

M02 Nervous Systems – From Spiking Neural Networks and Reservoir Computing to Neuromorphic Fault-tolerant Hardware

Date: Wednesday, 19 April 2023 Time: 16:30 CEST - 18:00 CEST Location / Room: Okapi Room 0.8.2

Organisers:

Martin A. Trefzer, University of York, GB Jim Harkin, Ulster University, GB

Speakers:

Martin A. Trefzer, University of York, GB Jim Harkin, Ulster University, GB Martin A. Trefzer, University of York, GB Jim Harkin, Ulster University, GB

Presenters:

Shimeng Wu, University of York, GB Andrew Walter, University of York, GB

Time	Label	Presentation Title Authors
16:30	M02.1.1	INTRODUCTION TO SNNS
CEST		Speaker
		Jim Harkin, Ulster University, GB
16:45	M02.1.2	NEUROMORPHIC HARDWARE OVERVIEW
CEST		Speaker:
		Martin A. Trefzer, University of York, GB
17:00	M02.1.3	APPLICATIONS OF SNNS - NEUROMORPHIC EMBEDDED SENSORS AND NETWORKS FOR FAULT-TOLERANCE
CEST		Speaker:
		Jim Harkin, Ulster University, GB
17:15 CEST	M02.1.4	NERVOUS SYSTEMS CONCEPT - MICROCIRCUITS AS BUILDING BLOCKS FOR NEUROMORPHIC ARCHITECTURES
		Speaker:
		Martin A. Trefzer, University of York, GB
17:30	M02.1.5	HANDS-ON SESSION: SNNS IN VHDL
CEST		Speaker:
		Shimeng Wu, University of York, GB
		Abstract
		Prerequisites for live participation is an installation of Xilinx Vivado 2022.1 (or later version).
		Tutorial resources are available from https://www-users.york.ac.uk/~mt540/nervous-systems/index.html#resources _d
17:30	M0216	HANDS-ON SESSION: SNNS WITH BRYAN2 & PYTHON
CEST	102.10	Speaker:
0201		Andrew Walter, University of York, GB

Engineering and Physical Sciences Research Council

Introduction to Spiking Neural Networks

XILINX ThalesAlenia CIM

Martin Trefzer, Andy Tyrrell, Andrew Walter & Shimeng Wu School of Physics, Engineering & Technology University of York Jim Harkin, Liam McDaid, Malachy McElholm & Thandassery Nidhin School of Computing, Engineering & Intelligent Systems Ulster University

jg.harkin@ulster.ac.uk

Artificial Intelligence

Taxonomy of Al

ML: Machine Learning NN: Neural Networks DL: Deep Learning SNN: **Spiking Neural Networks**

Artificial Neural Networks

Artificial Neural Networks

 CNN/DNN – popular in image recognition/speech processing, machine translation.

Source: "Understanding Deep Learning: DNN, RNN, LSTM, CNN and R-CNN" (2019)

ImageNet Contest Winning Entry Error Rate

Md Zahangir Alom, Electronics, 2019 (doi:10.3390/electronics8030292)

"The demands of AI neural networks, and of deep learning techniques... require thousands of petaflop-days to train...**strain on energy consumption**, and increasing **carbon dioxide emissions**."

Spiking Neural Networks

• Third generation of neural networks.

Spiking Neural Networks

• Third generation of neural networks.

- More biologically-informed
- Temporal information
- Dynamical neurons

Spiking Neural Networks: Action Potential (Spike)

- Spiking Neural Networks (SNNs) communicate via spikes or action potentials (APs).
- Non-numeric values
- AP: distinct electrical spike produced by rapid depolarisation of the cell membrane followed by rapid repolarisation + brief period of hyperpolarisation.

Source: Dae-Hwan Kang, Neurocomputing 155 (2015), 153-158

Intracellular AP recorded by Hodgkin and Huxley.

Spiking Neural Networks: Neurons

Brain-Inspired Data Processing

- Spiking neural network (SNN) a more biologically plausible model of the brain

 a neural computing paradigm.
 - Temporal nature utilised in data encoding
 - Dynamics of neuron behaviour utilised.
 - Asynchronous\event-based behaviour

Brain-Inspired Data Processing

- Spiking neural network (SNN) a more biologically plausible model of the brain
- a neural computing paradigm.

Data Encoding

• How to encode analog and digital data as spike-based information.

Data Encoding

• How to convert analog and digital data into spikes

Rate Coding: e.g. '**Count rate**' - Intensity can be converted into the number of spikes generated within one frame.

Temporal Coding: e.g. Time-to-firstspike (**TTFS**) - High intensity pixel corresponds to a fast spike time.

The light intensity can directly be translated into spike times

D. Auge, Neural Processing Letters, 53, 4693-4710, 2021

Learning Mechanisms

Unsupervised Learning

- Hebbian rule and STDP - those who fire together, wire together (Hebbian rule); and those who fire out of sync, lose their link (STDP).

STDP is a biological process that adjusts the strength of connections between neurons in the brain

 $egin{aligned} \Delta W &= A_+ e^{(t_{pre} - t_{post})/ au_+} & ext{if} \quad t_{post} > t_{pre} \ \Delta W &= -A_- e^{-(t_{pre} - t_{post})/ au_-} & ext{if} \quad t_{post} < t_{pre} \end{aligned}$

Learning Mechanisms

Supervised Learning

- Modified Error-Backpropagation
- SpikeProp
- Synaptic weight association training (SWAT) algorithm
- Evolutionary algorithms approaches

Source: X. Wang et al.; Neural Networks 125, pp. 258-280, 2020

- P. Rowcliffe, IEEE Transactions on Neural Networks, 19(9), 2008.
- S. M. Bohte, Neurocomputing, 48(1-4), 2002

encoding

J. Wade, IEEE Transactions on Neural Networks, 21(11) 2010

A. Belatreche, Proc. IEEE Cybernetics Intelligence - Challenges and Advances, pp. 39-44, Sep. 2003

decoding

output

 $S_a^{(1)}(t)$

 $s_{-}^{m}(t)$

 $s^{N_o}(t)$

Motivation for SNNs

- □ SNN is a dynamic system → map well to speech and image recognition
- □ More energy efficient as it is asynchronous in operation
- Speed of computation improved due to event processing
- Challenges in 'learning' SNNs remain.
- Challenges in developing hardware mimics to exploit low energy, high-speeds

"An AI animal model – whether robotic or in simulation – passes the test if its behavior is indistinguishable from that of its living counterpart."

jg.harkin@ulster.ac.uk

Source: A.Zador, Nature Communications, 14(1597), 2023