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Density Functional TheoryDensity Functional Theory
● An exact approach to the many-electron problem

● The exact exchange-correlation (xc) potential vxc[n](r) 

remains usually unknown and has to be approximated.

● Some properties of the exact vxc[n](r) can be observed 

relying on exact solutions of the Schrödinger equation

● Studying these properties is important for the development 

of improved approximations from %rst principles
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1: interatomic step1: interatomic step
● The exact potential, vKS(r), forms a step, S, between isolated fragments 
of a composite system.

● The step happens where the decay rate of the density n(r) changes 
● The step height depends on the atomic ionisation energies and on the 
molecular energy levels:

 S = IR–IL + hR
ho–hL

ho

● Important for a correct 
distribution of charge

Example: stretched diatomic molecule in 1D

► Almbladh, von Barth (1985)  ► van Leeuwen, Z. Phys. D 33, 229 (1995)  ► Hodgson, PRB 93, 155146 (2016)
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2: derivative discontinuity2: derivative discontinuity
● In a system with a varying N, the exact potential jumps by a constant, 

D, when N crosses an integer

● The energy, E, is piecewise-linear   
with N; its derivative is discontinuous

● The highest occupied (ho) energy,        
    e ho = ∂E/∂N, is a stair-step function

● To enforce this, the exact potential 
jumps by a spatially uniform constant 
D = I –A – (e lu – e ho)

● Important for the prediction of  the 
fundamental gap, Eg

► Perdew, Parr, Levy, Balduz, PRL 49, 1691 (1982) ► Almbladh, von Barth, PRB 31, 3231 (1985) 
► Levy et al., PRA 30, 2745 (1984)  ►Perdew, Levy, PRB 56, 16021 (1997) ►Harbola, PRB 60, 4545 (1999)
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2: derivative discontinuity2: derivative discontinuity
● Example: exact KS potential for the Li atom with N = 2 + d 
obtained from a full-CI calculation 

● At any %nite d , there is a plateau around the nucleus
● For d 9 0+, the plateau broadens and becomes spatially uniform.
The plateau height approaches D 
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Are these two properties related?Are these two properties related?

● DD: D = I –A + e ho– e lu

< Derived from piecewise-linearity 
< Occurs at fractional N  

● Step: S = IR–IL + hRho – hLho 
< Derived from density decay

< Occurs at integer N

● Contradiction? From the DD view, transfer of charge L 9R 
raises a plateau DR around atom R
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Stretched molecule, varying Stretched molecule, varying NN
● Stretched molecule, L...R. Increase the number of e-'s on atom R
< by charge transfer L 9 R
< by varying the overall number of electrons, NL...R

►See also: talk by Matt Hodgson, Monday, 10:45, room HL 001
►Hodgson*, Kraisler*, Schild, Gross, J. Phys. Chem. Lett. 8, 5974 (2017)

● 3 regions of density decay
IR6AR : due to e- addition
AR6IL : the system is one

● 2 intermolecular steps
  S (2) = DR
  S (1) = – DCTL9R 
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Charge transfer DDCharge transfer DD

DCTL9R = IL – AR – (hRlu – hLho) 
●The charge-transfer DD is revealed in an exact 1D model for a 
diatomic molecule
<Increase the total N by a very small amount, d
<The extra electric charge localizes on R

●  Two steps in potential: 
< S (2) is the DD of R
< S (1) is the charge-
   transfer DD

●  As d 90+, S (1) and S (2) 
coincide to form the step S

►Hodgson*, Kraisler*, Schild, Gross, J. Phys. Chem. Lett. 8, 5974 (2017)
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Steps and discontonuities in 3DSteps and discontonuities in 3D
● Full-CI calculation
● Stretched Li...Be molecule
● vKS for N = 4
< platform around Be

● vKS for N = 4.001
< double-step structure:
 a halo around Li and
 a platform around Be

● Similar results for (Li...He)+ 
   and (Be...He)2+

►Hodgson*, Kraisler*, Schild, Gross, J. Phys. Chem. Lett. 8, 5974 (2017)
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ConclusionsConclusions
● The relationship between the uniform jump in the exact KS 
potential, D, and the interatomic step, S, has been clari%ed.
● The step S has an internal strucure. This has been found in a 1D 
model system and a 3D full-CI calculation of a molecule.
● We introduced a new quantity: the charge-transfer derivative 
discontinuity, DCT.
● Advanced xc approximations should account for changes in the 
decay rate of the density, as this leads to a correct step structure in 
the potential.

   J. Phys. Chem. Lett. 8, 5974 (2017)   
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The electron density of an excited system of N interacting electrons is 
modelled using an auxiliary system of non-interacting electrons:

Ensemble Density Functional Theory

E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2809 (1988)

E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2805 (1988) 

E. K. Gross, L. N. Oliveira, and W. Kohn, Phys. Rev. A 37, 2821 (1988) 
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The iDEA code

ee
Model simple 1D systems consisting of a few electrons

Choose any external potential we like



1. Calculate the exact ground-state and first excited-state electron density


2. The electron density is a linear combination of these two densities:


3. Next reverse-engineer the exact Kohn-Sham potential

The iDEA code

n(r) = (1− δ) · n0(r) + δ · n1(r)

ee
Model simple 1D systems consisting of a few electrons

Choose any external potential we like



The ground-state, fully correlated many-electron wavefunction is calculated 
by propagating a trial wavefunction through imaginary time

The iDEA code
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The ground-state, fully correlated many-electron wavefunction is calculated 
by propagating a trial wavefunction through imaginary time

The first excited-state many-electron wavefunction is calculated by 
propagating a trail wavefunction through imaginary time while removing the 
ground-sate solution from the evolving wavefunction

The iDEA code
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, τ) = Ψ0(x, x
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′)e−E2τ + ....



Charge transfer excitation in a 1D molecule

vext

n0(x)

The number of electrons is integer



Charge transfer excitation in a 1D molecule

vext

n1(x)

The number of electrons is integer



Charge transfer excitation in a 1D molecule

δ

vext

n(x) = (1− δ)n0(x) + δn1(x) 0 < δ << 1

n(x)

The number of electrons is integer



Ground-state 1D molecule



Ground-state 1D molecule

S = IR − IL + ηhoR − ηhoL



Ground-state 1D molecule
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Ionisation energy



Ground-state 1D molecule

S = IR − IL + ηhoR − ηhoL

Kohn-Sham 
molecular energies



Ground-state 1D molecule

S = IR − IL + ηhoR − ηhoL

Kohn-Sham 
molecular energies

Bonded case: 
η
ho

R = η
ho

L

⇒ S = IR − IL

Almbladh, C. O.; von Barth, U. In Density Functional Methods in
Physics; Dreizler, R. M., da Providência, J., Eds.; NATO ASI Series;
Plenum Press, 1985; Vol. 123, pp 209−231.



Charge transfer excitation in a 1D molecule

δ = 0.001

The number of electrons is integer



Charge transfer excitation in a 1D molecule

∆R = IR − AR + ε
ho

R − ε
lu

R

Derivative discontinuity of Atom R:

δ = 0.001

The number of electrons is integer



Charge transfer excitation in a 1D molecule

∆CT

L→R = IL − AR + ηhoL − ηluR

∆R = IR − AR + ε
ho

R − ε
lu

R

Derivative discontinuity of Atom R:

What’s this?

δ = 0.001

The number of electrons is integer



Charge-transfer derivative discontinuity

∆CT

L→R = IL − AR + ηhoL − ηluR
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Charge-transfer derivative discontinuity

∆CT

L→R = IL − AR + ηhoL − ηluR

S = S1 + S2 = ∆R −∆CT

L→R = IR − IL + ηhoR − ηhoL

∆R = IR − AR + εhoR − εluR = IR − AR + ηhoR − ηluR

Derivative discontinuity of Atom R:



Charge-transfer derivative discontinuity

S = S1 + S2 = ∆R −∆CT

L→R = IR − IL + ηhoR − ηhoL



‘Derivative discontinuity’ for an excited atom
The number of electrons is integer
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‘Derivative discontinuity’ for an excited atom
The number of electrons is integer

∆1 = I − χ+ εho − εlu
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Conclusions
1. Ensemble density functional theory can be used to model charge 

transfer


2. Upon charge transfer two plateaus form around the atoms of a diatomic 
molecule – one corresponds to the derivative discontinuity of the 
acceptor and the other corresponds to the ‘charge-transfer derivative 
discontinuity’


3. The steps which correspond to the two derivative discontinuities add 
together to make the interatomic step which determines the distribution 
of charge in the molecule
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Thanks for listening! 
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