

How derivative discontinuities in the energy yield interatomic steps in the exact Kohn-Sham potential of Density-Fuctional Theory

Eli Kraisler¹,

Matt Hodgson¹, Axel Schild², E.K.U. Gross^{1,3}

- 1. Max Planck Institute of Microstructure Physics, Halle (Saale), Germany
- 2. Laboratorium für Physikalische Chemie, ETH Zürich, Switzerland
- 3. Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, Hebrew University of Jerusalem, Israel

>> J. Phys. Chem. Lett. 8, 5974 (2017) 44

Density Functional Theory

- An exact approach to the many-electron problem
- The exact exchange-correlation (xc) potential $v_{\rm xc}[n](\mathbf{r})$ remains usually unknown and has to be approximated. $v_{KS}[n](\mathbf{r}) = v_{\rm ext}(\mathbf{r}) + v_{\rm Hartree}[n](\mathbf{r}) + v_{\rm xc}[n](\mathbf{r})$
- Some **properties** of the **exact** $v_{xc}[n](\mathbf{r})$ can be observed relying on exact solutions of the Schrödinger equation
- Studying these properties is important for the development of improved approximations from first principles

1: interatomic step

- The exact potential, $v_{KS}(\mathbf{r})$, forms a step, *S*, between isolated fragments of a composite system.
- The step happens where the decay rate of the density $n(\mathbf{r})$ changes
- The step height depends on the atomic ionisation energies and on the molecular energy levels: Example: stretched diatomic molecule in 1D

$$S = I_R - I_L + \eta_R^{\text{ho}} - \eta_L^{\text{ho}} \qquad 0$$

Important for a correct distribution of charge
$$(a) \qquad (a) \qquad (b) \qquad (b) \qquad (b) \qquad (b) \qquad (b) \qquad (c) \qquad$$

▶ Almbladh, von Barth (1985) ▶ van Leeuwen, Z. Phys. D 33, 229 (1995) ▶ Hodgson, PRB 93, 155146 (2016)

2: derivative discontinuity

- In a system with a varying N, the exact potential **jumps** by a **constant**, Δ , when N crosses an integer
- The energy, *E*, is piecewise-linear with *N*; its derivative is **discontinuous**
- The highest occupied (ho) energy, $\varepsilon^{\text{ho}} = \partial E / \partial N$, is a stair-step function
- To enforce this, the exact potential jumps by a spatially uniform constant $\Delta = I - A - (\varepsilon^{\text{lu}} - \varepsilon^{\text{ho}})$
- Important for the prediction of the fundamental gap, E_{g}

▶ Levy et al., PRA 30, 2745 (1984) ▶ Perdew, Levy, PRB 56, 16021 (1997) ▶ Harbola, PRB 60, 4545 (1999)

2: derivative discontinuity

- Example: exact KS potential for the Li atom with $N = 2 + \delta$ obtained from a full-CI calculation
- At any finite δ , there is a **plateau** around the nucleus
- For $\delta \to 0^+$, the plateau broadens and becomes spatially uniform. The plateau height approaches Δ

Are these two properties related?

• DD:
$$\Delta = I - A + \varepsilon^{\text{ho}} - \varepsilon^{\text{lu}}$$

- ★ Derived from piecewise-linearity
- \star Occurs at fractional N

- Step: $S = I_R I_L + \eta_R^{\text{ho}} \eta_L^{\text{ho}}$
 - \star Derived from density decay
 - \star Occurs at integer N
- Contradiction? From the DD view, transfer of charge $L \to R$ raises a plateau Δ_R around atom R

Stretched molecule, varying N

- Stretched molecule, L...R. Increase the number of e⁻'s on atom R \star by charge transfer $L \to R$
 - \bigstar by varying the overall number of electrons, $N_{L\ldots R}$
- **3** regions of density decay $I_R \rightarrow A_R$: due to e⁻ addition $A_R \rightarrow I_L$: the system is one
- 2 intermolecular steps $S^{(2)} = \Delta_R$ $S^{(1)} = -\Delta^{CT}_{L \to R}$

See also: talk by Matt Hodgson, Monday, 10:45, room HL 001
 Hodgson*, Kraisler*, Schild, Gross, J. Phys. Chem. Lett. 8, 5974 (2017)

Charge transfer DD

$$\Delta^{\mathrm{CT}}_{L
ightarrow R} = I_L - A_R - (\eta_R^{\mathrm{lu}} - \eta_L^{\mathrm{ho}})$$

• The charge-transfer DD is revealed in an exact 1D model for a diatomic molecule

 \star Increase the total N by a very small amount, δ

 \bigstar The extra electric charge localizes on R

Two steps in potential:
★ S⁽²⁾ is the DD of R
★ S⁽¹⁾ is the charge-transfer DD
As δ→0⁺, S⁽¹⁾ and S⁽²⁾

coincide to form the step S

▶ Hodgson*, Kraisler*, Schild, Gross, J. Phys. Chem. Lett. 8, 5974 (2017)

Steps and discontonuities in 3D

- Full-CI calculation
- Stretched Li...Be molecule
- v_{KS} for N = 4 \star platform around Be
- v_{KS} for N = 4.001
 ★ double-step structure: a halo around Li and a platform around Be
- Similar results for (Li...He)⁺ and (Be...He)²⁺

▶ Hodgson*, Kraisler*, Schild, Gross, J. Phys. Chem. Lett. 8, 5974 (2017)

Conclusions

• The relationship between the uniform jump in the exact KS potential, Δ , and the interatomic step, S, has been clarified.

• The step S has an internal strucure. This has been found in a 1D model system and a 3D full-CI calculation of a molecule.

• We introduced a new quantity: the charge-transfer derivative discontinuity, Δ^{CT} .

• Advanced xc approximations should account for changes in the decay rate of the density, as this leads to a correct step structure in the potential.

* J. Phys. Chem. Lett. 8, 5974 (2017) *

Steps in the Exact Kohn-Sham Potential of Ensemble Density Functional Theory for Excited States and Their Relation to the Derivative Discontinuity

Matt Hodgson¹, Eli Kraisler¹, Mike Entwistle², Axel Schild³ and E. K. U. Gross^{1,4}

¹Max-Planck-Institute für Mikrostrukturphysik, Halle (Saale), Germany,
 ²Department of Physics, University of York, Heslington, York, UK,
 ³Laboratorium für Physikalische Chemie, ETH Zürich, Zürich, Switzerland,
 ⁴Fritz Haber Center for Molecular Dynamics, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel

The electron density of an *excited* system of *N* interacting electrons is modelled using an auxiliary system of non-interacting electrons:

E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988)
E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988)
E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2821 (1988)

The electron density of an *excited* system of *N* interacting electrons is modelled using an auxiliary system of non-interacting electrons:

Kohn-Sham equations:

$$\left(-\frac{1}{2}\nabla^2 + v_{\rm s}\right)\phi_i(r) = \varepsilon_i\phi_i(r)$$

E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988)
E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988)
E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2821 (1988)

The electron density of an *excited* system of *N* interacting electrons is modelled using an auxiliary system of non-interacting electrons:

Kohn-Sham
$$\left(-\frac{1}{2}\nabla^2 + v_s\right)\phi_i(r) = \varepsilon_i\phi_i(r)$$
 equations:

Electron
density:
$$n(r) = \delta |\phi_{N+1}(r)|^2 + (1-\delta) |\phi_N(r)|^2 + \sum_{i=1}^{N-1} |\phi_i(r)|^2$$

E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988)
E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988)
E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2821 (1988)

The electron density of an *excited* system of *N* interacting electrons is modelled using an auxiliary system of non-interacting electrons:

Kohn-Sham
$$\left(-\frac{1}{2}\nabla^2 + v_s\right)\phi_i(r) = \varepsilon_i\phi_i(r)$$
 equations:

Electron
density:
$$n(r) = \delta |\phi_{N+1}(r)|^2 + (1-\delta) |\phi_N(r)|^2 + \sum_{i=1}^{N-1} |\phi_i(r)|^2$$

The accuracy of the density relies on the approximation to the exchangecorrelation part of v_{s} .

- E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988)
- E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988)
- E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2821 (1988)

Model simple 1D systems consisting of a few electrons

Choose any external potential we like

Model simple 1D systems consisting of a few electrons

Choose any external potential we like

1. Calculate the exact ground-state and first excited-state electron density

2. The electron density is a linear combination of these two densities:

$$n(r) = (1 - \delta) \cdot n_0(r) + \delta \cdot n_1(r)$$

3. Next reverse-engineer the exact Kohn-Sham potential

The ground-state, fully correlated many-electron wavefunction is calculated by propagating a trial wavefunction through imaginary time

The ground-state, fully correlated many-electron wavefunction is calculated by propagating a trial wavefunction through imaginary time

 $t \to -i\tau$

$$\Psi(x, x', \tau) = \Psi_0(x, x')e^{-E_0\tau} + \Psi_1(x, x')e^{-E_1\tau} + \Psi_2(x, x')e^{-E_2\tau} + \dots$$

The ground-state, fully correlated many-electron wavefunction is calculated by propagating a trial wavefunction through imaginary time

 $t \to -i\tau$

$$\Psi(x, x', \tau) = \Psi_0(x, x')e^{-E_0\tau} + \Psi_1(x, x')e^{-E_1\tau} + \Psi_2(x, x')e^{-E_2\tau} + \dots$$

The ground-state, fully correlated many-electron wavefunction is calculated by propagating a trial wavefunction through imaginary time

$$\Psi(x, x', \tau) = \Psi_0(x, x')e^{-E_0\tau} + \Psi_1(x, x')e^{-E_1\tau} + \Psi_2(x, x')e^{-E_2\tau} + \dots$$

+ \cdot

The first excited-state many-electron wavefunction is calculated by propagating a trail wavefunction through imaginary time while removing the ground-sate solution from the evolving wavefunction

Almbladh, C. O.; von Barth, U. In Density Functional Methods in Physics; Dreizler, R. M., da Providência, J., Eds.; NATO ASI Series; Plenum Press, 1985; Vol. 123, pp 209–231.

$$\Delta_{L \to R}^{\rm CT} = I_L - A_R + \eta_L^{\rm ho} - \eta_R^{\rm lu}$$

$$\Delta_{L \to R}^{\rm CT} = I_L - A_R + \eta_L^{\rm ho} - \eta_R^{\rm lu}$$

Derivative discontinuity of Atom R:

$$\Delta_R = I_R - A_R + \varepsilon_R^{\text{ho}} - \varepsilon_R^{\text{lu}} = I_R - A_R + \eta_R^{\text{ho}} - \eta_R^{\text{lu}}$$

$$\Delta_{L \to R}^{\rm CT} = I_L - A_R + \eta_L^{\rm ho} - \eta_R^{\rm lu}$$

Derivative discontinuity of Atom R:

$$\Delta_R = I_R - A_R + \varepsilon_R^{\text{ho}} - \varepsilon_R^{\text{lu}} = I_R - A_R + \eta_R^{\text{ho}} - \eta_R^{\text{lu}}$$

$$S = S_1 + S_2 = \Delta_R - \Delta_{L \to R}^{CT} = I_R - I_L + \eta_R^{ho} - \eta_L^{ho}$$

'Derivative discontinuity' for an excited atom

'Derivative discontinuity' for an excited atom

M. Levy, Phys. Rev. A, 52, R4313 (1995)

'Derivative discontinuity' for an excited atom

M. Levy, Phys. Rev. A, **52**, R4313 (1995)

Conclusions

- 1. Ensemble density functional theory can be used to model charge transfer
- Upon charge transfer two plateaus form around the atoms of a diatomic molecule – one corresponds to the derivative discontinuity of the acceptor and the other corresponds to the 'charge-transfer derivative discontinuity'
- 3. The steps which correspond to the two derivative discontinuities add together to make the interatomic step which determines the distribution of charge in the molecule

Conclusions

- 1. Ensemble density functional theory can be used to model charge transfer
- Upon charge transfer two plateaus form around the atoms of a diatomic molecule – one corresponds to the derivative discontinuity of the acceptor and the other corresponds to the 'charge-transfer derivative discontinuity'
- 3. The steps which correspond to the two derivative discontinuities add together to make the interatomic step which determines the distribution of charge in the molecule

Thanks for listening!

Publication: M. J. P. Hodgson *et al., J. Phys. Chem. Lett.*, **2017**, 8 (24), pp 5974–5980 Email: mhodgson@mpi-halle.mpg.de Website: http://www-users.york.ac.uk/~mjph501/index.html