Steps in the Exact Kohn-Sham Potential of Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity

Matt Hodgson1, Eli Kraisler1, Mike Entwistle2, Axel Schild3 and E. K. U. Gross1,4

1Max-Planck-Institute für Mikrostrukturphysik, Halle (Saale), Germany,
2Department of Physics, University of York, Heslington, York, UK,
3Laboratorium für Physikalische Chemie, ETH Zürich, Zürich, Switzerland,
4Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
Ensemble Density Functional Theory

The electron density of an *excited* system of N interacting electrons is modelled using an auxiliary system of non-interacting electrons:

The electron density of an excited system of N interacting electrons is modelled using an auxiliary system of non-interacting electrons:

Kohn-Sham equations:

$$\left(-\frac{1}{2} \nabla^2 + v_s\right) \phi_i(r) = \varepsilon_i \phi_i(r)$$

The electron density of an excited system of N interacting electrons is modelled using an auxiliary system of non-interacting electrons:

Kohn-Sham equations:

\[
\left(-\frac{1}{2} \nabla^2 + v_s\right) \phi_i(r) = \varepsilon_i \phi_i(r)
\]

Electron density:

\[
n(r) = \delta |\phi_{N+1}(r)|^2 + (1 - \delta) |\phi_N(r)|^2 + \sum_{i=1}^{N-1} |\phi_i(r)|^2
\]

The electron density of an excited system of N interacting electrons is modelled using an auxiliary system of non-interacting electrons:

Kohn-Sham equations:

$$\left(-\frac{1}{2} \nabla^2 + v_s\right) \phi_i(r) = \varepsilon_i \phi_i(r)$$

Electron density:

$$n(r) = \delta |\phi_{N+1}(r)|^2 + (1 - \delta) |\phi_N(r)|^2 + \sum_{i=1}^{N-1} |\phi_i(r)|^2$$

The accuracy of the density relies on the approximation to the exchange-correlation part of v_s.

The iDEA code
Model simple 1D systems consisting of a few electrons

Choose any external potential we like
The iDEA code

Model simple 1D systems consisting of a few electrons

Choose any external potential we like

1. Calculate the exact ground-state and first excited-state electron density

2. The electron density is a linear combination of these two densities:

\[n(r) = (1 - \delta) \cdot n_0(r) + \delta \cdot n_1(r) \]

3. Next reverse-engineer the exact Kohn-Sham potential
Derivative discontinuity of an atom

\[N = 3 \]
Derivative discontinuity of an atom

\[\Delta = I - A + \varepsilon^{ho} - \varepsilon^{lu} \]

\[N = 3 + \delta \]

\[0 < \delta << 1 \]
Charge transfer excitation in a 1D molecule
Charge transfer excitation in a 1D molecule

\[v_{\text{ext}} \quad n_1(x) \]
Charge transfer excitation in a 1D molecule

\[n(x) = (1 - \delta)n_0(x) + \delta n_1(x) \]

\[0 < \delta \ll 1 \]
Ground-state 1D molecule
\[S = I_R - I_L + \eta_R^{ho} - \eta_L^{ho} \]
\[S = I_R - I_L + \eta_{R}^{ho} - \eta_{L}^{ho} \]

Ionisation energy
$S = I_R - I_L + \eta^h_R - \eta^h_L$

Kohn-Sham molecular energies

Bonded case: $\eta^h_R = \eta^h_L$

$\Rightarrow S = I_R - I_L$

Charge transfer excitation in a 1D molecule
Charge transfer excitation in a 1D molecule

\[\Delta_{L \rightarrow R} = I_L - A_R + \eta_{L}^{ho} - \eta_{R}^{lu} \]

\[\Delta_R = I_R - A_R + \varepsilon_{R}^{ho} - \varepsilon_{R}^{lu} \]

Derivative discontinuity of Atom R:

\[\delta \]
Charge transfer excitation in a 1D molecule

\[\Delta_{CT}^{L \rightarrow R} = I_L - A_R + \eta_{LU}^L - \eta_{LU}^R \]

Derivative discontinuity of Atom R:

\[\Delta_R = I_R - A_R + \varepsilon_{ho}^R - \varepsilon_{lu}^R \]

What's this?
Charge-transfer derivative discontinuity

\[\Delta_{L \rightarrow R}^{\text{CT}} = I_L - A_R + \eta_L^{\text{ho}} - \eta_R^{\text{lu}} \]
Charge-transfer derivative discontinuity

\[\Delta_{L \to R}^{\text{CT}} = I_L - A_R + \eta_L^{\text{ho}} - \eta_R^{\text{lu}} \]

Derivative discontinuity of Atom R:

\[\Delta_R = I_R - A_R + \varepsilon_R^{\text{ho}} - \varepsilon_R^{\text{lu}} = I_R - A_R + \eta_R^{\text{ho}} - \eta_R^{\text{lu}} \]
Charge-transfer derivative discontinuity

$$\Delta_{L \rightarrow R}^{CT} = I_L - A_R + \eta_{L}^{ho} - \eta_{R}^{lu}$$

Derivative discontinuity of Atom R:

$$\Delta_{R} = I_{R} - A_{R} + \varepsilon_{R}^{ho} - \varepsilon_{R}^{lu} = I_{R} - A_{R} + \eta_{R}^{ho} - \eta_{R}^{lu}$$

$$S = S_1 + S_2 = \Delta_{R} - \Delta_{L \rightarrow R}^{CT} = I_{R} - I_{L} + \eta_{R}^{ho} - \eta_{L}^{ho}$$
\[S = S_1 + S_2 = \Delta_R - \Delta_{CT}^{L \rightarrow R} = I_R - I_L + \eta_R^{ho} - \eta_L^{ho} \]
Conclusions

1. Ensemble density functional theory can be used to model charge transfer

2. Upon charge transfer two plateaus form around the atoms of a diatomic molecule – one corresponds to the derivative discontinuity of the acceptor and the other corresponds to the ‘charge-transfer derivative discontinuity’

3. The steps which correspond to the two derivative discontinuities add together to make the interatomic step which determines the distribution of charge in the molecule
Conclusions

1. Ensemble density functional theory can be used to model charge transfer

2. Upon charge transfer two plateaus form around the atoms of a diatomic molecule – one corresponds to the derivative discontinuity of the acceptor and the other corresponds to the ‘charge-transfer derivative discontinuity’

3. The steps which correspond to the two derivative discontinuities add together to make the interatomic step which determines the distribution of charge in the molecule

Thanks for listening!

Email: mhodgson@mpi-halle.mpg.de
Website: http://www-users.york.ac.uk/~mjph501/index.html