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Analytic solution to the time-dependent Schrödinger
equation for the one-dimensional quantum harmonic

oscillator with an applied uniform field
M. J. P. Hodgson

Abstract—I find the analytic solutions to the time-
dependent Schrödinger equation for the one-dimensional
quantum harmonic oscillator which is perturbed by a
uniform electric field.

Few analytic solutions to the Schrödinger equation
[1, 2] exist [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. I derive
an analytic solution to the single-particle time-dependent
Schrödinger equation for the quantum harmonic oscilla-
tor (QHO) perturbed by a uniform electric field in one
dimension – a system relevant in many areas of physics
[13, 14, 15, 16, 17, 18, 19].

In one-dimension the single-particle time-independent
Schrödinger equation is(

− h̄2

2m

d2

dx2
+ v(x)

)
ψk(x) = Ekψk(x), (1)

where v(x) is the external potential, ψk(x) is the kth

solution (“wavefunction”) and Ek is the corresponding
eigenenergy. I employ atomic units, hence h̄ = m = 1
where m is the mass of an electron (e2 = 4πε0 = 1).

The one-dimensional single-particle time-dependent
Schrödinger equation is(

−1

2

∂2

∂x2
+ v(x, t)

)
ψk(x, t) = i

∂

∂t
ψk(x, t), (2)

where the wavefunctions and external potential are time
dependent.

A one-dimensional QHO with an applied uniform field
can be described by the following potential:

v(x, t) =


1
2ω

2x2 + εx if t ≤ 0

1
2ω

2x2 if t > 0,
(3)

where for t > 0 the perturbing field −εx is applied. ε is
a constant which dictates the strength of the perturbing
field and ω is a constant which determines the degree to
which the wavefunctions are confined; see Fig. 1.
v(x, t ≤ 0) = 1

2ω
2
(
x+ ε

ω2

)2 − ε2

2ω2 = 1
2y

2 − ε2

2ω2 .
Hence, the static solutions to the time-independent
Schrödinger equation, Eq. (1), for the potential given
by Eq. (3) when t ≤ 0 are known analytically: ϕk(y) =

−8 −6 −4 −2 0 2 4 6 8
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Fig. 1. Quantum harmonic oscillator (QHO) (solid red) and the
perturbed harmonic oscillator (dashed blue), given by Eq. (3); in this
case ω = 0.25 and ε = 0.1 (a.u.), which have been chosen as an
example. The ground-state (k = 0) wavefunction that corresponds to
the QHO is shown in dotted black, and the dotted-dashed green is
the ground-state wavefunction for the perturbed QHO.
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√
ω
(
x+ ε

ω2
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and

{Hk (y)} are the set of Hermite polynomials. {ϕk(y)}
correspond to the initial states of the system, i.e.,
ψk(x, t ≤ 0) = ϕk(y) ∀ k.

The static solutions to the time-independent
Schrödinger equation where v(x) = 1

2ω
2x2, {φn(x)},

are

φn(x) =
1√

2nn!

(ω
π

) 1

4

Hn(
√
ωx)e−

1

2
ωx2

. (4)

The nth eigenenergy is also known analytically: En =(
n+ 1

2

)
ω. The wavefunction ψk(x, t) can be expressed

as a superposition of the states {φn(x)}, as such

ψk(x, t) =
∞∑
n=0

ck,nφn(x)e−iEnt. (5)

Each ck,n is given by the overlap between the initial
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state ψk(x, t ≤ 0) and φn(x):

ck,n =

∫ ∞
−∞

ψk (x, t ≤ 0)φ∗n (x) dx =√
ω

2n+kn!k!π

∫ ∞
−∞

Hk (y) e−
1

2
y2Hn

(√
ωx
)
e−

1

2
ωx2

dx.

(6)

Note that because one can equally think of starting the
system in this initial state as the system beginning in an
excited state of the static perturbed QHO (12ω

2x2), the
coefficients {ck,n} are time independent.

I begin by determining ck=0,n (k = 0 corresponds to
the solution which begins in the ground-state state of the
QHO for t ≤ 0):

c0,n =

∫ ∞
−∞

ψ0 (x, t ≤ 0)φ∗n (x) dx

=

√
ω

2nn!π

∫ ∞
−∞

e−
1

2
y2Hn

(√
ωx
)
e−

1

2
ωx2

dx.

I make the following substitution: let z =
√
ωx. There-

fore, y = z + ε√
ω3

, and

c0,n =
1√

2nn!π

∫ ∞
−∞

e
− 1

2

(
z+ ε√

ω3

)2

Hn (z) e−
1

2
z2dz

=
e−

ε2

4ω3

√
2nn!π

∫ ∞
−∞

e
−
(
z+ ε

2

√
ω3

)2

Hn (z) dz.

To evaluate this integral I employ the known result∫ ∞
−∞

e−(α−z)
2

Hn (z) dz = (2α)n
√
π, (7)

where, in this case, α = − ε
2
√
ω3

. Hence

c0,n =

√
2n

n!
αne−α

2

=

√
2n

n!

(
− ε

2
√
ω3

)n
e−

ε2

4ω3 . (8)

Substituting this expression for c0,n
and Eq. (4) into Eq. (5) I find that

ψ0(x, t ≥ 0) =
(ω
π

) 1

4

e−
1

2
ω(x2+it)− ε2

4ω3

∞∑
n=0

1

n!

(
− ε

2
√
ω3

)n
Hn(
√
ωx)e−inωt. (9)

In order to find the other solutions to Eq. (2), i.e., for
k = 1, 2, . . .∞, I evaluate the following integral which
is contained within Eq. (6):

Ik,n ≡
∫ ∞
−∞

e−(α−z)
2

Hk (z − 2α)Hn (z) dz. (10)

I begin with the recurrence relation for the Hermite
polynomials:

Hn+1 (z) = 2zHn (z)− 2nHn−1 (z) . (11)

With some simple manipulation it follows that

2

∫ ∞
−∞

ze−(α−z)
2

Hk (y)Hn (z) dz =∫ ∞
−∞

e−(α−z)
2

Hk (y) [Hn+1 (z) + 2nHn−1 (z)] dz,

(12)

where y = z − 2α. I now express
Ik+1,n as follows, employing Eq. (12),

Ik+1,n =

∫ ∞
−∞

e−(α−z)
2

([Hk+1 (y)− 2zHk (y)]Hn (z) +Hk (y) [Hn+1 (z) + 2nHn−1 (z)]) dz. (13)

Recalling Eq. (11) I arrive at

Hk+1 (y)− 2zHk (y) = Hk+1 (y)− 2yHk (y)− 4αHk (y) = −2kHk−1 (y)− 4αHk (y) ,

which I then substitute into Eq. (13):

Ik+1,n =

∫ ∞
−∞

e−(α−z)
2

([−2kHk−1 (y)− 4αHk (y)]Hn (z) +Hk (y) [Hn+1 (z) + 2nHn−1 (z)]) dz. (14)

I then express the integrals in Eq. (14) in terms of their corresponding Is defined by Eq. (10):

Ik+1,n = Ik,n+1 + 2nIk,n−1 − 2kIk−1,n − 4αIk,n, (15)
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which yields the recurrence relation for the integrals for k > 0. Next I define βk,n ≡ Ik,n

I0,n
αk. Employing the above

recurrence relation (Eq. (15)) I derive the recurrence relation for {βk,n}, as follows

βk+1,n ≡
Ik+1,n

I0,n
αk+1 = αk+1 Ik,n+1

I0,n
+ 2nαk+1 Ik,n−1

I0,n
− 4αk+2 Ik,n

I0,n
− 2kαk+1 Ik−1,n

I0,n

= αβk,n+1
I0,n+1

I0,n
+ 2nαβk,n−1

I0,n−1
I0,n

− 4α2 βk,n − 2kα2βk−1,n

= 2α2 (βk,n+1 − 2βk,n − kβk−1,n) + nβk,n−1.

From the definition of βk,n, I obtain the mathematical result∫ ∞
−∞

e−(α−z)
2

Hk(z − 2α)Hn (z) dz = 2nβk,nα
n−k√π, (16)

where the polynomials, {βk,n}, are

β0,n = 1

β1,n = n− 2α2

β2,n = n2 − n− 4nα2 + 4α4

...

βk+1,n = 2α2 (βk,n+1 − 2βk,n − kβk−1,n) + nβk,n−1.

From this result I find an expression for ck,n by
recalling Eq. (6):

ck,n =

∫ ∞
−∞

ψk (x, t ≤ 0)φ∗n (x) dx

=
e−α

2

√
2k−nn!k!

βk,nα
n−k. (17)

Therefore the solutions to Eq. (2) for t ≥ 0,
with external potential given by Eq. (3), are

ψk(x, t ≥ 0) =
1√
2kk!

(ω
π

) 1

4

e−
1

2
ω(x2+it)−α2

∞∑
n=0

1

n!
βk,n α

n−kHn(
√
ωx)e−inωt.

REFERENCES

[1] Erwin Schrödinger. Quantisierung als eigenwert-
problem. Annalen der physik, 385(13):437–490,
1926.

[2] E. Schrödinger. An Undulatory Theory of the
Mechanics of Atoms and Molecules. Phys. Rev.,
28:1049–1070, Dec 1926.

[3] Izuru Fujiwara and Kunio Miyoshi. Pulsating
states for quantal harmonic oscillator. Progress of
Theoretical Physics, 64(2):715–718, 1980.

[4] J Killingbeck and MN Jones. The perturbed two-
dimensional oscillator. Journal of Physics A: Math-
ematical and General, 19(5):705, 1986.

[5] G Adomian and HJ Efinger. Analytic solutions for
time-dependent Schrödinger equations with linear
of nonlinear Hamiltonians. Foundations of Physics
Letters, 7(5):489–491, 1994.

[6] Mathias Wagner. Strongly driven quantum wells:
An analytical solution to the time-dependent

schrödinger equation. Phys. Rev. Lett., 76:4010–
4013, May 1996.

[7] M Fernández Guasti and H Moya-Cessa. Solution
of the Schrödinger equation for time-dependent 1D
harmonic oscillators using the orthogonal functions
invariant. Journal of Physics A: Mathematical and
General, 36(8):2069, 2003.

[8] Ajoy Ghatak and S Lokanathan. Linear Harmonic
Oscillator: I Solution of the Schrödinger Equa-
tion and Relationship with the Classical Oscillator.
In Quantum Mechanics: Theory and Applications,
pages 159–196. Springer, 2004.

[9] Fakir Chand and SC Mishra. Exact solutions
to three-dimensional time-dependent schrödinger
equation. Pramana, 68(6):891–900, 2007.

[10] Athanasios N Petridis, Lawrence P Staunton, Jon
Vermedahl, and Marshall Luban. Exact analyti-
cal and numerical solutions to the time-dependent
schrödinger equation for a one-dimensional poten-
tial exhibiting non-exponential decay at all times.



4

Journal of Modern Physics, 1(02):124, 2010.
[11] Wytse van Dijk, F Masafumi Toyama, Sjirk

Jan Prins, and Kyle Spyksma. Analytic
time-dependent solutions of the one-dimensional
Schrödinger equation. American Journal of
Physics, 82(10):955–961, 2014.

[12] VI Osherov and VG Ushakov. Analytical solutions
of the Schrödinger equation for a hydrogen atom
in a uniform electric field. Physical Review A,
95(2):023419, 2017.

[13] H. R. Lewis. Classical and Quantum Systems with
Time-Dependent Harmonic-Oscillator-Type Hamil-
tonians. Phys. Rev. Lett., 18:510–512, Mar 1967.

[14] DC Khandekar and SV Lawande. Exact propagator
for a time- dependent harmonic oscillator with
and without a singular perturbation. Journal of
Mathematical Physics, 16(2):384–388, 1975.

[15] RK Colegrave and MA Mannan. Invariants for
the time-dependent harmonic oscillator. Journal of
mathematical physics, 29(7):1580–1587, 1988.
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