Analytic solution to the time-dependent Schrödinger equation for the one-dimensional quantum harmonic oscillator with an applied uniform field

M. J. P. Hodgson

Abstract

I find the analytic solutions to the timedependent Schrödinger equation for the one-dimensional quantum harmonic oscillator which is perturbed by a uniform electric field.

Few analytic solutions to the Schrödinger equation $[1,2]$ exist $[3,4,5,6,7,8,9,10,11,12]$. I derive an analytic solution to the single-particle time-dependent Schrödinger equation for the quantum harmonic oscillator (QHO) perturbed by a uniform electric field in one dimension - a system relevant in many areas of physics $[13,14,15,16,17,18,19]$.

In one-dimension the single-particle time-independent Schrödinger equation is

$$
\begin{equation*}
\left(-\frac{\hbar^{2}}{2 m} \frac{\mathrm{~d}^{2}}{\mathrm{~d} x^{2}}+v(x)\right) \psi_{k}(x)=E_{\mathrm{k}} \psi_{k}(x) \tag{1}
\end{equation*}
$$

where $v(x)$ is the external potential, $\psi_{k}(x)$ is the $k^{\text {th }}$ solution ("wavefunction") and E_{k} is the corresponding eigenenergy. I employ atomic units, hence $\hbar=m=1$ where m is the mass of an electron $\left(e^{2}=4 \pi \varepsilon_{0}=1\right)$.

The one-dimensional single-particle time-dependent Schrödinger equation is

$$
\begin{equation*}
\left(-\frac{1}{2} \frac{\partial^{2}}{\partial x^{2}}+v(x, t)\right) \psi_{k}(x, t)=i \frac{\partial}{\partial t} \psi_{k}(x, t) \tag{2}
\end{equation*}
$$

where the wavefunctions and external potential are time dependent.

A one-dimensional QHO with an applied uniform field can be described by the following potential:

$$
v(x, t)= \begin{cases}\frac{1}{2} \omega^{2} x^{2}+\varepsilon x & \text { if } t \leq 0 \tag{3}\\ \frac{1}{2} \omega^{2} x^{2} & \text { if } t>0\end{cases}
$$

where for $t>0$ the perturbing field $-\varepsilon x$ is applied. ε is a constant which dictates the strength of the perturbing field and ω is a constant which determines the degree to which the wavefunctions are confined; see Fig. 1.

$$
v(x, t \leq 0)=\frac{1}{2} \omega^{2}\left(x+\frac{\varepsilon}{\omega^{2}}\right)^{2}-\frac{\varepsilon^{2}}{2 \omega^{2}}=\frac{1}{2} y^{2}-\frac{\varepsilon^{2}}{2 \omega^{2}}
$$

Hence, the static solutions to the time-independent Schrödinger equation, Eq. (1), for the potential given by Eq. (3) when $t \leq 0$ are known analytically: $\varphi_{k}(y)=$

Fig. 1. Quantum harmonic oscillator (QHO) (solid red) and the perturbed harmonic oscillator (dashed blue), given by Eq. (3); in this case $\omega=0.25$ and $\varepsilon=0.1$ (a.u.), which have been chosen as an example. The ground-state ($k=0$) wavefunction that corresponds to the QHO is shown in dotted black, and the dotted-dashed green is the ground-state wavefunction for the perturbed QHO .
$\frac{1}{\sqrt{2^{k} k!}}\left(\frac{\omega}{\pi}\right)^{\frac{1}{4}} H_{k}(y) e^{-\frac{1}{2} y^{2}}$, where $y=\sqrt{\omega}\left(x+\frac{\varepsilon}{\omega^{2}}\right)$ and $\left\{H_{k}(y)\right\}$ are the set of Hermite polynomials. $\left\{\varphi_{k}(y)\right\}$ correspond to the initial states of the system, i.e., $\psi_{k}(x, t \leq 0)=\varphi_{k}(y) \forall k$.

The static solutions to the time-independent Schrödinger equation where $v(x)=\frac{1}{2} \omega^{2} x^{2},\left\{\phi_{n}(x)\right\}$, are

$$
\begin{equation*}
\phi_{n}(x)=\frac{1}{\sqrt{2^{n} n!}}\left(\frac{\omega}{\pi}\right)^{\frac{1}{4}} H_{n}(\sqrt{\omega} x) e^{-\frac{1}{2} \omega x^{2}} \tag{4}
\end{equation*}
$$

The $n^{\text {th }}$ eigenenergy is also known analytically: $E_{n}=$ $\left(n+\frac{1}{2}\right) \omega$. The wavefunction $\psi_{k}(x, t)$ can be expressed as a superposition of the states $\left\{\phi_{n}(x)\right\}$, as such

$$
\begin{equation*}
\psi_{k}(x, t)=\sum_{n=0}^{\infty} c_{k, n} \phi_{n}(x) e^{-i E_{n} t} \tag{5}
\end{equation*}
$$

Each $c_{k, n}$ is given by the overlap between the initial
state $\psi_{k}(x, t \leq 0)$ and $\phi_{n}(x)$:

$$
\begin{align*}
& c_{k, n}=\int_{-\infty}^{\infty} \psi_{k}(x, t \leq 0) \phi_{n}^{*}(x) \mathrm{d} x= \\
& \sqrt{\frac{\omega}{2^{n+k} n!k!\pi}} \int_{-\infty}^{\infty} H_{k}(y) e^{-\frac{1}{2} y^{2}} H_{n}(\sqrt{\omega} x) e^{-\frac{1}{2} \omega x^{2}} \mathrm{~d} x . \tag{6}
\end{align*}
$$

Note that because one can equally think of starting the system in this initial state as the system beginning in an excited state of the static perturbed QHO ($\frac{1}{2} \omega^{2} x^{2}$), the coefficients $\left\{c_{k, n}\right\}$ are time independent.

I begin by determining $c_{k=0, n}(k=0$ corresponds to the solution which begins in the ground-state state of the QHO for $t \leq 0$):

$$
\begin{aligned}
& c_{0, n}=\int_{-\infty}^{\infty} \psi_{0}(x, t \leq 0) \phi_{n}^{*}(x) \mathrm{d} x \\
& =\sqrt{\frac{\omega}{2^{n} n!\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2} y^{2}} H_{n}(\sqrt{\omega} x) e^{-\frac{1}{2} \omega x^{2}} \mathrm{~d} x
\end{aligned}
$$

I make the following substitution: let $z=\sqrt{\omega} x$. Therefore, $y=z+\frac{\varepsilon}{\sqrt{\omega^{3}}}$, and

$$
\begin{aligned}
c_{0, n} & =\frac{1}{\sqrt{2^{n} n!\pi}} \int_{-\infty}^{\infty} e^{-\frac{1}{2}\left(z+\frac{\varepsilon}{\sqrt{\omega^{3}}}\right)^{2}} H_{n}(z) e^{-\frac{1}{2} z^{2}} \mathrm{~d} z \\
& =\frac{e^{-\frac{\varepsilon^{2}}{4 \omega^{3}}}}{\sqrt{2^{n} n!\pi}} \int_{-\infty}^{\infty} e^{-\left(z+\frac{\varepsilon}{2 \sqrt{\omega^{3}}}\right)^{2}} H_{n}(z) \mathrm{d} z .
\end{aligned}
$$

To evaluate this integral I employ the known result

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-(\alpha-z)^{2}} H_{n}(z) \mathrm{d} z=(2 \alpha)^{n} \sqrt{\pi} \tag{7}
\end{equation*}
$$

where, in this case, $\alpha=-\frac{\varepsilon}{2 \sqrt{\omega^{3}}}$. Hence

$$
\begin{equation*}
c_{0, n}=\sqrt{\frac{2^{n}}{n!}} \alpha^{n} e^{-\alpha^{2}}=\sqrt{\frac{2^{n}}{n!}}\left(-\frac{\varepsilon}{2 \sqrt{\omega^{3}}}\right)^{n} e^{-\frac{\varepsilon^{2}}{4 \omega^{3}}} \tag{8}
\end{equation*}
$$

Substituting this expression for $c_{0, n}$ and Eq. (4) into Eq. (5) I find that

$$
\begin{equation*}
\psi_{0}(x, t \geq 0)=\left(\frac{\omega}{\pi}\right)^{\frac{1}{4}} e^{-\frac{1}{2} \omega\left(x^{2}+i t\right)-\frac{\varepsilon^{2}}{4 \omega^{3}}} \sum_{n=0}^{\infty} \frac{1}{n!}\left(-\frac{\varepsilon}{2 \sqrt{\omega^{3}}}\right)^{n} H_{n}(\sqrt{\omega} x) e^{-i n \omega t} \tag{9}
\end{equation*}
$$

In order to find the other solutions to Eq. (2), i.e., for $k=1,2, \ldots \infty$, I evaluate the following integral which is contained within Eq. (6):

$$
\begin{equation*}
I_{k, n} \equiv \int_{-\infty}^{\infty} e^{-(\alpha-z)^{2}} H_{k}(z-2 \alpha) H_{n}(z) \mathrm{d} z \tag{10}
\end{equation*}
$$

I begin with the recurrence relation for the Hermite polynomials:

$$
\begin{equation*}
H_{n+1}(z)=2 z H_{n}(z)-2 n H_{n-1}(z) \tag{11}
\end{equation*}
$$

$I_{k+1, n}$ as follows, employing Eq. (12),

$$
\begin{equation*}
I_{k+1, n}=\int_{-\infty}^{\infty} e^{-(\alpha-z)^{2}}\left(\left[H_{k+1}(y)-2 z H_{k}(y)\right] H_{n}(z)+H_{k}(y)\left[H_{n+1}(z)+2 n H_{n-1}(z)\right]\right) \mathrm{d} z \tag{13}
\end{equation*}
$$

Recalling Eq. (11) I arrive at

$$
H_{k+1}(y)-2 z H_{k}(y)=H_{k+1}(y)-2 y H_{k}(y)-4 \alpha H_{k}(y)=-2 k H_{k-1}(y)-4 \alpha H_{k}(y)
$$

which I then substitute into Eq. (13):

$$
\begin{equation*}
I_{k+1, n}=\int_{-\infty}^{\infty} e^{-(\alpha-z)^{2}}\left(\left[-2 k H_{k-1}(y)-4 \alpha H_{k}(y)\right] H_{n}(z)+H_{k}(y)\left[H_{n+1}(z)+2 n H_{n-1}(z)\right]\right) \mathrm{d} z \tag{14}
\end{equation*}
$$

I then express the integrals in Eq. (14) in terms of their corresponding Is defined by Eq. (10):

$$
\begin{equation*}
I_{k+1, n}=I_{k, n+1}+2 n I_{k, n-1}-2 k I_{k-1, n}-4 \alpha I_{k, n} \tag{15}
\end{equation*}
$$

which yields the recurrence relation for the integrals for $k>0$. Next I define $\beta_{k, n} \equiv \frac{I_{k, n}}{I_{0, n}} \alpha^{k}$. Employing the above recurrence relation (Eq. (15)) I derive the recurrence relation for $\left\{\beta_{k, n}\right\}$, as follows

$$
\begin{aligned}
\beta_{k+1, n} & \equiv \frac{I_{k+1, n}}{I_{0, n}} \alpha^{k+1}=\alpha^{k+1} \frac{I_{k, n+1}}{I_{0, n}}+2 n \alpha^{k+1} \frac{I_{k, n-1}}{I_{0, n}}-4 \alpha^{k+2} \frac{I_{k, n}}{I_{0, n}}-2 k \alpha^{k+1} \frac{I_{k-1, n}}{I_{0, n}} \\
& =\alpha \beta_{k, n+1} \frac{I_{0, n+1}}{I_{0, n}}+2 n \alpha \beta_{k, n-1} \frac{I_{0, n-1}}{I_{0, n}}-4 \alpha^{2} \beta_{k, n}-2 k \alpha^{2} \beta_{k-1, n} \\
& =2 \alpha^{2}\left(\beta_{k, n+1}-2 \beta_{k, n}-k \beta_{k-1, n}\right)+n \beta_{k, n-1} .
\end{aligned}
$$

From the definition of $\beta_{k, n}$, I obtain the mathematical result

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-(\alpha-z)^{2}} H_{k}(z-2 \alpha) H_{n}(z) \mathrm{d} z=2^{n} \beta_{k, n} \alpha^{n-k} \sqrt{\pi}, \tag{16}
\end{equation*}
$$

where the polynomials, $\left\{\beta_{k, n}\right\}$, are

$$
\begin{aligned}
& \beta_{0, n}=1 \\
& \beta_{1, n}=n-2 \alpha^{2} \\
& \beta_{2, n}=n^{2}-n-4 n \alpha^{2}+4 \alpha^{4} \\
& \quad \vdots \\
& \quad \beta_{k+1, n}=2 \alpha^{2}\left(\beta_{k, n+1}-2 \beta_{k, n}-k \beta_{k-1, n}\right)+n \beta_{k, n-1} .
\end{aligned}
$$

From this result I find an expression for $c_{k, n}$ by recalling Eq. (6):

$$
\begin{align*}
c_{k, n} & =\int_{-\infty}^{\infty} \psi_{k}(x, t \leq 0) \phi_{n}^{*}(x) \mathrm{d} x \\
& =\frac{e^{-\alpha^{2}}}{{\sqrt{2^{k-n} n!k!}}^{k, n} \beta_{k, n} \alpha^{n-k} .} \text {. } \tag{17}
\end{align*}
$$

Therefore the solutions to Eq. (2) for $t \geq 0$, with external potential given by Eq. (3), are

$$
\psi_{k}(x, t \geq 0)=\frac{1}{\sqrt{2^{k} k!}}\left(\frac{\omega}{\pi}\right)^{\frac{1}{4}} e^{-\frac{1}{2} \omega\left(x^{2}+i t\right)-\alpha^{2}} \sum_{n=0}^{\infty} \frac{1}{n!} \beta_{k, n} \alpha^{n-k} H_{n}(\sqrt{\omega} x) e^{-i n \omega t} .
$$

References

[1] Erwin Schrödinger. Quantisierung als eigenwertproblem. Annalen der physik, 385(13):437-490, 1926.
[2] E. Schrödinger. An Undulatory Theory of the Mechanics of Atoms and Molecules. Phys. Rev, 28:1049-1070, Dec 1926.
[3] Izuru Fujiwara and Kunio Miyoshi. Pulsating states for quantal harmonic oscillator. Progress of Theoretical Physics, 64(2):715-718, 1980.
[4] J Killingbeck and MN Jones. The perturbed twodimensional oscillator. Journal of Physics A: Mathematical and General, 19(5):705, 1986.
[5] G Adomian and HJ Efinger. Analytic solutions for time-dependent Schrödinger equations with linear of nonlinear Hamiltonians. Foundations of Physics Letters, 7(5):489-491, 1994.
[6] Mathias Wagner. Strongly driven quantum wells: An analytical solution to the time-dependent
schrödinger equation. Phys. Rev. Lett., 76:40104013, May 1996.
[7] M Fernández Guasti and H Moya-Cessa. Solution of the Schrödinger equation for time-dependent 1D harmonic oscillators using the orthogonal functions invariant. Journal of Physics A: Mathematical and General, 36(8):2069, 2003.
[8] Ajoy Ghatak and S Lokanathan. Linear Harmonic Oscillator: I Solution of the Schrödinger Equation and Relationship with the Classical Oscillator. In Quantum Mechanics: Theory and Applications, pages 159-196. Springer, 2004.
[9] Fakir Chand and SC Mishra. Exact solutions to three-dimensional time-dependent schrödinger equation. Pramana, 68(6):891-900, 2007.
[10] Athanasios N Petridis, Lawrence P Staunton, Jon Vermedahl, and Marshall Luban. Exact analytical and numerical solutions to the time-dependent schrödinger equation for a one-dimensional potential exhibiting non-exponential decay at all times.

Journal of Modern Physics, 1(02):124, 2010.
[11] Wytse van Dijk, F Masafumi Toyama, Sjirk Jan Prins, and Kyle Spyksma. Analytic time-dependent solutions of the one-dimensional Schrödinger equation. American Journal of Physics, 82(10):955-961, 2014.
[12] VI Osherov and VG Ushakov. Analytical solutions of the Schrödinger equation for a hydrogen atom in a uniform electric field. Physical Review A, 95(2):023419, 2017.
[13] H. R. Lewis. Classical and Quantum Systems with Time-Dependent Harmonic-Oscillator-Type Hamiltonians. Phys. Rev. Lett., 18:510-512, Mar 1967.
[14] DC Khandekar and SV Lawande. Exact propagator for a time- dependent harmonic oscillator with and without a singular perturbation. Journal of Mathematical Physics, 16(2):384-388, 1975.
[15] RK Colegrave and MA Mannan. Invariants for the time-dependent harmonic oscillator. Journal of mathematical physics, 29(7):1580-1587, 1988.
[16] Célia MA Dantas, IA Pedrosa, and B Baseia. Harmonic oscillator with time-dependent mass and frequency and a perturbative potential. Physical Review A, 45(3):1320, 1992.
[17] Kyu Hwang Yeon, Hyon Ju Kim, Chung In Um, Thomas F George, and Lakshmi N Pandey. Wave function in the invariant representation and squeezed-state function of the time-dependent harmonic oscillator. Physical Review A, 50(2):1035, 1994.
[18] Inácio A Pedrosa, GP Serra, and I Guedes. Wave functions of a time-dependent harmonic oscillator with and without a singular perturbation. Physical Review A, 56(5):4300, 1997.
[19] I. A. Pedrosa. Exact wave functions of a harmonic oscillator with time-dependent mass and frequency. Phys. Rev. A, 55:3219-3221, Apr 1997.

