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Artificial Intelligence

* Taxonomy of Al

ML: Machine Learning

NN: Neural Networks

DL: Deep Learning

SNN: Spiking Neural Networks

"A State-of-the-Art Survey on Deep Learning Theory and Architectures", Electronics, 8, 292 (2019)



Artificial Neural Networks
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Spiking Neural Networks

» Third generation of neural networks.
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Source: X. Wang, Neural Networks, vol. 125, pp. 258-280, 2020



Spiking Neural Networks

Third generation of neural networks.

Neurobiology
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Source: X. Wang, Neural Networks, vol. 125, pp. 258-280, 2020
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Spiking Neural Networks: Action Potential (Spike)

Neuron Synapse

Spiking Neural Networks (SNNs) communicate
via spikes or action potentials (APS).
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Source: Dae-Hwan Kang, Neurocomputing 155 (2015), 153-158

Intracellular AP recorded by Hodgkin and Huxley.



Spiking Neural Networks: Neurons
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Brain-Inspired Data Processing

» Spiking neural network (SNN) a more biologically plausible model of the brain
— a neural computing paradigm.

= Temporal nature utilised in data encoding N%A | |1l | N$B
= Dynamics of neuron behaviour utilised.
= Asynchronous\event-based behaviour Threshold Potentil - SpikeFired
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Source: W. Gerstner, Cambridge University Press, 2002



Brain-Inspired Data Processing

» Spiking neural network (SNN) a more biologically plausible model of the brain
— a neural computing paradigm.
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CD Schuman, "A survey of neuromorphic computing and neural networks in hardware", 2017



Data Encoding

* How to encode analog and digital data as spike-based information.

Rate Coding

Count Rate Density Rate  Population Rate

Temporal Coding
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D. Auge, Neural Processing Letters (2021) 53:4693—4710



Data Encoding

* How to convert analog and digital data into spikes
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The light intensity can directly be
translated into spike times

> time

D. Auge, Neural Processing Letters, 53, 4693—4710, 2021

Rate Coding: e.g. ‘Count rate’ - Intensity
can be converted into the number of
spikes generated within one frame.

Temporal Coding: e.g. Time-to-first-
spike (TTFS) - High intensity pixel
corresponds to a fast spike time.



Learning Mechanisms

* Unsupervised Learning

- Hebbian rule and STDP - those who fire together, wire together (Hebbian rule); and those who fire out

of sync, lose their link (STDP).

STDP is a biological process that adjusts the strength of

connections between neurons in the brain
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Source: Dae-Hwan Kang, Neurocomputing 155 (2015), 153-158

P. Rowcliffe, IEEE Transactions on Neural Networks, 19(9), 2008.
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» Supervised Learning

- Modified Error-Backpropagation

- SpikeProp

- Synaptic weight association training (SWAT) algorithm

- Evolutionary algorithms approaches

Learning Mechanisms

(Brea et al., 2013)
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* Supervised learning for SNNs is

SpikeProp

(Bohte et al., 2002)
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P. Rowcliffe, IEEE Transactions on Neural Networks, 19(9), 2008.

S. M. Bohte, Neurocomputing, 48(1-4), 2002

J. Wade, |IEEE Transactions on Neural Networks, 21(11) 2010

A. Belatreche, Proc. IEEE Cybernetics Intelligence - Challenges and Advances, pp. 39-44, Sep. 2003



Motivation for SNNs

o SNN is a dynamic system — map well to speech and image
recognition

o More energy efficient as it is asynchronous in operation
o Speed of computation improved due to event processing
o Challenges in ‘learning’ SNNs remain.

o Challenges in developing hardware mimics to exploit low energy,
high-speeds

Turing test Embodied Turing test

“An Al animal model — whether robotic
or in simulation — passes the test if its
\

.,\,: behavior is indistinguishable from
- that of its living counterpart.”
-

jg.harkin@uilster.ac.uk

Source: A.Zador, Nature Communications, 14(1597), 2023
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