

About Me

- 1st year PhD student at Communications CDT, University of Bristol
- Enjoying RTL, SoC, microarch work since 2010.
- Research title: Machine Analysis for SoC Behaviour Optimization
 - Understanding Complex Architectures and Systems
- Sponsored by UltraSoC Technologies Ltd

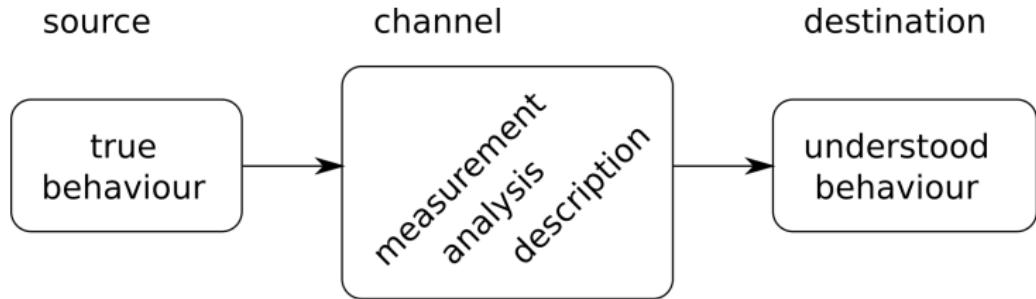
Research Problem

The most difficult problem is knowing what questions to ask, and what the answers should look like.

- Why does/did that happen?
- What might happen next?

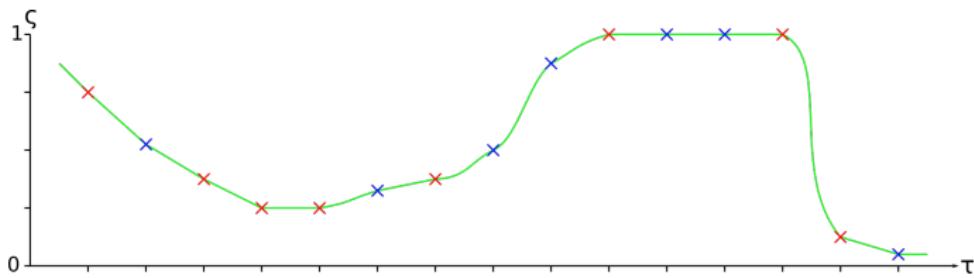
Behaviour can be described with statements.

- “DDR access occurs just after cache miss.”
- “The faster you get into idle, the less power you use.”

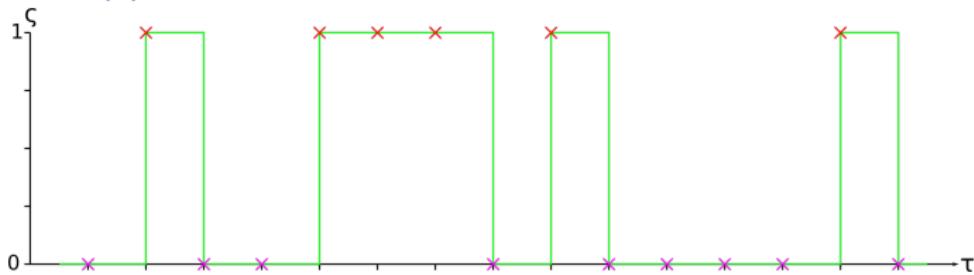

Assertion: Understanding is a complete set of precisely worded statements.

Application to HPC and Manycore

- Better, stronger, faster. Cheaper, smaller, thriftier.
- Specialization and optimization.
- Measurable aspects:
 - ① Off-chip, real value
 - Temperature
 - Voltage
 - ② Off-chip, event
 - DDR/SPI/I2C access
 - Peripheral powerdown
 - ③ On-chip, real value
 - Memory usage
 - Cache hit rate
 - ④ On-chip, event
 - Cache hit/miss
 - Instruction fetch/complete/cancel
- All are connected through complex relationships.


Practicality

- Harmony with existing tools.
 - Cross-platform, easy install, few environment assumptions.
 - VCD/waveforms, Python/Numpy, web browsers, text files.
- Understanding is only meaningful when it's in your head.
 - Intuitive maths.
 - Explainable results.



Model

$$e := (\psi \in [1, m], \tau \in \mathbb{N}, \varsigma \in [0, 1], \beta \in [-1, +1]) \quad (1)$$

(a) Function of an evaluation, such as "voltage".

(b) Function of an event, such as "cache miss".

Method (1) - A Language for SoC Behaviour

Adapting the language of Probability.

$$Pr(X) = \frac{1}{N} |X| \quad (2)$$

$$Pr(f_x; t \in [u, v]) := \frac{1}{v - u} \int_u^{v-1} f_x \, dt \quad (3)$$

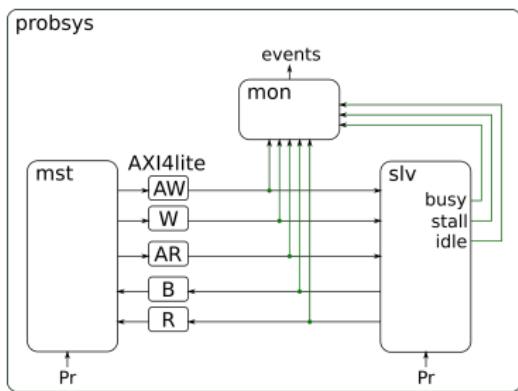
$$Pr(X | Y) = \frac{Pr(X \cap Y)}{Pr(Y)}, \quad \text{if } Pr(Y) \neq 0 \quad (4)$$

$$Pr(f_x | f_{y_{(\delta)}}; t \in [u, v]) = \frac{\int_u^{v-1} f_x * f_{y_{(\delta)}} \, dt}{\int_{u+\delta}^{v-1+\delta} f_y \, dt} \quad (5)$$

Method (2) - More Interesting Statements

- Appearance and disappearance of dependencies over time is interesting.

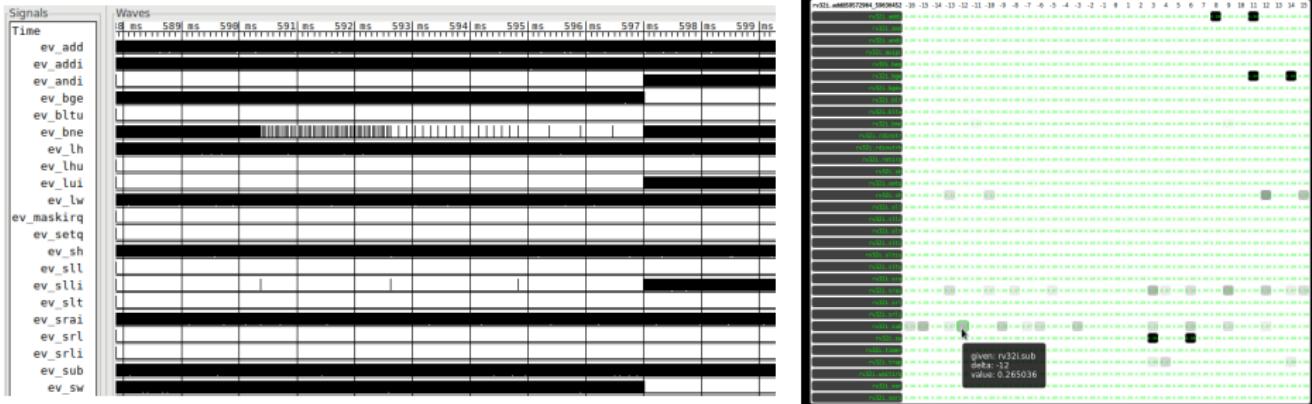
$$Pr(X \cap Y) = Pr(X)Pr(Y) \iff X \perp\!\!\!\perp Y \quad (6)$$


$$Pr(f_x \mid f_y) = Pr(f_x) \iff f_x \perp\!\!\!\perp f_y \quad (7)$$

- Complex relationships defined by functions.

$$Pr(f_x \mid f_{y_1 \circ y_2 \circ \dots \circ y_n}) \quad (8)$$

Example (1)


- Simple probabilistic single master, single slave system.
- Visualization of $Pr(f_x = \text{axi.ar} \mid f_y)$ for one time window.
- Behavioural features apparent from image.

axi.ar@000000_001920	-8	-7	-6	-5	-4	-3	-2	-1	0	1	2	3	4	5	6	7
axi.ar	0.31	0.32	0.29	0.28	0.27	0.29	0.27	0.26	1	0.26	0.27	0.28	0.28	0.28	0.30	0.34
axi.aw	0.24	0.28	0.32	0.30	0.27	0.29	0.26	0.24	0.23	0.24	0.27	0.29	0.31	0.33	0.33	0.24
axi.b	0.28	0.24	0.33	0.30	0.29	0.29	0.29	0.32	0.27	0.29	0.28	0.26	0.27	0.34	0.29	0.30
axi.r	0.27	0.31	0.29	0.30	0.25	0.29	0.29	0.23	0.27	0.44	0.39	0.32	0.34	0.36	0.33	0.21
slv.busy	0.38	0.29	0.30	0.29	0.28	0.28	0.27	0.29	0.28	0.32	0.37	0.34	0.38	0.31	0.31	0.31
slv.idle	0.38	0.31	0.28	0.26	0.26	0.26	0.22	0.39	0.33	0	0	0	0	0.21	0.21	0.18
slv.stall	0.35	0.32	0.28	0.29	0.29	0.26	0.25	0.31	0.27	0.38	0.40	0.33	0.37	0.27	0.29	0.35

Example (2)

- picrv32 - RV32IM running radix4 1024 point FFT
- Probe insn completions with existing signals in unmodified design.
- Visualization of $Pr(f_x = \text{add} \mid f_y)$ for one time window.

Limitations and Future Directions

- Conditional probability result space is large. ($\#\delta \times m^2 \times \#u$)
- Result space of complex relationships is even larger.
- Efficient calculation is important.
- Choosing what to calculate is more important, necessitating machine learning techniques rather than brute force.
- Activation functions based on β simulate human perception, match the analyst's intuition.
- Learning suitable thresholds for $f_x \in \mathbb{R}$ is high compute risk, high entropy payoff.
- Markov Chain discovery is ultimate goal.

Conclusion

- Questions?