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Abstract—I1 find the analytic solutions to the time-
dependent Schrodinger equation for the one-dimensional
quantum harmonic oscillator which is perturbed by a
uniform electric field.

Few analytic solutions to the Schrodinger equation
[1, 2] exist [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. I derive
an analytic solution to the single-particle time-dependent
Schrodinger equation for the quantum harmonic oscilla-
tor (QHO) perturbed by a uniform electric field in one
dimension — a system relevant in many areas of physics
[13, 14, 15, 16, 17, 18, 19].

In one-dimension the single-particle time-independent
Schrédinger equation is

2 2
<—;n;x? + v(fﬂ)) Ur(z) = Exr(z), (1)

where v(z) is the external potential, 1y (z) is the kP
solution (“wavefunction”) and Fj is the corresponding
eigenenergy. I employ atomic units, hence i = m = 1
where m is the mass of an electron (e? = 4mweg = 1).

The one-dimensional single-particle time-dependent
Schrodinger equation is

1 82 0
(—2(%2 - v(x,t)> vi(e,t) =g dn(z,t), (@)

where the wavefunctions and external potential are time
dependent.

A one-dimensional QHO with an applied uniform field
can be described by the following potential:

%w2x2 +ex ift<0
v(z,t) = 3)
%w2x2 if ¢t >0,

where for ¢ > 0 the perturbing field —ex is applied. ¢ is
a constant which dictates the strength of the perturbing
field and w is a constant which determines the degree to
which the wavefunctions are confined; see Fig. 1.
v(z,t < 0) = (Z‘H‘%)z - 25:2 = 39" - 26:2'
Hence, the static solutions to the time-independent
Schrédinger equation, Eq. (1), for the potential given
by Eq. (3) when ¢ < 0 are known analytically: o (y) =

Fig. 1. Quantum harmonic oscillator (QHO) (solid red) and the
perturbed harmonic oscillator (dashed blue), given by Eq. (3); in this
case w = 0.25 and € = 0.1 (a.u.), which have been chosen as an
example. The ground-state (k = 0) wavefunction that corresponds to
the QHO is shown in dotted black, and the dotted-dashed green is
the ground-state wavefunction for the perturbed QHO.
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<f/ﬁ.;k(y)} are the set of Hermite polynomials. {¢(y)}
correspond to the initial states of the system, i.e.,
Yi(z,t <0) = @i(y) V k.

The static solutions to the
Schrodinger equation where v(x) =
are

time-independent

3wa®, {dn(2)},

The n'" eigenenergy is also known analytically: E, =
(n+ 3) w. The wavefunction (2, t) can be expressed
as a superposition of the states {¢,(x)}, as such

w 1, .2
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n=0

Each ¢, 1s given by the overlap between the initial



state ¢y (x

n_/oo Y (2, t <0) @) (x)de =

w o0 1,2 1 2
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(6)

Note that because one can equally think of starting the
system in this initial state as the system beginning in an
excited state of the static perturbed QHO (%wQ:cQ), the
coefficients {cy,,,} are time independent.

I begin by determining cj—o,, (k = 0 corresponds to
the solution which begins in the ground-state state of the

;£ <0) and ¢én(2):

I make the following substitution: let z = y/wx. There-

fore, y = z + \/13, and
—s| z+—= 1
\/73) —37
Con = \/W H,(z)e dz
im0 7( )
= 2\/5 H d
e z)dz.
V2rn ! n(2)

To evaluate this integral I employ the known result

/OO e H (2)dz = (22)" /7, (7)
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where, in this case, o =

QHO for t < 0): on 2n
o Com =\ 7 ae =[5 ( ) e ®)
c n:/ Yo (z,t < 0) ¢ (z) dz n! nt\ 2V
Substituting this expression Co,n
— L2 and Eq. 4) into Eq. (5) 1 ﬁnd that
Hanl —:V'H, Vwz) e 24" da.
Wi (z24it)— =2 - 1 € " —inwt
dolw,t=0) = (2)"e =Y (o) e ©

In order to find the other solutions to Eq. (2), i.e., for
k=1,2,...00, I evaluate the following integral which
is contained within Eq. (6):

Iin = / e Hy (2 — 20) H, (2)dz. (10)

I begin with the recurrence relation for the Hermite
polynomials:

Hy1(2) =2zHy, (2) — 2nHp—1 (2) .

—00

Recalling Eq. (11) I arrive at

Hiy1 (y) — 22Hy ()
which I then substitute into Eq. (13):

Tiy1n :/ e~ ([—2kHy,—y (y)

= Hy1(y) — 2yHy (y)

With some simple manipulation it follows that
o0
2/ ze~ @A Hy (y) Hy, (2)dz =

—0o0

/OO ey (y) [Hn+1 (2) + 2nHy—1 (2)] dz,

—00

I then express the integrals in Eq. (14) in terms of their corresponding Is defined by Eq. (10):

12)
where y = z — 2a. 1 now express
(11) Ini1,, as follows, employing Eq. (12),
e 2
Totim = / ™ ([Hr (y) = 22Hy, (9)] Hy (2) + Hy (y) [Hoor (2) + 20H1 (2)))d2. (13)
—4daHy (y) = —2kHy—1 (y) — 4oty (y)
— 4aH;, (y)] Ha (2) + Hy, (y) [Hus1 (2) + 20H,y (2)])) dz. (14)
Ilc—i—l,n = Ik,n-‘,—l + 2nIk,n—1 - 2kIIf—l,n - 4a[k,na (15)



which yields the recurrence relation for the integrals for k£ > 0. Next I define 3} ,, = §

o*. Employing the above

recurrence relation (Eq. (15)) I derive the recurrence relation for {ﬁk,n}, as follows

I Ik i1 Tk pn—1 I, Ik
Bkj-‘,-l,n = + s k+1 k:+1 n+ + 2nak+1 1 _ 4O[k+2 mo 2kak+1 ,1
IO n 0,n 0,n IO,n 0,n
Iont1 Ippn—1
s s 2 2
= aﬁk,nJrl + 2na/8k,nfl —da 5k,n — 2ka 6k71,n
IO,n IO,n
2
=2« (ﬂk,n—&-l - 2ﬁk,n - kﬁk—l,n) + nﬁk,n—l-

From the definition of 3 ., I obtain the mathematical result

~(a=2)* Hy(z — 2a)H

o
/.
where the polynomials, {3y, ,, }, are

50,77, =1
Bin=n— 202

Ban = n? —n — 4na?® + 40

n (2)dz = 2" By na"F /T, (16)

5k+1,n = 20[2 (ﬁk,n—‘rl - 2/616,71 - kﬁk—l,n) + n/Bk,n—l-
Vp(z,t > 0) = 1 <w>‘1‘ —dw(a?+it)—
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