level indicates the degeneracy of that state. (b) The
natural logarithm of the density, allowing the density minimum to be clearly identified.
The decay of ln (n) on either side of the density minimum is proportional to the square
root of the ionisation energy of the well the electron occupies. (c) The exact Kohn-Sham
potential (dashed green): the step of height IR − IL (arrow) ensures that one electron is in
each well. Note that the step aligns the ground-state energies of the two wells, as anticipated
by Almbladh and von Barth [151].

Treated individually, both subsystem’s Kohn-Sham potential decays to different, but ap-
proximately spatially constant, values, therefore at their region of intersection in the com-
plete system a step exists whose height is the difference between those constants. We define
the step height as Sxc ≡ vxc

R − vxc
L = vs

R − vs
L, where vs

R and vs
L are the constants of the

Kohn-Sham potentials in the right and left subsystems respectively, and likewise for the xc
potentials vxc

R and vxc
L . This definition is exact in the limit that the wells are infinitely sep-

arated, as the xc potential tends to a constant value far from the subsystem, hence the step
acts to shift vxc by Sxc between the subsystems. We find, however, that the formula holds
well for electrons with only a few ångströms of separation; see Fig. 8.1(c).

We reverse-engineer the exact Kohn-Sham potential2 for this system and, as predicted [49,

2Reverse-engineered potentials, such as this one, are determined to within an additive constant.
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151], we observe a step in the xc potential between the wells; see Fig. 8.1(c). The argu-
ment made by Almbladh and von Barth was that the step must align the Kohn-Sham single-
particle energy levels of the two wells in order for the highest occupied molecular orbital
(HOMO) to have sufficient weight in each well, i.e., one electron’s worth of charge per atom
(well). Hence, the step must have a magnitude which equals the difference between the
HOMO energies of the two wells.

While the above argument is robust for this system, we may come to the same conclusion
via a different point of view. Consider now the form of the electron density far from any
atom. Even for the many-body case, the density will decay asymptotically like that of a
single particle occupying the well [21, 29] n(x) ∝ e−2

√
2Ix. As only one Kohn-Sham orbital

is occupied for this system, the single orbital approximation (SOA) [112, 113], of Chapter 7,
is exact (up to an additive constant). Applying the SOA to the density of Fig. 8.1(a), we
find that at the density minimum the xc potential jumps by IR − IL; see Fig. 8.1(b) and (c). (In
Chapters 6 and 7 we found that the step always forms at a density minimum.) The SOA is
correctly sensitive to the decay of the electron density either side of the step when the density
is of the form e−2

√
2Ix, a result also observed by Helbig et al. [158]. Thus, at the interface

between the electrons, where the density decaying from the left meets the density decaying
from the right (the density minimum), the potential jumps from IL to IR; see Fig. 8.1(b). As
this happens over a short range, a sharp step forms. Therefore the step can be considered to
arise from this change in the decay of the electron density, which we will henceforth refer to
as a change in the ‘local effective ionisation energy’.

Below we study systems where more than one Kohn-Sham orbital is occupied. We find that
a change in the local effective ionisation energy remains responsible for steps. However, ow-
ing to the analogue of this effect in the Kohn-Sham picture (see Section 8.5), the magnitude
and shape of steps can change.

8.3 The origin of steps

To begin this section, we detail why, in general, the magnitude of the step may change
for systems with more than one occupied Kohn-Sham orbital. In the following section we
explore the effect the magnitude of the step has on the electron density, and whether the step
height IR − IL (given by the SOA in all cases) is a good approximation for the step height in
a general system.

We consider the form of the decay of the density either side of the step for both the many-
body picture and the Kohn-Sham picture, in order to more fully understand what deter-
mines the step’s magnitude in general. In the many-body picture, the density decaying
from the left-hand subsystem (more generally, simply decaying from the left), as the wells
are separated far from one another, is given by n′L(x) ∝ e−2

√
2ILx. Likewise, the right-hand

subsystem contributes n′R(x) ∝ e+2
√

2IRx. The decay of the density coming from the left-

hand subsystem in the Kohn-Sham picture is nL(x) ∝ e−2
√

2(vs
L−εL)x, where εL is the energy

of the highest occupied Kohn-Sham orbital that dominates the asymptotic density of the

left-hand subsystem. And for the right-hand subsystem nR(x) ∝ e+2
√

2(vs
R−εR)x, where εR is

defined correspondingly. As n′ = n, for the exact Kohn-Sham potential, it must follow that
vs

L = IL + εL and vs
R = IR + εR (within an overall additive constant). Noting that the step
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height is Sxc = vs
R − vs

L, it follows that

Sxc = (IR − IL) + (εR − εL), (8.1)

where a negative value indicates a step that drops when going from left to right, and a
positive value vice versa. Equation (8.1) is exact in the limit that the atoms are infinitely
separated, however, we have found the equation to be accurate for separations of a few
ångströms. [Equation (8.1) requires knowledge of the exact Kohn-Sham eigenenergies εR

and εL, determined partially by the step, and hence cannot be used to predict the step height,
unless the energies can be approximated or neglected, e.g., εR ≈ εL.]

The energies εL and εR refer to the highest occupied Kohn-Sham orbitals that dominate the
density in the outer region of each subsystem. When the system consists of localised, well-
separated subsystems, this concept is well defined, and it is in this case that a sharp step
may form in vs. Where the subsystems are closer and the electrons less localised, we find
that the energies remain a useful interpretive concept.

Equation (8.1) shows that the step arises from two effects: the change in the local effective
ionisation energy in the many-body picture (IR − IL), and its counterpart in the Kohn-Sham
picture (εR − εL); see Section 8.5 later. Thus, the overall step can be considered as the sum of
two steps, Sxc = SI

xc + Sε
xc, where SI

xc = IR − IL and Sε
xc = εR − εL; see Section 8.7.

The above argument applies to spin-half electrons as well as spinless electrons. We note
that if we apply the above logic to a system consisting of spin-half electrons, where there is
an odd number of electrons on each site, the highest occupied Kohn-Sham orbital must be
spread over both wells. Hence, in this case εR = εL, and therefore the step height is that of
the Almbladh-von Barth thought experiment discussed above (Sxc = IR − IL).

When developing approximate xc functionals, there are certain known exact properties that
one aims to satisfy, such as the derivative discontinuity of the xc energy with respect to
electron number [21]; see Chapter 2. The derivative discontinuity predicts a jump in the
xc potential by a constant as the electron number passes through an integer, which may
lead one to connect steps in the xc potential with the derivative discontinuity. However, it
is apparent from the above analysis that the magnitude of the step in vxc is a result of the
precise way in which the electron density decays from each subsystem. The decay of the
density, in the many-body picture, and in the Kohn-Sham picture, has no direct association
with the electron affinity of the subsystem [−εN+1(N + 1)], nor the affinity of the system
as a whole. We therefore conclude that the step which forms in vxc is not attributed to the
derivative discontinuity. For example, in the Almbladh-von Barth system this insensitivity
to the affinity is complete.

8.4 Height of steps

Next we examine the effect that under- or overestimating the step height would have on the
electron density. For example, noting that any step given by the SOA is of height IR − IL,
we may ask whether this is an appropriate value for the step height in a general system. To
answer this, one must consider the effect that altering the step height has on the electron
density.
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For spin-half electrons in a separated double-well system where the occupied Kohn-Sham
orbitals are atomic orbitals, changing the step height equates to adding a constant to the
potential within a given subsystem, and so usually affects the density only in the region
of the step (see below). However, if the change in step is too large – enough to alter the
occupation of the wells – the electron density will be affected everywhere. In the case where
the highest occupied orbital is spread over both sites, the step height must be exactly IR− IL.

Building on the arguments of Perdew [49] for the range of allowed energies of a system con-
nected to a reservoir, we find a range for our step height for our molecular system consisting
of spinless electrons. If we consider a system where, in the Kohn-Sham picture, M states are
filled in the left well, and N states are filled in the right well, we can place a range on the
magnitude of the step that must exist in vxc based on correctly filling the eigenstates of the
individual wells; see Fig. 8.2. For this case we are assuming that the wells are sufficiently
separated so that the single-particle eigenenergies (ε) of each well are unaffected by the elec-
trons in the other well, other than the shift by a constant due to the step – in all cases this
degree of well separation would be needed in order for a sharp step to form.

We know that the HOMO of the left well [εL
M(M)], plus the shift in energy due to the step

(Sxc, without loss of generality we set vs
R = 0), must be less than the lowest unoccupied

molecular orbital (LUMO) of the right well [εR
N+1(N)], and vice versa, allowing the amount

of charge in each well to be correct. Thus, we can infer that

εL
M(M)− εR

N+1(N) < Sxc < εL
M+1(M)− εR

N(N). (8.2)

A schematic representation of the range is shown in Fig. 8.2. The external potential has been
chosen such that the lowest two single-particle states are located in the right-hand well, thus
in the Kohn-Sham picture the step must correct this to allow the lowest two energy states of
the overall system to be located in separate wells. The green arrow indicates the minimum
the step height can be, whereas the red (long) arrow shows a step that is too large. These
limits define the allowed range for the step height, in order for the electron density to be
reasonably accurate.
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Figure 8.2: The external potential (dashed blue) for the a general double-well molecule, the
lines indicate the bound single-particle energy levels of the individual wells, where, in this
case, M = N = 1. As it is, the external potential in the absence of interaction would give
the incorrect filling of each well, i.e., both electrons in the right hand well. The green arrow
indicates the minimum step height to achieve one electron per well, and the (longer) red
arrow indicates a step height that is too large. Any value of Sxc between the two values
would give a fairly accurate electron density.

Equation (8.2) applies also for spin-half electrons (noting that the number of electrons will
be different, as two electrons may occupy each energy level), except for the case where there
is an odd number of electrons on each site. In this case the above arguments do not apply,
however the step height is known exactly (Sxc = IR − IL; derived above).

Finally, we look at how changes in the step height affect the detailed electron density in
the region of the step, and hence show which features of the density determine the exact
step height. Consider a finite molecule that is very similar to the Almbladh and von Barth
thought experiment (System 1), except two Kohn-Sham states are now occupied as opposed
to one; two spinless electrons, where the external potential is a double well, designed such
that the first excited state of the right-hand well is lower than the ground state of the left-
hand well (Fig. 8.2). Hence, in the absence of interaction, both spinless electrons would
occupy the lowest two states of the right-hand well. As the many-electron density has one
electron’s worth of charge in each well due to the Coulomb repulsion and Pauli exchange,
the exact Kohn-Sham potential must form a step to achieve this in the Kohn-Sham density.
The step acts to shift the ionisation energy of the two wells here, as opposed to aligning
them, allowing the ground-state of the left-hand well to be lower in energy than the first
excited state of the right-hand well, in accordance with our range (Fig. 8.2).
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Figure 8.3: System 1 (two spinless electrons in an asymmetric double well) — (a) The exact
vHxc potential (solid red) and two artificial stepped vHxc potentials (long-dashed green and
dashed blue). (b) Natural log of the density at the density minimum. The natural log of
the Kohn-Sham densities for the ground-state (| φ1 |2) and the first excited state (|φ2| 2) are
shown. As the step height is decreased these densities change (indicated by the arrows),
and thus affect the overall density by increasing or decreasing the magnitude at the density
minimum (determined by the precise way the Kohn-Sham densities superimpose). (c) The
densities corresponding to the step heights of (a), where the colours and line styles corre-
spond.

Figure 8.3 shows how an artificially imposed change in step height affects the electron den-
sity. We observe that the change to the electron density is small, provided the step height is
in the range given by Eq. (8.2). The change in step height has the effect of reducing or in-
creasing the density minimum very slightly. Precisely how the density minimum is affected
is determined by the individual Kohn-Sham densities, e.g., n1 = |φ1| 2 and n2 = |φ2| 2. As
the magnitude of the step is decreased, less of the right-hand Kohn-Sham density tunnels
through to the left, and the opposite effect happens for the left-hand Kohn-Sham density.
Thus we can conclude that the step height ultimately determines the degree to which the left-hand
electron occupies the right well and vice versa – this applies to all cases. Thus, local and semilocal
approximations to the xc potential must be exceedingly sensitive to changes in the density
at the location of the step, or else a fully nonlocal approximation must be employed (such
as the MLP).

8.5 Position of steps

We consider the xc potential far from a molecule (e.g., one composed of several subsystems),
hence the subsystems are no longer distinguishable. And therefore, the density must decay
with the ionisation energy of the whole molecule, which in the case of a molecule comprised
of separated atoms is the lowest ionisation energy of all the wells. This means that for any
subsystem’s density which does not decay with the ionisation energy of the whole system,
there must be a second change in the local effective ionisation energy far from the system,
and therefore another step must form. This second step was first observed by Perdew [49]
and also by Makmal et al. [164] in the exact exchange potential for LiF, where they attribute
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the steps to shifts in the Kohn-Sham eigenvalues. They discuss the ‘domain’ of each atom
being dominated by the HOMO of that atom, resulting in a plateau to correct for the non-
zero asymptotic limit caused by the HOMO eigenvalue being non-zero. This is the analogue
of the change in the local effective ionisation energy in the Kohn-Sham picture. Hence, gen-
erally, this causes a step in the exact Kohn-Sham potential in accordance with our derivation
of Eq. (8.1). Thus, the ‘overall’ step in the exact xc potential is a combination of the steps
caused by the change in local effective ionisation energy and the crossover of the single-
particle Kohn-Sham densities (see below). When correlation effects are taken into account
both these effects must also be considered.

We define, as a function of space, Ĩ(x) = 1
8n2

(
∂n
∂x

)2
[which is also the second term in the

SOA expression for the Kohn-Sham potential – Eq. (7.1) in Chapter 7 – hence showing the
correct sensitivity of the SOA to the ionisation energy], which represents the local effective
ionisation energy when the density decays asymptotically, which is true for regions of the
density near the edge of a subsystem3. Hence, in such a region Ĩ(x) = I, and between
subsystems Ĩ(x) may have a step demonstrating the change in the local effective ionisa-
tion energy. (While in this chapter we apply this formula to spinless electrons, the concept
applies to spin-half electrons also.)
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Figure 8.4: System 2 (two spinless electrons in a molecule) — (a) The electron density (solid
red) and external potential (dashed blue). (b) The Hxc potential (dashed green), the arrows
indicate where the steps are. One step forms at the density minimum, where the Kohn-Sham
single-particle densities cross. The second step forms far from the molecule, again where the
Kohn-Sham densities cross. (c) There are two changes in the local effective ionisation energy
(black dotted) in the many-body density, each corresponding to a step in vxc, the grey lines
indicate the ionisation energies of the subsystems (IL and IR). (d) The natural log of the
Kohn-Sham densities, blue short-dashed is the first excited Kohn-Sham density and red
dashed is the ground-state Kohn-Sham density. As the decay rate of the first excited-state
must be less than that of the ground state, far from the molecule the densities must cross.

Figure 8.4(a) shows a molecular system (System 2) where we observe the second, postulated

3 Ĩ(x) is simply found by rearranging the asymptotic density, n = n0e−2
√

2Ix, where n0 is a normalisation
factor, not dependent on x, to find I.
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step far from the molecule; see Fig. 8.4(b). In Ref. [164] the correcting step is observed for
the exact exchange potential. Our step is, in part the same as this correcting step, however
it superimposes with the a step which forms as a result of a change in local effective ion-
isation energy at the same point in space. Also in Ref. [158] the second step was deduced
to exist, however, was not observed. Our findings show that their thinking was correct, as
our argument here applies to the spin-half case (as well as for our spinless electrons). Fur-
thermore, Fig. 8.4(c) and (d) show that the step forms at the point where there is a crossover
of the single-particle Kohn-Sham densities, e.g., where the dominant contributing single-
particle density switches (applying also to spin-half electrons for systems where more than
one Kohn-Sham orbital is occupied). This is consistent with the findings of Ref. [164] (dis-
cussed above) and Ref. [157], where the xc potential has ‘a clear step structure and is constant
within the atomic shell and changes rapidly at the atomic shell boundaries’ (also where the
local ionisation energy can change). Reference [161] also found that a step structure forms
when more than one orbital begins to be occupied.

Here we observe that the change in the local effective ionisation energy and the crossover
in the Kohn-Sham single-particle densities manifest at the same point, hence the two steps
superimpose (Sxc = SI

xc + Sε
xc). In general, a change in the dominant single-particle Kohn-

Sham density corresponds to a change in the local effective ionisation energy, but not nec-
essarily vice versa. For example, in the Almbladh-von Barth system there is a change in the
local effective ionisation energy without a crossover of the localised Kohn-Sham densities,
since only one orbital is occupied (εR = εL ⇒ Sxc = IR − IL).

Della Sala and Görling showed that for a three dimensional system, along a direction r which
corresponds to a nodal surface of the HOMO, the exact xc potential will approach a non-
zero constant [165]. Our analysis can be generalised to 3D, and agrees with this result; if
the HOMO is zero in the direction r, then, as r → ∞, the dominant contribution to the
overall density from the single-particle Kohn-Sham densities must come from the highest
occupied Kohn-Sham orbital that does not correspond to a nodal surface. Hence, the non-
zero Kohn-Sham density and the ‘true’ HOMO Kohn-Sham density cannot cross. Thus the
counteracting step we observe in Fig. 8.4 will not manifest and the xc potential may tend to
a non-zero constant.

The role of the Kohn-Sham orbitals in this argument is reminiscent of the appearance of
Kohn-Sham orbitals in meta-GGA [30, 166] functionals and the Becke-Edgecombe electron
localisation function (ELF) [136], and draws attention to the power of the Kohn-Sham or-
bitals in improving density functionals. Our MLP approximation, likewise, makes use of
the Kohn-Sham orbitals in defining the degree of localisation.

8.5.1 Time-dependence

We look at the single-particle time-dependent Kohn-Sham densities for two electrons in
an asymmetric double-well external potential, where for t ≥ 0 a perturbing field (0.1 |x| )
pushes the electrons together (System 3), and find that the dynamic steps also occur at the
points where the individual Kohn-Sham densities cross, showing that, to some degree, the
dynamic steps occur as a result of this phenomenon; Fig. 8.5. However, this concept is less
well defined for the time-dependent case, as the idea of a well defined ionisation energy is
no longer applicable.
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Figure 8.5: System 3 (dynamic double-well) — Two electrons in an asymmetric double-well
external potential, where a perturbing field (0.1 |x| ) pushes the electrons together for t ≥ 0.
(a) The natural logarithm of the single-particle Kohn-Sham densities (ground-state – solid
red, first excited-state – dashed blue), with the time-dependent part of the Hxc potential
(short-dashed green) at t = 4.6 a.u. (b) The same as (a) but at t = 5 a.u. and the single-
particle Kohn-Sham densities have crossed, causing a time-dependent step to form in the
Hxc potential at the point where the densities cross.
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The step here does correspond to a peak in the velocity field (current density divided by
electron density), which in turn forms as a result of a minimum in the electron density, as in
Chapter 6. We find that in the system studied in Chapter 6 there are density minima, and
thus peaks in the velocity field, that do not correspond to steps in the time-dependent xc
potential. We have confirmed that this is because these density minima do not correspond
to Kohn-Sham single-particle densities crossing.

Thus, the question remains; why do the Kohn-Sham single-particle densities seem to always
cross at density minima? For dynamic finite systems interference ‘ripples’ in the density are
likely to occur (as seen in Chapter 6), hence if an orbital density develops an extremum,
there is an enhanced likelihood of it crossing an adjacent orbital density. Thus, minima in
the dynamic electron density may also serve to indicate where steps will form. However,
as the energy levels are not well defined in the dynamic regime the magnitude of the step
may vary from that given by Eq. (8.1). But, if the system is in the adiabatic limit then our
arguments for the ground-state steps would approximately apply for the time-dependent
system.

8.5.2 The role of density minima for ground-state systems

A turning point often occurs when the dominant contribution shifts from one electron to
another. Thus a density minimum is likely to correspond to a change in the local effective
ionisation energy and/or a crossover of the single-particle Kohn-Sham densities. Hence,
in our calculations we observe that density minima are usually good indicators of where
steps will form; seen in Chapters 6 and 7. Next we will show that steps do not form at all
density minima, as some density minima cannot correspond to a change in the local effective
ionisation energy or this concept is not well defined. However, we demonstrate below how
certain density minima, which also represent the interface between localised electrons, are
indicators for where in the electron density steps will form for ground-state systems.

Consider a subsystem where the majority of the electron density corresponds to one strongly
localised electron. If there is a minimum in the density within the subsystem it cannot corre-
spond to a change in the local effective ionisation energy, because there is only one occupied
energy state. Thus, there can never be an overall step in vxc for a minimum within a subsys-
tem consisting of one electron. This then shows that not all density minima correspond to
steps in the xc potential. Yet, the question remains; which density minima will give rise to
steps?

In systems containing well-separated subsystems, the local effective ionisation energy is
well defined near the boundary of each subsystem, but can change from one value to an-
other as the boundary is crossed. If the number of electrons in this subsystem integrates to an
integer (which is usual for localised systems), we can define the integer electron point (IEP) as
an indicator of this boundary, and hence of where a step may form. (We note that as a given
subsystem may contain several, localised electrons, features in vxc within the subsystem may
correspond to IEPs due to changes in the local effective ionisation energy and/or crossing
single-particle Kohn-Sham densities. However the possible delocalisation due to the elec-
trons being confined within the subsystem may cause these features to be unrecognisable as
steps; see Sections 8.6 and 8.7, and Fig. 8.7.) Therefore, if, in 1D, the density minima (a and
b) satisfy

∫ b
a n(x)dx = N, where N is an integer, those density minima are good indictors of
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where steps (or other features) may form, provided that the IEPs and density minima tend
to coincide (which we observe them to). We show below how the Coulomb repulsion and
the degree of localisation in the system are responsible for density minima and IEPs being
at approximately the same point. We note that in the time-dependent regime (as observed
above and in Chapter 6), owing to energy levels being less well defined, the IEP is not an
indicator of a density minimum that may correspond to a step, as orbitals are likely not to
cross at the boundaries of localised subsystem, but anywhere in the system.

To explore the relationship between density minima and integer electron points (IEPs) in
the ground state, we examine how a system may be split into subsystems. With a suffi-
cient degree of localisation for all electrons in a system, IEPs indicate the crossover from
one electron to the next. In the limit of complete electron localisation, the IEPs are definite
intersections between the electrons, hence giving a clear boundary between the subsystems.
As the electrons delocalise, some of the on-site electron spreads into the neighbouring sites.
This delocalisation, and the effect it has on the shape of steps in the xc potential at the IEPs,
is studied below.

We observe in calculations of electron densities that an IEP typically occurs approximately
at a minimum in the electron density. To show that the Coulomb repulsion is largely respon-
sible for this phenomenon, we introduce a 2-electron system (System 4), where the IEP and
density minimum are designed to be significantly different for noninteracting electrons; see
Fig. 8.6(a). With two interacting electrons in the same external potential we observe the IEP
and the density minimum tending to the same point; see Fig. 8.6(b).
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Figure 8.6: System 4 (crafted external potential) — (a) The noninteracting electron density
(dashed green) for two electrons in the external potential of (c). The IEP (see text) is shown
by the downward facing arrow at x ∼ −2.8 a.u. and the density minimum is by the upward
facing arrow at x ∼ 0.13 a.u. (b) The interacting electron density (solid red) for two elec-
trons in the external potential of (c). Again the IEP is shown by the upward facing arrow
at x ∼ −0.39 a.u. and the density minimum by the downward facing arrow at x ∼ −0.26
a.u. The interaction acts to draw the IEP and density minimum together. (c) Shows the ex-
ternal potential for this system. This potential has been crafted so that, for noninteracting
electrons, the density minimum and IEP are very different.

To understand this, we imagine artificially increasing the interaction strength between the
electrons: the likelihood of finding the left electron in the right subsystem, i.e., to the right
of the IEP, and vice versa, reduces owing to the electron repelling the other from its vicinity.
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Thus, the electrons localise and the density at the IEP tends to zero. For a non-negative
quantity, such as the electron density, any zero point must correspond to a minimum.

For the physical interaction strength, it is possible for a system (e.g., System 5 below) to
have an IEP that does not correspond to a minimum in the density of interacting electrons.
However, achieving this requires a carefully crafted external potential which causes the ap-
propriate degree of delocalisation.
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Figure 8.7: System 5 (crafted external potential) — (a) The electron density for two interacting
electrons (solid red) in a potential crafted such that the IEP (defined by the condition that
the electron density to the left of the point integrates to exactly one electron) is distinctly
different from the density minimum. The downward facing arrow indicates the IEP at x ∼
−1.2 a.u., and the upward facing arrow indicates the density minimum at x ∼ 0.24 a.u. (b)
The Hartree exchange-correlation potential (dotted green): the predominant feature of the
potential – not a step – is at the IEP. (c) The external potential (dashed-dotted blue).

Figure 8.7 shows that the predominant feature in the Hartree exchange-correlation (Hxc)
potential (vH + vxc) forms at the IEP, however there is no step as the local effective ionisation
energy does not have a well defined value on each side of the feature – a characteristic of
the exact functional shared by the SOA in more delocalised systems such as this one.

To summarise, a change in the local effective ionisation energy is required for a step to form
– usually indicated by a density minimum corresponding to an IEP. The IEP and density
minimum will be at approximately the same point in the electron density owing to the de-
gree of localisation in the system coupled with the Coulomb repulsion. Future improved
density functionals may exploit this approximate functional relationship to include features
of the exact Kohn-Sham potential examined above.

8.6 Sharpness of steps: effect of delocalisation

Considering how the step forms, it is apparent that the more abrupt the switch between
dominant Kohn-Sham orbitals (correlated with localisation), and between local effective ion-
isation energies, the sharper the step will be. Therefore, next we test what happens to the
shape of a step as the region of delocalisation increases. (We note that the step forms in the
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Chapter 8 The origin of steps in the Kohn-Sham potential

region of highest delocalisation, which corresponds to the interface between the electrons4.)
This type of investigation is aimed to assist with the development of approximate function-
als, specifically the MLP which uses localisation as an ingredient. Tempel et al. considered
a singlet case where two potentials were separated, and the effect on the step was observed
[167]. Their findings are in agreement with our concept of the local effective ionisation en-
ergy. They find that as the molecule dissociates the step becomes clear as the separation
increases, i.e., as the local effective ionisation energy becomes well defined [i.e., Ĩ(x)→ I].

We introduce another system (System 6), which has the usual form: two spinless electrons
in an asymmetric double well. Figure 8.8(b) shows the Hxc potential for System 6 – note the
sharp step.
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Figure 8.8: System 6 (increase separation of wells) — (a) The external potential (dotted blue)
and electron density (solid red). (b) The Hartree exchange-correlation (Hxc) potential has a
step; this ensures that both Kohn-Sham electrons occupy just one well each. (c) The external
potential and electron density for System 6′. The system is that of System 6, except that the
wells have been brought closer together. (d) The Hxc potential for System 6′ shows a step,
like that of System 6, but because the delocalisation is stronger the step is less sharp.

Figure 8.8 shows that as the localisation decreases the ‘sharpness’ of the step decreases also.
This observation is in agreement with our above analysis – sharp steps cannot form in re-
gions where there is not a well-defined difference in ionisation energy. Note the second,
very diffuse step about x ∼ 11 a.u. where the Kohn-Sham single-particle densities cross
once more; see Fig. 8.8(d). Here the effect is to counteract the step between the electrons so
that there is no net step. [In Fig. 8.8(b) the system is not large enough for the Kohn-Sham
densities to cross twice, hence there is only one step.]

We model these systems using the self-consistent MLP and find that it performs well by
reproducing the step. Of course, as seen in Section 7.7.1 on page 78, the choice of f has
an effect on how well the step matches the exact, however, we find that the MLP density

4We have looked at the electron localisation function (ELF) [135] for this system, and found that the electrons
are extremely localised towards the edges. As one approaches the ‘interface’ between the two electrons strong
delocalisation occurs.
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accurate for a range of values. For details on the MLP applied to systems like these see
Ref. [156].

We apply the Hartree-Fock (HF) approximation to System 6 as a means of determining the
role that exchange plays in these systems. We reverse-engineer the HF electron density us-
ing iDEA to find the local potential which describes the density (HF-Kohn-Sham potential).
In this way we can compare the steps of the HF-Kohn-Sham potential to those of the exact
Kohn-Sham potential. For some systems – where the Kohn-Sham HOMO and LUMO are
distinctly different – we observe the HF-Kohn-Sham potential to have a step that is almost
perfect, as for System 6. Whereas for systems where the Kohn-Sham HOMO and LUMO en-
ergies are close, correlation is stronger, and the HF-Kohn-Sham potential’s step (and other
features) are less accurate. Thus both exchange and correlation may be important in deter-
mining the properties of the steps.

8.7 Bumps and other superpositions of steps

In the following model systems we demonstrate that the steps in vxc in symmetric systems
in effect coalesce to form ‘bumps’ in the potential, for systems with some degree of delocal-
isation.

We demonstrate this by studying two examples – one time-dependent and one ground-state
– each comprised of three systems (A, B and C). The external potential for the third system
(C), in each case, is given by vC

ext = 1
2

(
vA

ext + vB
ext
)
. From this we can find the relationship

between the Kohn-Sham potentials for the three systems. We write (to first order)

vC
s (r) = vA

s (r) +
∫

dr′
δvs(r)

δvext(r′)

(
vC

ext(r
′)− vA

ext(r
′)
)

vC
s (r) = vB

s (r) +
∫

dr′
δvs(r)

δvext(r′)

(
vC

ext(r
′)− vB

ext(r
′)
)

.

If we add the two together and divide by two we get

vC
s (r) =

1
2

[
vA

s (r) + vB
s (r) +

∫
dr′

δvs(r)
δvext(r′)

(
2vC

ext(r
′)− vA

ext(r
′)− vB

ext(r
′)
)]

,

thus, provided the systems are sufficiently similar in character to have similar response
functions (

δvs(r)
δvext(r′)

)
C
≈
(

δvs(r)
δvext(r′)

)
A
≈
(

δvs(r)
δvext(r′)

)
B

, (8.3)

we can infer that
vC

s (r) ≈
1
2

[
vA

s (r) + vB
s (r)

]
. (8.4)

In the present context the bump potential of System C is the sum of two oppositely-stepped
potentials A and B.

8.7.1 Ground-state example

We study three systems to demonstrate, using the above linearity, how positive and negative
steps may manifest in a symmetric system as a bump. The bump we observe is very similar
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in character to that of Ref. [109], where a ‘peak’ in the xc potential arises between atomic
shells. Reference [159] describes peaks/bumps forming with steps for molecular systems
like our own. We show below how steps and bumps both manifest through the superposi-
tion of steps in the xc potential. Reference [164] also observed a peak in the exact exchange
potential at ‘the crossover point of orbital domination.’

System 7A [Fig. 8.9(a)] is the usual two spinless electrons in an asymmetric external potential
designed to give a step, System 7B [Fig. 8.9(b)] is the same as System 7A but reflected about
x = 0 (explained below), and the symmetric System 7C [Fig. 8.9(c)] is the superposition of
7A and 7B (as described above).
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Figure 8.9: System 7A, 7B and 7C — (a) The external potential (dotted-dashed blue) and the
electron density (solid red) for System 7A. (b) The same for System 7B. (c) The external
potential (dotted-dashed blue), defined by averaging the external potentials of 7A and 7B,
with the electron density (solid red). (d) The xc potential (vA

xc) for System 7A (dotted green),
with the xc potential (vB

xc) for System 7B (dashed blue). The xc potential for System 7C (solid
red) is compared against 1

2 (v
A
xc + vB

xc) (short-dashed black). We note the good agreement
between the two, and how well the bump in the potential is reproduced by the superposition
of steps. (e) is a close up of the bump and steps in (d).
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We choose our second system (System 7B) to be the mirror image of System 7A, so that 7C is
symmetric. Finally, we construct System 7C from System 7A and 7B (as stated above). The
density minimum is aligned at x = 0 in all three systems. As System 7C is symmetric, no
overall steps can form in the exact xc potential of C; instead a bump forms at the density
minimum; see Fig. 8.9(d) and (e). This bump acts to ‘push’ the electrons apart, recreating
the effect of the Coulomb repulsion. Figure 8.9(d) shows the xc potential given by Eq. (8.4)
as well as the exact xc potential for Systems 7C, 7B and 7A. We observe the precision with
which the xc potential of System 7C is replicated by the superposition of steps, as well as the
self-interaction correction either side of this central feature. This accuracy is due to Eq. (8.4)
holding well (in itself a striking result). We have also shown that the symmetric bump
feature in the exact xc potential of System 7C can be thought of as the sum of positive and
negative steps; see Fig. 8.9(e) for close up.

We stress that Systems 7A and 7B satisfy the requirement that their differences from System
7C may be described within a linear-response framework [Eq. (8.3)]. In this sense, there are
several sets of systems which would demonstrate the above superposition of steps to form
a bump. We also point out that had System 7A not corresponded to the reflection of 7B
about x = 0, then 7C could be asymmetric and hence may have an overall step. We have
simulated this scenario and found that two differently sized steps superimpose to give a
step-and-peak combination for System C, reminiscent of the step and peak of Fig. 8.1(c).

8.7.2 Time-dependent example

We extend this concept of superimposing steps to dynamic systems. We once again consider
three systems: the first (System 8A), a symmetric double well in its ground state, designed
such that, for t ≥ 0, a dynamic step grows [Fig. 8.10(a)]; the second (System 8B) the mirror
image of the first [Fig. 8.10(b)], and the third (System 8C) is symmetric [Fig. 8.10(c)]. Once
again we align the origins of the three systems at the density minima.
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Figure 8.10: System 8A, 8B and 8C — (a) The external potential (dotted-dashed blue) and the
electron density (solid red) for System 8A at t = 0. The grey lines indicate the perturbed
potential and the electron density at t = 2.5 a.u. (b) The same for System 8B. (c) The external
potential (dotted-dashed blue), defined by averaging the external potentials of 8A and 8B
(as for the perturbed potential shown in grey), with the electron density (solid red) and at
t = 2.5 a.u. (grey). (d) The dynamic part of the Hxc potential [vA

Hxc(t) − vA
Hxc(t = 0)] for

System 8A (dotted green), with the same potential for System 8B (dashed blue). The same
potential for System 8C (solid red) is compared against the averaged potential (short-dashed
black) at t = 1.25 a.u. We note the good agreement between the two, and how well the ‘dip’
in the potential is reproduced by the superposition of steps. (e) The same graph for t = 2.5
a.u., the dip has now become a bump.

114



Chapter 8 The origin of steps in the Kohn-Sham potential

System 8A, in the ground-state, is comprised of two electrons in a double well. At t = 0
we apply a perturbing field which excites the left electron by increasing the depth of the
left well allowing the left electron to explore excited states – a dynamic step grows at the
density minimum as a result. System 8B is the same, but reflected about x = 0. And System
8C (defined in the same way as the ground-state example) is symmetric, so both electrons
explore excited states. As two dynamic steps form, they correctly superimpose at all times
to create a feature which oscillates between a bump and a dip; see Fig. 8.10(d) and (e).

8.8 Step theory applied to approximate functionals

The above derivation of step structures that form in the xc potential is intended to inform the
development of improved density functionals. Hence we now apply some of this ‘step the-
ory’ to our 1D LDA, a ‘1D PBE’ GGA and the SOA to determine whether these approximate
functionals are capable of forming steps in the xc potential.

First we consider the form of the xc potential for the LDA. From Chapter 5 the form of the 1D
LDA xc potential is vLDA

xc = (α + βn + γn2)np. It is clear, by substituting the analytical form
of the density into the function, vLDA

xc = (α + βe−2
√

2Ix + γe−4
√

2Ix)e−2p
√

2Ix ≈ 0 far from the
subsystem, that this form of the potential is highly insensitive to the local effective ionisation
energy, and hence the LDA xc potential is incapable of reproducing step structures.

While it seems obvious that a local approximation could not give rise to a step, GGAs are
semi-nonlocal and hence may have the ability to give step features in the GGA xc potential.
If we consider a 1D PBE, where s1D =

∣∣∣ ∂n
∂x

∣∣∣ 1
n2 (formulated, as in the 3D case, such that it is di-

mensionless; see Section 2.2.3.3 on page 23), we can use the form of the density (n ∝ e−2
√

2Ix)
in the region where the local effective ionisation energy is well defined to see whether the
additional (relative to the LDA) term in this 1D PBE is sensitive to the ionisation energy, and
if so whether the PBE functional form of Fxc (see Section 2.2.3.3) can give rise to a step in vxc.

We calculate s1D using the asymptotically decaying density and hence find FPBE
x , as follows

FPBE
x (x) = 1 +

as2

1 + bs2 = 1 +
8aIe4

√
2Ix

1 + 8bIe4
√

2Ix
≈ 1 +

a
b

,

as e4
√

2Ix is very large far from any subsystem, as x is large. Hence, the 1D PBE Fxc is not
sensitive to the ionisation energy in this region (a and b are constants for the system). This
means that as the other terms that the PBE functional uses are also not sensitive to the change
in local effective ionisation energy, it is very unlikely for the PBE xc potential to form a step.
Of course, the only way to prove this absolutely is to model systems which are known to
have changes in the local effective ionisation energy, and hence there are steps in the exact
xc potential, using PBE and show that no steps form.

Throughout this chapter we commented on the ability of the SOA to produce steps, which
can easily be shown to be of magnitude of IR− IL and at the correct point using Eq. (7.1): we
apply the single orbital approximation (SOA) to the region of density far from a subsystem,
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hence the density is of the form n ∼ e−2
√

2Ix, as follows

vSOA =
1

4n
∂2n
∂x2 −

1
8n2

(
∂n
∂x

)2

= 1
4 · e

2
√

2Ix · 8I · e−2
√

2Ix − 1
8 · e

4
√

2Ix · (2
√

2I)2 · e−4
√

2Ix

= 2I − I = I. (8.5)

Clearly vSOA is correctly sensitive to the ionisation energy. Hence, when there is a change
in the local effective ionisation energy, the step height given by the SOA is SSOA = vSOA

R −
vSOA

L = IR− IL. It is this sensitivity to I which is important for approximate functionals. The
above demonstration could be used to deduce forms of Fxc that are correctly sensitive to I
and hence could produce an approximate functional that gives steps in vxc.

8.9 Application to the mixed localisation potential

In Chapter 7 the SOA is applied to electron densities with regions of strong delocalisation.
Above we established how a change in the local effective ionisation energy can remain a
valid concept even in regions of strong electron delocalisation. We observed features form-
ing in the exact Kohn-Sham potential as a result of these changes – not always a step; see
Fig. 8.7. The SOA, in Figs. 7.8 and 7.9 on pages 87 and 88, overestimates the bump fea-
tures relative to the exact potential. This error occurs because the SOA has no knowledge of
crossing single-particle Kohn-Sham densities. Hence, SOA features form due to changes in
ionisation alone, and thus when multiple Kohn-Sham orbitals are occupied, the magnitude
of bumps/steps is wrong. (This occurs as a result of delocalisation; see Section 8.6.)

A correcting term to the SOA should focus on the change in the dominant Kohn-Sham den-
sity from one domain to another – yielding a step of magnitude εR − εL. When summed
with the SOA’s step magnitude IR − IL, the step height becomes exact: IR − IL − (εR − εL);
see Section 8.3. This correcting term will also improve non-step features such as bumps for
the same reason. However, this term requires prior knowledge of the Kohn-Sham energy (ε)
meaning this correcting term is impractical.

8.10 Summary

Throughout the thesis we have demonstrated the importance of steps in vxc (as shown in
Chapters 6 and 7), hence, in this chapter we deduced the fundamental origin of step struc-
tures in exact Kohn-Sham potentials. Step structures have been shown previously, for many
situations (ground-state and time-dependent), to be very important for accurate electron
densities and currents, yet much about them remained to be understood. We showed that
steps arise when the decay of the electron density coming from a subsystem meets that
of a different subsystem. As the density decays asymptotically, proportional to the square
root of the ionisation energy of that subsystem, there can be a sudden change in the rate
of decay when decaying densities from two different subsystems meet, we termed this a
change in the ‘local effective ionisation energy’. The analogue of this effect in the Kohn-
Sham picture is the changeover of the dominant single-particle density contributing to the
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total electron density; this effect also gives rise to a step in the exact xc potential, even in
the time-dependent regime. When these two effects occur at the same point in space the
two steps superimpose to form one overall step. In the case of a symmetric system we even
show, using linear response, that the two steps superimpose to form a ‘bump’ in vxc. The su-
perposition of steps to form other features of the exact Kohn-Sham potential is even true for
time-dependent features. Our insights into the formation of steps and other features of the
exact Kohn-Sham potential via the superposition of steps, aims to inform the development
of improved approximate functions.

In practical density-functional calculations, the density is readily available. Hence, we also
derived a way of approximating where steps form in the electron density, and provide a
range of step heights that yield accurate electron densities . We observed the tendency of a
step to form at a density minimum due to the likelihood of a minimum to correspond to a
change in the local ionisation energy, but note that, owing to this underlining requirement,
not all density minima can correspond to steps. However, by integrating the electron density
over a region corresponding to a subsystem of localised electrons (relative to the others in
the system), we defined our integer electron point which can be used to indicate minima
that do correspond to steps, i.e., the point in the density where this crossover of the decaying
density occurs thus a step can form. We also demonstrated that localisation indicates which
systems have a step in the xc potential, and we showed that delocalisation affects the shape
of steps.
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Conclusions

A cornerstone of materials simulations, theoretical chemistry and solid state physics is den-
sity functional theory (DFT). The theory has been hugely successful in many branches of
these fields, due to the accuracy and computational efficiency of the theory. However,
the sole approximation within the theory – the approximation to the exchange-correlation
(xc) potential (vxc) – breaks down in certain situations. The extension of DFT to the time-
dependent regime greatly widened the applicability of density functional methods; how-
ever with this increased functionality comes the even more difficult task of approximating
the time-dependent xc potential.

In this thesis we introduced our approach to developing improved xc functionals: our inter-
acting dynamic electrons approach (iDEA) code can simulate one dimensional systems of
one, two or three electrons. The electrons are interacting and modelled by solving the time-
dependent Schrödinger equation, providing us with the exact electron density and current.
We ‘reverse engineer’ the density to find the exact Kohn-Sham potential (vs). Once the exact
Kohn-Sham potential is known it can be compared to the common approximations of vxc,
and the origins of their failings can be deduced. Approximate functionals can then be de-
veloped, that are more accurate for systems where the usual approximations are less valid.

We used this approach to introduce a new way of constructing approximate density func-
tionals – through the use of mixing approximations based on the degree of electron localisa-
tion at a given point. We introduced an approximation to the universal Kohn-Sham poten-
tial, that assumes the electrons in the system are sufficiently localised in a region of space
such that the density in said region is well described by the modulus squared of a single
Kohn-Sham orbital – the single orbital approximation (SOA). The SOA can then be used,
self-consistently, to calculate electron densities and currents by mixing it with a reference
potential, we termed this the mixed localisation potential (MLP).

We have shown that nonlocal features, such as static and dynamic spatial steps, of the exact
Kohn-Sham potential are important for accurate electron densities in the Kohn-Sham ap-
proach. Furthermore our (time-dependent) MLP can reproduce these steps; a task too diffi-
cult for the usual xc approximations. We demonstrated, for simple, finite systems, where the
common local approximations fail to model the electron density accurately, that our poten-
tial mixing scheme can improve the description of correlation and hence yield more accurate
densities.

While more work is required for the MLP, including developing new reference potentials
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and more sophisticated ways of mixing the SOA with the reference potential (see Ref. [156]),
the initial ground-state and time-dependent results are promising. Approximating our term,
f (x, t), which is used to mix the reference potential and the SOA in the MLP, to be constant
in both space and time, was shown to be successful for our small systems, simulated for
relatively short times. However, the exact nature of the dependence of f on the localisation
of the electrons still remains an important concept if the MLP is to be used in practical DFT-
based calculations.

Practical MLP calculations require a way of calculating f based on the localisation in the
system. Hence, further investigations are required to determine the relationship between f
and the degree of localisation in the system. Of course, this approach also relies on the accu-
racy of the measure of localisation, and practically one must be able to calculate localisation
from quantities that one has available when one is performing a DFT calculation.

Continued investigation of the sort presented in this thesis, i.e., understanding features (such
as steps) in the exact Kohn-Sham potential, are important for the future development of im-
proved density functionals. Specifically, determining the magnitude of dynamic steps from
fundamental principles could allow improved, time-dependent functionals to be developed.
Our fundamental understanding of the origin of step structures in the exact Kohn-Sham po-
tential, as well as other nonlocal features, presented in this thesis, can also be used to inform
the development of improved density functionals and improve our understanding of the
highly enigmatic xc functional.
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iDEA

A.1 Algorithms

Below we give important details regarding our iDEA code that are peripheral to the main
information presented in the thesis, e.g., details on our algorithms.

A.1.1 The ground-state reverse engineering algorithm

Our ground-state reverse engineering (GSRE) algorithm converges in significantly fewer
iterations when we reduce the value of p in Eq. (4.3). To demonstrate this remarkable speed-
up we calculate the number of iterations of the GSRE algorithm required to reach full con-
vergence, for p = 1 and p = 0.05, for two interacting electrons in a harmonic potential,
of the form 1

2 ω2x2. We find, for this system, a speed-up of the order of 103. We also find
that this change in p increases the accuracy of the solution by a factor of 103, measured by
the absolute integrated difference between the Kohn-Sham electron density and the exact
(Eq. 4.4 on page 41).

For systems that are more complicated than the above, the speed-up can be many times
that which we observed for the harmonic well. In some cases full convergence may not be
possible without changing the value of p and/or µ.

A.1.2 The time-dependent reverse engineering algorithm

A.1.2.1 Gauge transformation

Gauge theory tells us that we are free to make the following change of Gauge

v′ → v +
∂χ

∂t
A′ → A−∇χ,

without affecting the physical characteristics of the system. We can use this in our time-
dependent reverse engineering code to ‘remove the time-dependence’ from the scalar po-
tential vs by introducing a non-zero vector potential As. This can be done as follows; we
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begin in a gauge where

vs(x, t) = vext(x, t) + vHxc(x, t)

As(x, t) = 0.

Currently iDEA is written such that for t > 0 the external potential is constant in time.
Hence, if we define χ(x, t > 0) = −

∫ t
0+ dt′ vHxc(x, t′ > 0), we may work in a gauge where,

for t > 0, there is no time-dependence in the scalar potential, as such

v′s(x, t > 0) = vext(x) + vHxc(x, 0)

A′s(x, t > 0) =
∫ t

0+
dt′

∂

∂x
vHxc(x, t′ > 0),

where the notation 0+ denotes a time infinitesimally after 0. Hence, using this gauge, we
may avoid the need for a spatial integral and a time derivative for each iteration of the time-
dependent reverse engineering algorithm, as we may use Eq. (4.5) on page 42 opposed to
the equivalent form for scalar potentials used in Ref. [10].

A.2 Our interaction term

The separation of variables for the one-particle Schrödinger equation in 3D, assuming that
electrons remain in ground state as far as their transverse (y, z) wavefunction is concerned,
allows us to consider our electrons in a one-dimensional nano-lead to interact in the same
way as two disks, each with charge e, in a three-dimensional lead. We model the effects of
the transverse wavefunction on the density by assuming that the charge density of the disk
is n(r) = 2π

a2(π2−4) cos2(πr
2a ), where a is the radius of the disk.

Hence we calculate the potential energy between the two disks in order to find what the
form of our Coulomb interaction should be. In cylindrical polar co-ordinates the length of
the lead has dimension x and radius a; see Fig. A.1. The potential energy between any two

Figure A.1: Diagrammatic representation of our two, 3D, charged disks, nanowire model.
This 3D representation is modelled in our 1D iDEA calculations via our interaction term (see
text).

points on the disks, where the distance between them is d, is

δvi =
n1(r)n2(r)

di
,

where n1 and n2 are the charge densities of the disks. We recall that the density of the disks
is n(r) = 2π

a2(π2−4) cos2(πr
2a ). Therefore the total potential energy between the disks is the sum
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of all these contributions. Therefore

v(x) =
8π3

(π2 − 4)2a4

∫ 2π

0
dθ
∫ a

0
dr1

∫ a

0
dr2

r1r2 cos2(πr1
2a ) cos2(πr2

2a )√
r2

1 + r2
2 − 2r1r2 cos(θ) + x2

. (A.1)

Figure A.2 shows v(x) for a nano-lead with width 6 a.u. (approximately the diameter of
a gold nano-lead), together with 1

|x| ,
1
|x|+1 and 1√

x2+1
. The form of the curve which most

0

0.3

0.6

0.9

0 3 6 9

v
(a

.u
.)

x (a.u.)

1/(x2+1)1/2
1/(|x|+1)

v(x)
1/|x|

Figure A.2: Potential v against distance x for two charged disks. Green long dashed – com-
monly used 1D Coulomb terms, solid red – our Coulomb term, dashed blue – Eq. (A.1) and
dotted black 1

|x| . We find that, for our systems, 1
|x|+1 most accurately represents the true, 3D,

interaction.

accurately represents v(x) is 1
|x|+1 , hence we use this as our interaction term in iDEA.

If we change the interaction term to 1
|x|+0.1 , this corresponds to a 3D nano-wire of diameter

1 a.u. (This is calculated by the same means as above.) This form of the interaction is only
used in Chapter 6.

A.3 Analytical tests

A.3.1 Converged energy

The many-body ground-state wavefunction is calculated using the imaginary-time propaga-
tion of a trial wavefunction. For t → −it the many-body wavefunction obeys the following
equation

Ψ(x1, x2, x3,−it) = Ψ0(x1, x2, x3)e−E0t + Ψ1(x1, x2, x3)e−E1t + ..., (A.2)

hence, as t → ∞, Ψ converges to the ground-state solution to the Schrödinger equation
for our chosen external potential. Therefore, when converged the many-body ground-state
energy (E0) can be calculated using the following; for later times∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

∫ ∞

−∞
dx3 |Ψ(x1, x2, x3,−it)|2

≈ e−E0t
∫ ∞

−∞
dx1

∫ ∞

−∞
dx2

∫ ∞

−∞
dx3 |Ψ0(x1, x2, x3)|2 , (A.3)
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these triple integrals can be labeled as a and b respectively. Therefore,

lim
t→∞

E0 =
∂

∂t
ln
(

b
a

)
. (A.4)

A.3.2 Time-dependent harmonic well

We begin with the known integral∫ ∞

−∞
e−(z−x)2

Hn (x)dx = (2z)n√π, (A.5)

where z is a constant and {Hn (x)} are the set of Hermite polynomials. Expressing the wave-
functions for the three electrons in the shifted well as the superposition of the eigenfunctions
of the non-shifted well, where ψk(x, t) is the wavefunction of the kth electron, φn(x) is the
nth eigenfunction of the Hamiltonian of the non-shifted system and εn is the nth eigenenergy
(see Fig. A.3), we get

ψk(x, t) =
∞

∑
n=0

ck,nφn(x)e−iεnt. (A.6)

Hence, c0,n can be calculated using the overlap integral

-0.2

0

0.2

0.4

0.6

-9 -6 -3 0 3 6 9

φ(
x)

, v
ex

t(
a.

u.
)

x (a.u.)

0.5ω2x2

0.5ω2x2-εx
φ0
ψ0

Figure A.3: The harmonic well (grey solid) and the shifted harmonic well (dashed grey).
The ground-state (0th) wavefunction for each well. Solid red is the wavefunction that cor-
responds to the harmonic well, and the dashed green is the wavefunction for the shifted
well.

c0,n =
∫ ∞

−∞
ψ0 (x) φ∗n (x)dx =

√
ω

2nn!π

∫ ∞

−∞
e−

1
2 ωx2

Hn (y) e−
1
2 y2

dx,

where y =
√

ω
(

x− ε0

ω2

)
,⇒ dy =

√
ωdx.

⇒ c0,n =
1√

2nn!π

∫ ∞

−∞
e
− 1

2

(
y+ ε0√

ω3

)2

Hn (y) e−
1
2 y2

dy

=
e−

ε2
0

4ω3

√
2nn!π

∫ ∞

−∞
e
−
(

y+ ε0
2
√

ω3

)2

Hn (y)dy

=

√
2n

n!

(
− ε0

2
√

ω3

)n

e−
ε2
0

4ω3 =

√
2n

n!
(−α)n e−α2

, (A.7)
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where α = ε0/2
√

ω3. Thus

ψ0(x, t) =
(ω

π

) 1
4

e−
1
2 ωx2−α2

∞

∑
n=0

1
n!

(−α)n Hn(
√

ωx)e−i
(

n+ 1
2

)
ωt. (A.8)

Next we use this result to calculate the first excited state wavefunction for our second elec-
tron. Making use of Eq. (A.9), which is a standard relationship between the Hermite poly-
nomials, we derive c1,n;

Hn+1 (y) = 2yHn (y)− 2nHn−1 (y) , (A.9)

hence, as before,

c1,n =
∫ ∞

−∞
ψ1 (x) φ∗n (x)dx =

√
ω

2nπn!

∫ ∞

−∞

√
2ωxe−

1
2 ωx2

Hn (y) e−
1
2 y2

dx.

Using Eq. (A.9) it follows that

⇒
∫ ∞

−∞
e−

1
2 ωx2

Hn+1 (y) e−
1
2 y2

dx = 2
∫ ∞

−∞
ye−

1
2 ωx2

Hn (y) e−
1
2 y2

dx

− 2n
∫ ∞

−∞
e−

1
2 ωx2

Hn−1 (y) e−
1
2 y2

dx.

Substituting in Eq. (A.7) we can find a relationship between our unknown c1,n and the
known c0,n;

c1,n =
√

n + 1c0,n+1 +

√
2

ω3 ε0c0,n −
√

nc0,n−1.

Substitute in the expression for c0,n we get

c1,n =

√
2n+1

n!

(
− ε0√

2ω3

)n+1

e−
ε2
0

4ω3 + ε0

√
2n+1

ω3n!

(
− ε0√

2ω3

)n

e−
ε2
0

4ω3

−

√
n2n−1

(n− 1)!

(
− ε0√

2ω3

)n−1

e−
ε2
0

4ω3

=

(
ε0√
2ω3
− n

√
2ω3

ε0

)√
2n

n!

(
− ε0√

2ω3

)n

e−
ε2
0

4ω3 =

(√
2α− n√

2α

)
c0,n. (A.10)

Thus, the second, spinless electron obeys

ψ1(x, t) =
(ω

π

) 1
4

e−
1
2 ωx2−α2

∞

∑
n=0

1
n!

(√
2α− n√

2α

)
(−α)n Hn(

√
ωx)e−i

(
n+ 1

2

)
ωt. (A.11)

Finally we consider the third electron. We begin with

c2,n =
∫ ∞

−∞
ψ2 (x) φ∗n (x)dx =

√
ω

2n+1πn!

∫ ∞

−∞
(2ωx2 − 1)e−

1
2 ωx2

Hn (y) e−
1
2 y2

dx,

if we multiply the recurrence relation [Eq. (A.9)] by x, it is simple to show that∫ ∞

−∞
xe−

1
2 ωx2

Hn+1(y)e−
1
2 y2

dx

= 2
√

ω
∫ ∞

−∞
xye−

1
2 ωx2

Hn(y)e−
1
2 y2

dx− 2n
∫ ∞

−∞
xe−

1
2 ωx2

Hn−1(y)e−
1
2 y2

dx.
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From this one can derive c2,n in terms of c1,n and c0,n, in a very similar fashion to before
for the calculation of c1,n. (We note that this can be done indefinitely to find ck,n for any k.)
Thus we substitute our expressions for c1,n and c0,n (in their integral form) into the above
expression and find that

c2,n =

√
n + 1

2
c1,n+1 −

1√
2

c0,n +
√

2αc1,n +

√
n
2

c1,n−1.

Finally we substitute in our analytical expressions for c1,n and c0,n into the above relationship
and find that

c2,n =

(√
2(α2 − n) +

n(n− 1)
2
√

2α2

)√
2n

n!
(−α)ne−α2

. (A.12)

Hence the third electron obeys

ψ2(x, t) =
(ω

π

) 1
4

e−
1
2 ωx2−α2 ·

∞

∑
n=0

1
n!

(√
2(α2 − n) +

n(n− 1)
2
√

2α2

)
(−α)n Hn(

√
ωx)e−i

(
n+ 1

2

)
ωt.

(A.13)
The electron density can then be calculated using Eq. (2.11). The current can be calculated
using

j(x) = − i
2

N

∑
k=1

(
ψ∗k

∂ψk

∂x
− ψk

∂ψ∗k
∂x

)
. (A.14)

This serves as a good test for calculating the current as iDEA uses the continuity equation
(i.e., j is calculated directly from n and not the wavefunction).

We now use this analytical solution to test whether the quantum harmonic oscillator has
classical characteristics. For the classical harmonic oscillator the position of the electron is
definite, and is given by x = A cos (ωt), where A is the amplitude of the oscillations. Hence,
it is trivial to find the times when the electron has a maximum displacement from the origin;
t = nπ/ω, where n is an integer, as well as the time when the velocity (and therefore the
current) is at a maximum; t = nπ/(2ω). We find that the quantum harmonic oscillator does
have classic properties – this may serve as a test for iDEA also.
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Density functional development

B.1 The exact Kohn-Sham potential

We note that any Kohn-Sham equation (i), for any number of occupied states, can be rear-

ranged to give the exact Kohn-Sham potential, i.e., vs = − 1
2 φ
− 1

2
i ∇2φ

1
2
i . However, obviously

this cannot be used in practice as the Kohn-Sham orbital is unknown. However, the form of
this term may serve as a useful guide when one is developing approximate functionals.

B.2 Approximate density functionals for the vector potential

We make the following change of gauge

v′ → v +
∂χ

∂t
A′ → A−∇χ,

without affecting the physical characteristics of the system. Where χ = −
∫ r
−∞

∂u
∂t · dr′.

Hence, vSOA(r, t) = ∇2n
4n −

(∇n)2

8n2 − 1
2 u2. In order for the physical characteristics of the system

to remain the same, we now require a non-zero Kohn-Sham vector potential; ASOA = −u =

− j
n .

The simplicity of this ASOA in this gauge is remarkable when one considers that this term
is capable of reproducing the effects of nonlocal, dynamic steps in the scalar potential. Be-
cause of its simplicity and success at reproducing features present in the exact Kohn-Sham
potential, the form of this term should be taken into consideration when one is developing
improved, time-dependent approximate functionals.
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[17] A. Einstein. Über einen die erzeugung und verwandlung des lichtes betreffenden
heuristischen gesichtspunkt. Annalen der Physik, 322(6):132–148, 1905.

[18] M. Born and R. Oppenheimer. Zur quantentheorie der molekeln. Ann. Phys., 389:457–
484, 1927.

[19] Mel Levy. Universal variational functionals of electron densities, first-order density
matrices, and natural spin-orbitals and solution of the v-representability problem. Pro-
ceedings of the National Academy of Sciences, 76(12):6062–6065, 1979.

[20] O. Gunnarsson and B. I. Lundqvist. Exchange and correlation in atoms, molecules,
and solids by the spin-density-functional formalism. Phys. Rev. B, 13:4274–4298, May
1976.

[21] John P Perdew, Robert G Parr, Mel Levy, and Jose L Balduz Jr. Density-functional
theory for fractional particle number: Derivative discontinuities of the energy. Phys.
Rev. Lett., 49(23):1691, 1982.

[22] Mel Levy, John P. Perdew, and Viraht Sahni. Exact differential equation for the density
and ionization energy of a many-particle system. Phys. Rev. A, 30:2745–2748, Nov
1984.

[23] C.-O. Almbladh and U. von Barth. Exact results for the charge and spin densities,
exchange-correlation potentials, and density-functional eigenvalues. Phys. Rev. B,
31:3231–3244, Mar 1985.

[24] Elliott H Lieb and Stephen Oxford. Improved lower bound on the indirect coulomb
energy. International Journal of Quantum Chemistry, 19(3):427–439, 1981.

[25] D. M. Ceperley and B. J. Alder. Ground state of the electron gas by a stochastic method.
Phys. Rev. Lett., 45:566–569, Aug 1980.

[26] John P. Perdew and Yue Wang. Accurate and simple analytic representation of the
electron-gas correlation energy. Phys. Rev. B, 45:13244–13249, Jun 1992.

[27] I. N. Remediakis and Efthimios Kaxiras. Band-structure calculations for semicon-
ductors within generalized-density-functional theory. Phys. Rev. B, 59:5536–5543, Feb
1999.

[28] A. van de Walle and G. Ceder. Correcting overbinding in local-density-approximation
calculations. Phys. Rev. B, 59:14992–15001, Jun 1999.

128



BIBLIOGRAPHY

[29] John P. Perdew and Mel Levy. Comment on Significance of the highest occupied Kohn-
Sham eigenvalue. Phys. Rev. B, 56:16021–16028, Dec 1997.

[30] John P. Perdew, Kieron Burke, and Matthias Ernzerhof. Generalized gradient approx-
imation made simple. Phys. Rev. Lett., 77:3865–3868, Oct 1996.

[31] Paul Ziesche, Stefan Kurth, and John P Perdew. Density functionals from LDA to
GGA. Computational materials science, 11(2):122–127, 1998.

[32] T. Asada and K. Terakura. Cohesive properties of iron obtained by use of the general-
ized gradient approximation. Phys. Rev. B, 46:13599–13602, Nov 1992.

[33] Charlotte Froese Fischer. Multi-configuration Hartree-Fock Program. Technical report,
Univ. of Waterloo, Ont., 1970.

[34] Charlotte Froese Fischer. General Hartree-Fock program. Computer physics communi-
cations, 43(3):355–365, 1987.

[35] F. Evers, F. Weigend, and M. Koentopp. Conductance of molecular wires and transport
calculations based on density-functional theory. Phys. Rev. B, 69:235411, Jun 2004.

[36] Kieron Burke, Jan Werschnik, and E. K. U. Gross. Time-dependent density functional
theory: Past, present, and future. The Journal of Chemical Physics, 123(6), 2005.

[37] ChiYung Yam, Xiao Zheng, GuanHua Chen, Yong Wang, Thomas Frauenheim, and
Thomas A. Niehaus. Time-dependent versus static quantum transport simulations
beyond linear response. Phys. Rev. B, 83:245448, Jun 2011.

[38] G. Vignale. Center of mass and relative motion in time dependent density functional
theory. Phys. Rev. Lett., 74:3233–3236, Apr 1995.

[39] Paul Hessler, Jang Park, and Kieron Burke. Several theorems in time-dependent den-
sity functional theory. Phys. Rev. Lett., 82:378–381, Jan 1999.

[40] M. A. L. Marques and E. K. U. Gross. A tutorial on density functional theory. In
C Fiolhais, F Nogueira, and M.A.L Marques, editors, A Primer in Density Functional
theory, Lecture Notes in Physics. Springer-Verlag, 2003.

[41] Benoı̂t Braı̈da, Philippe C Hiberty, and Andreas Savin. A systematic failing of current
density functionals: overestimation of two-center three-electron bonding energies. The
Journal of Physical Chemistry A, 102(40):7872–7877, 1998.
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