

M02 Nervous Systems – From Spiking Neural Networks and Reservoir Computing to Neuromorphic Fault-tolerant Hardware

Date: Wednesday, 19 April 2023

Time: 16:30 CEST - 18:00 CEST

Location / Room: Okapi Room 0.8.2

Organisers:

Martin A. Trefzer, University of York, GB

Jim Harkin, Ulster University, GB

Speakers:

Martin A. Trefzer, University of York, GB

Jim Harkin, Ulster University, GB

Martin A. Trefzer, University of York, GB

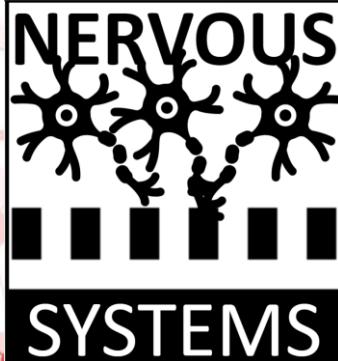
Jim Harkin, Ulster University, GB

Presenters:

Shimeng Wu, University of York, GB

Andrew Walter, University of York, GB

Time	Label	Presentation Title Authors
16:30 CEST	M02.1.1	INTRODUCTION TO SNNS Speaker: Jim Harkin, Ulster University, GB
16:45 CEST	M02.1.2	NEUROMORPHIC HARDWARE OVERVIEW Speaker: Martin A. Trefzer, University of York, GB
17:00 CEST	M02.1.3	APPLICATIONS OF SNNS - NEUROMORPHIC EMBEDDED SENSORS AND NETWORKS FOR FAULT-TOLERANCE Speaker: Jim Harkin, Ulster University, GB
17:15 CEST	M02.1.4	NERVOUS SYSTEMS CONCEPT - MICROCIRCUITS AS BUILDING BLOCKS FOR NEUROMORPHIC ARCHITECTURES Speaker: Martin A. Trefzer, University of York, GB
17:30 CEST	M02.1.5	HANDS-ON SESSION: SNNS IN VHDL Speaker: Shimeng Wu, University of York, GB <i>Abstract</i> <i>Prerequisites for live participation is an installation of Xilinx Vivado 2022.1 (or later version).</i> <i>Tutorial resources are available from https://www-users.york.ac.uk/~mt540/nervous-systems/index.html#resources</i>
17:30 CEST	M02.1.6	HANDS-ON SESSION: SNNS WITH BRYAN2 & PYTHON Speaker: Andrew Walter, University of York, GB



Introduction to Spiking Neural Networks

Martin Trefzer, Andy Tyrrell, Andrew Walter
& Shimeng Wu

School of Physics, Engineering & Technology
University of York

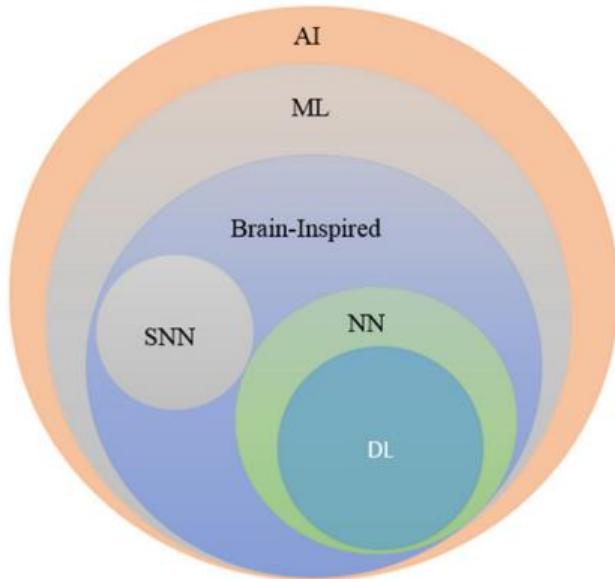
Jim Harkin, Liam McDaid, Malachy McElholm
& Thandassery Nidhin

School of Computing, Engineering
& Intelligent Systems
Ulster University

jg.harkin@ulster.ac.uk

Artificial Intelligence

- Taxonomy of AI



ML: Machine Learning

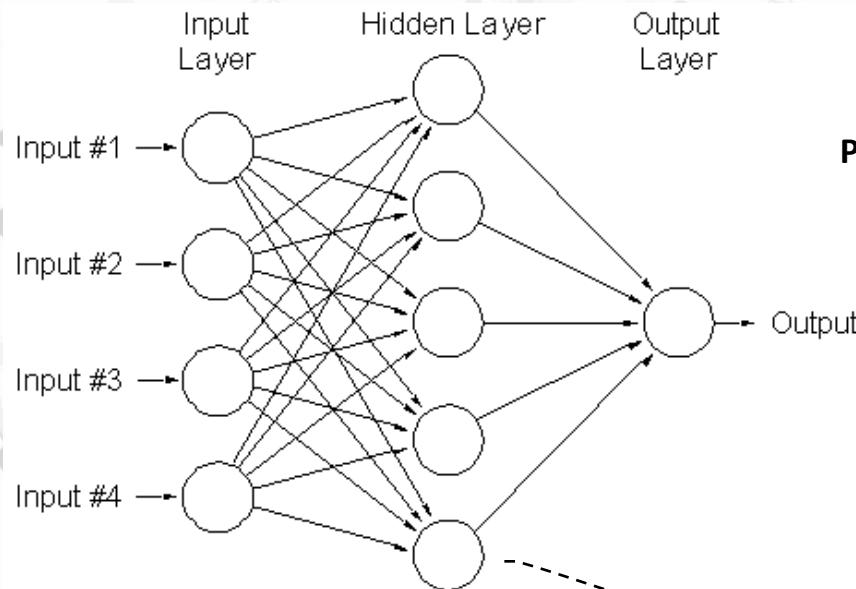
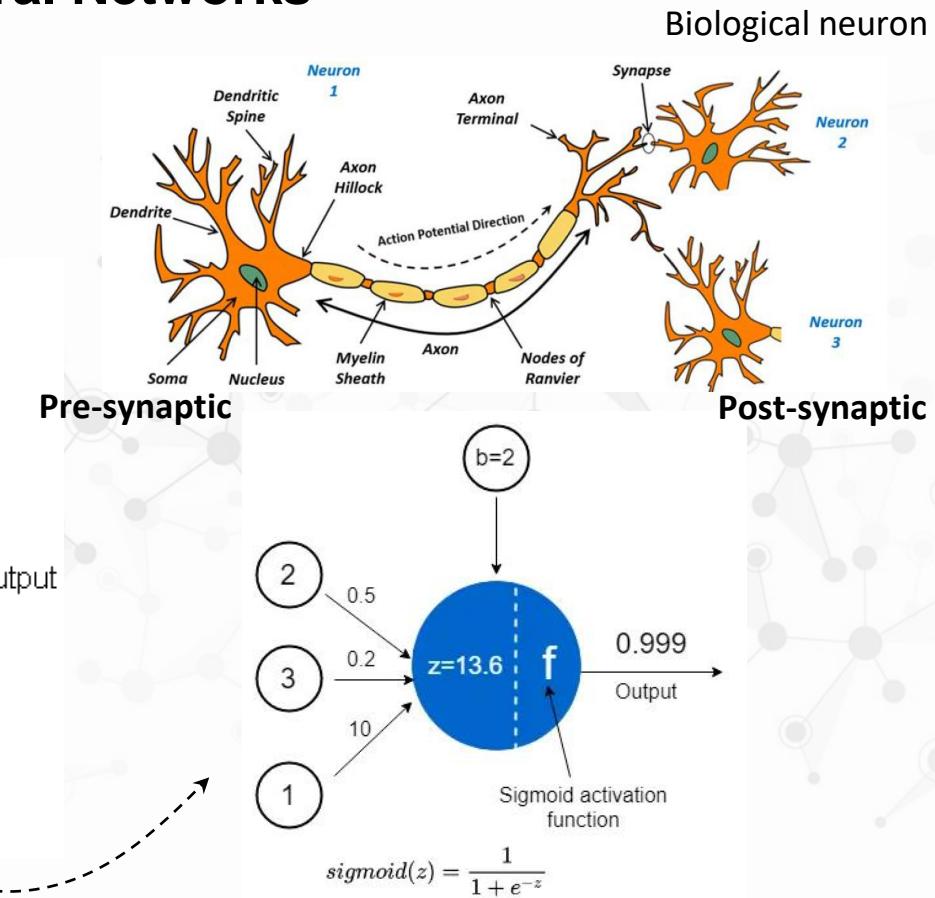
NN: Neural Networks

DL: Deep Learning

SNN: Spiking Neural Networks

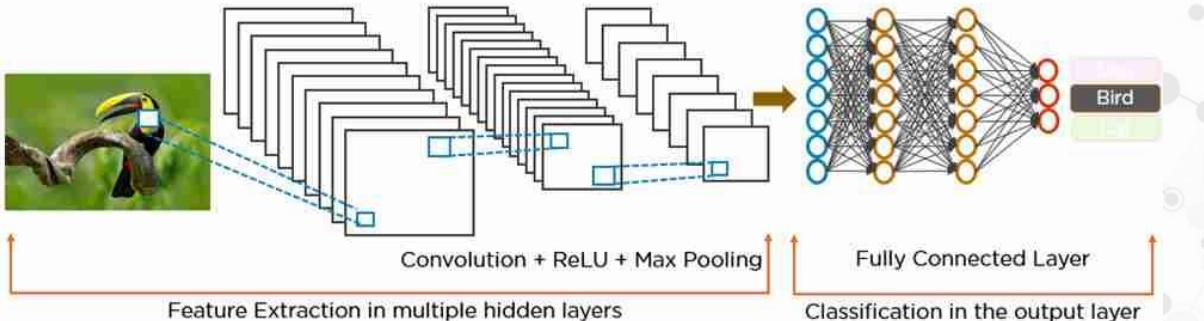
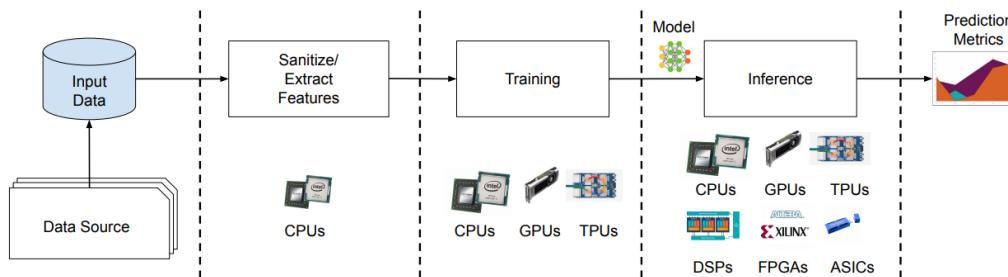
Artificial Neural Networks

- Network of synapses and neurons



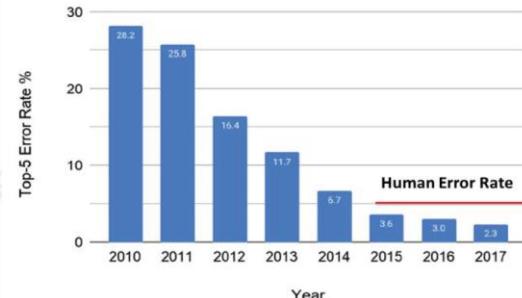
Artificial Neural Networks

- CNN/DNN – popular in image recognition/speech processing, machine translation.

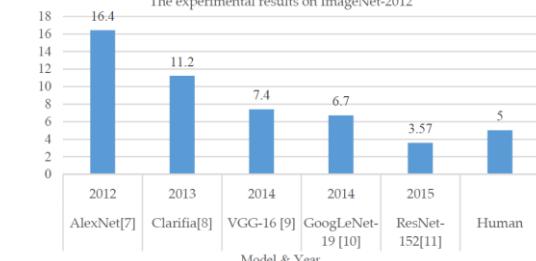


Source: "Understanding Deep Learning: DNN, RNN, LSTM, CNN and R-CNN" (2019)

ImageNet Contest Winning Entry Error Rate



The experimental results on ImageNet-2012



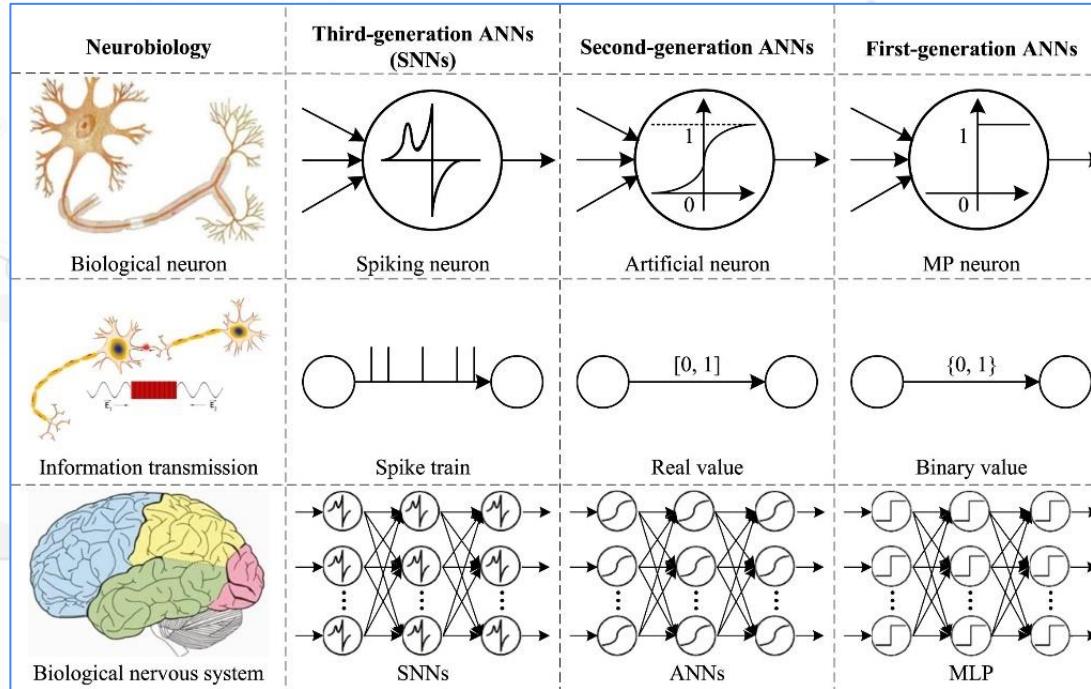
Md Zahangir Alom, Electronics, 2019 (doi:10.3390/electronics8030292)

"The demands of AI neural networks, and of deep learning techniques... require thousands of petaflop-days to train...strain on energy consumption, and increasing carbon dioxide emissions."

Source: *eFutures 2.0 Report*, August 2021

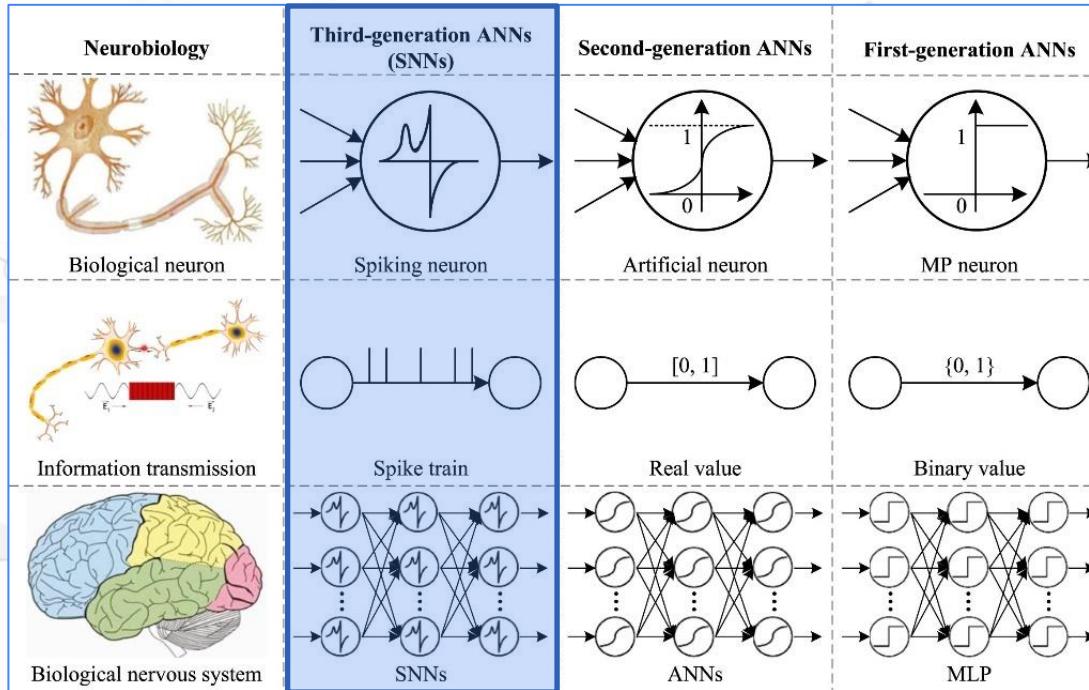
Spiking Neural Networks

- Third generation of neural networks.



Spiking Neural Networks

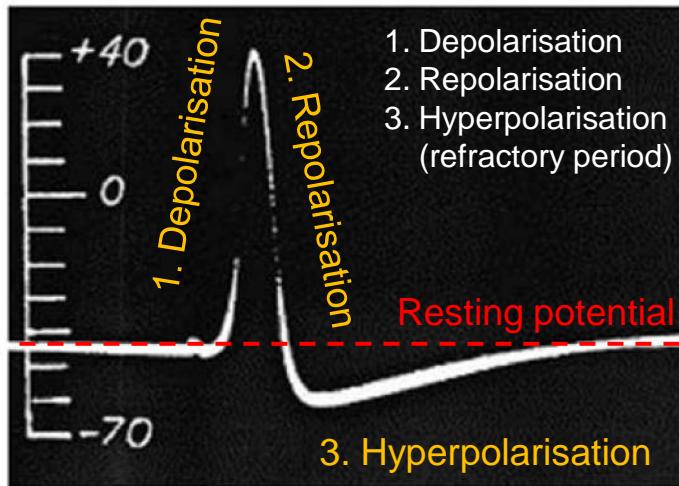
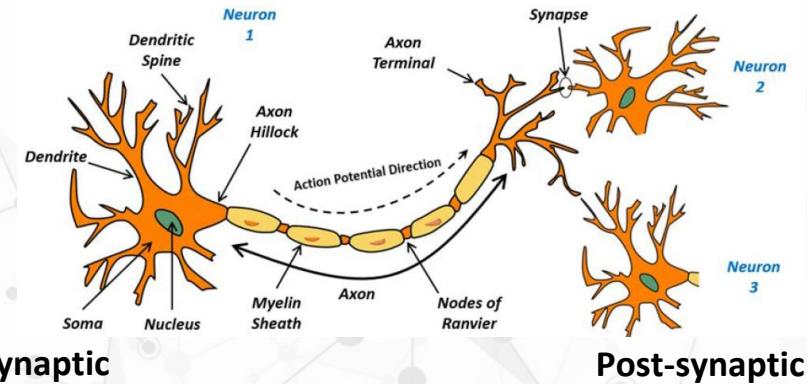
- Third generation of neural networks.



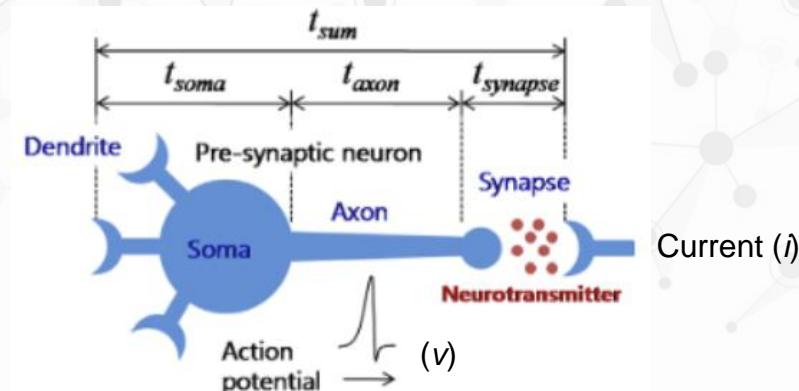
- More biologically-informed
- Temporal information
- Dynamical neurons

Spiking Neural Networks: Action Potential (Spike)

- Spiking Neural Networks (SNNs) **communicate via spikes** or action potentials (APs).
- Non-numeric values
- AP: distinct electrical spike produced by rapid depolarisation of the cell membrane followed by rapid repolarisation + brief period of hyperpolarisation.



Pre-synaptic

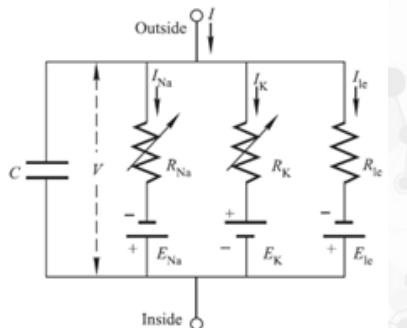
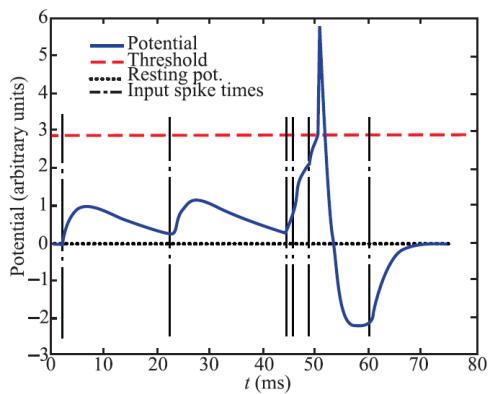


Source: Dae-Hwan Kang, Neurocomputing 155 (2015), 153-158

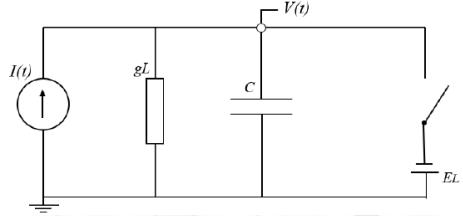
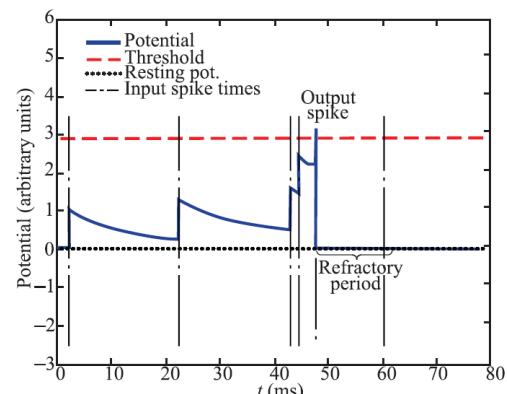
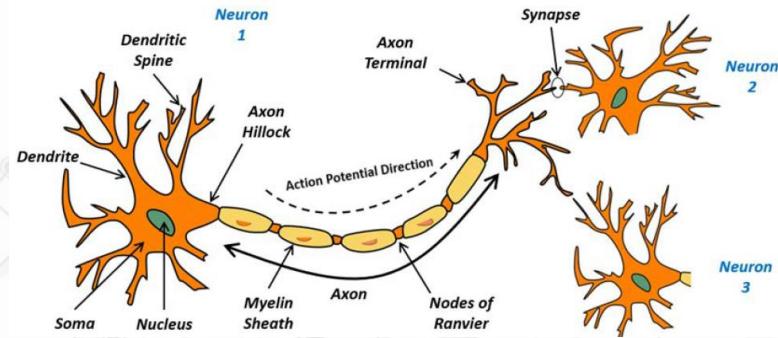
Intracellular AP recorded by Hodgkin and Huxley.

Spiking Neural Networks: Neurons

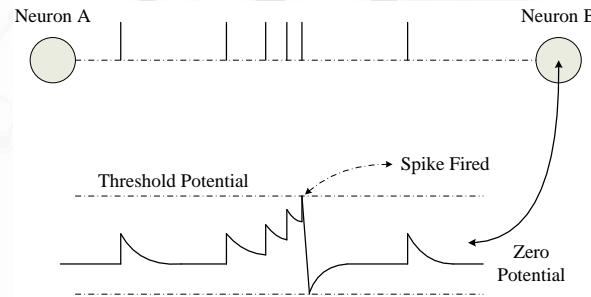
Electrical equivalent circuit of *Hodgkin and Huxley* (H&H) model



Electrical equivalent circuit of *Leaky-integrate & Fire* (LIF) model



Pre-synaptic

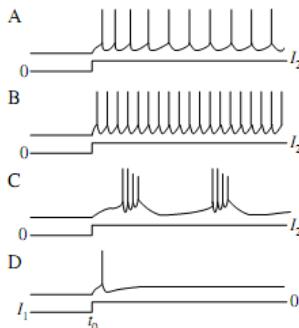


Brain-Inspired Data Processing

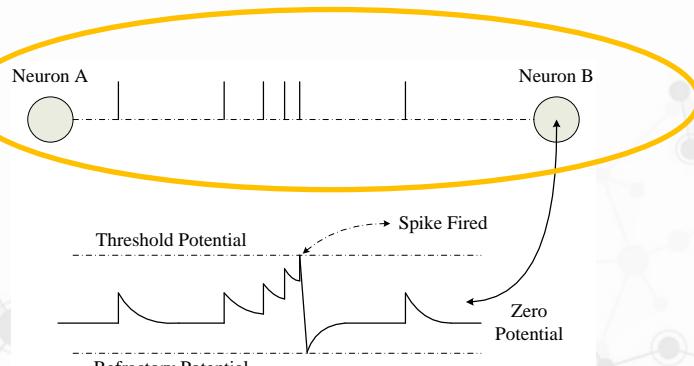
- **Spiking neural network (SNN)** a more biologically plausible model of the brain
 - a neural computing paradigm.

- Temporal nature utilised in data encoding
- Dynamics of neuron behaviour utilised.
- Asynchronous\event-based behaviour

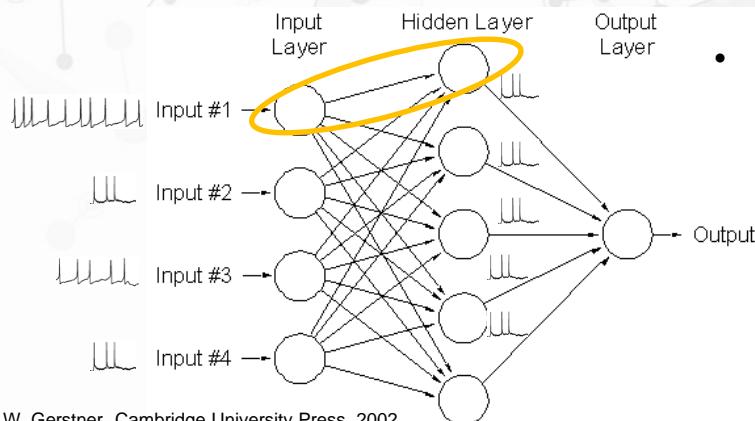
Data encoding



Input



Spatiotemporal

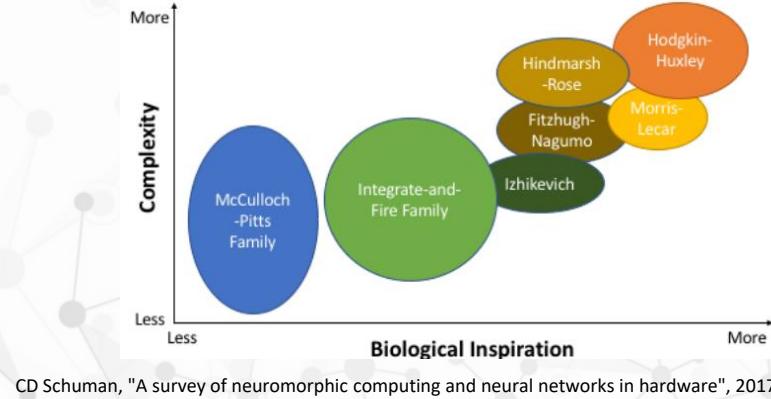
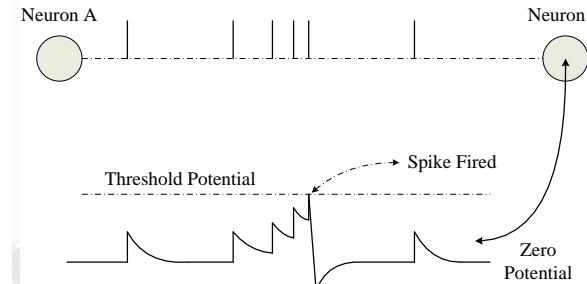
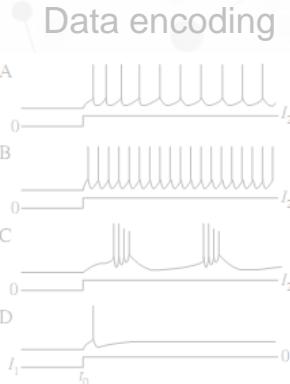


- Reads I/P patterns and classifies with an O/P pattern

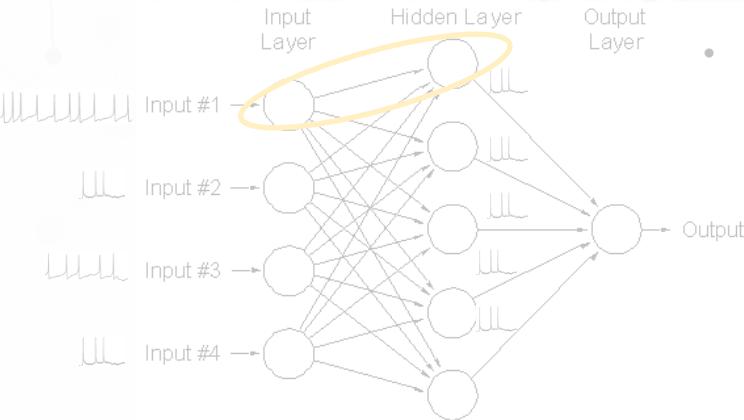
↑
Output

Brain-Inspired Data Processing

- **Spiking neural network (SNN)** a more biologically plausible model of the brain
 - a neural computing paradigm.



Input

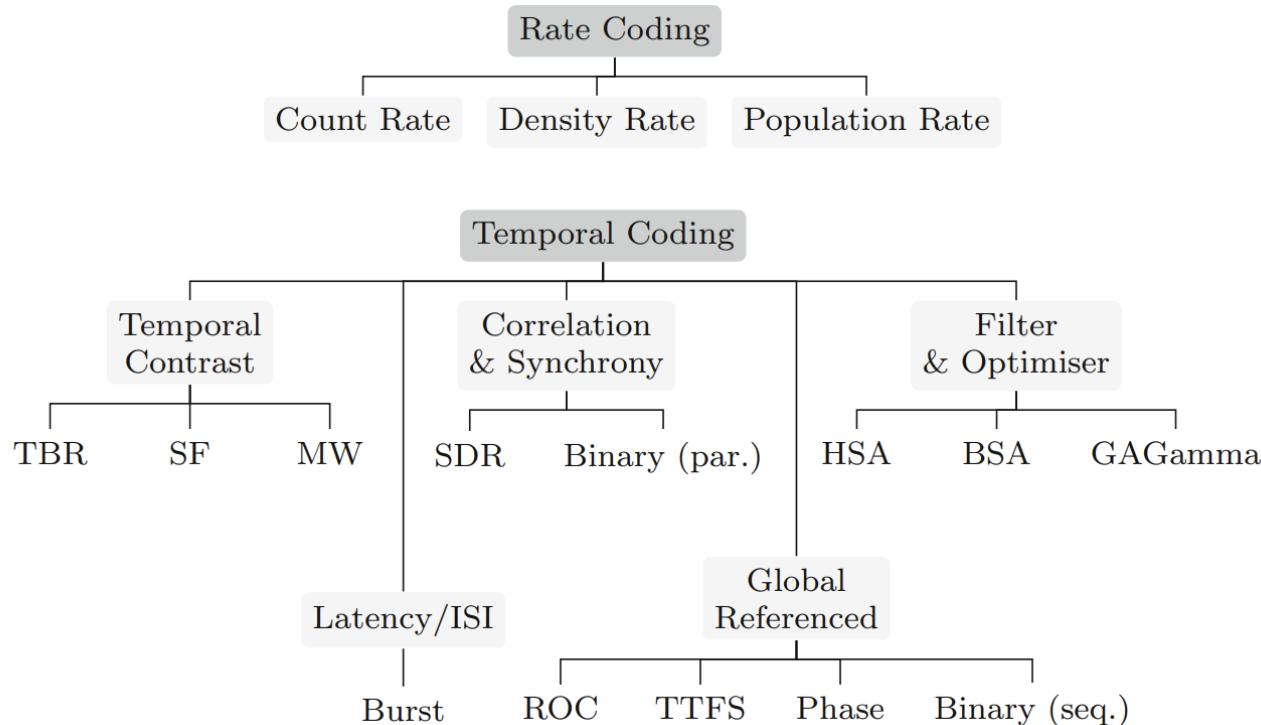


- Reads I/P patterns and classifies with an O/P pattern

↑
Output

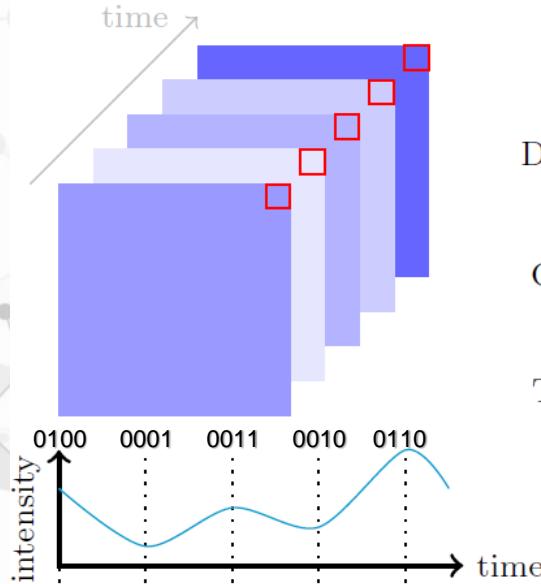
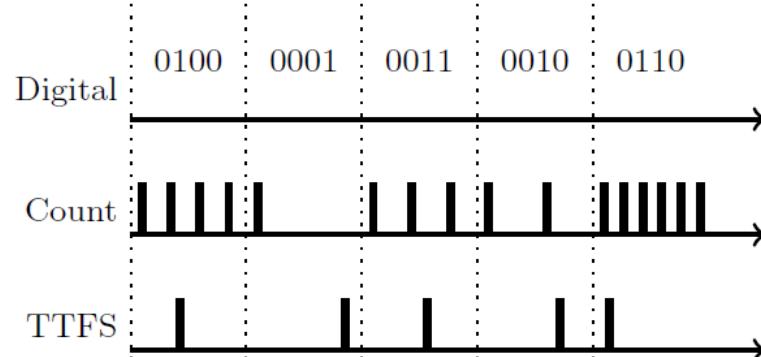
Data Encoding

- How to encode analog and digital data as spike-based information.



Data Encoding

- How to convert analog and digital data into spikes



The light intensity can directly be translated into spike times

Rate Coding: e.g. 'Count rate' - Intensity can be converted into the number of spikes generated within one frame.

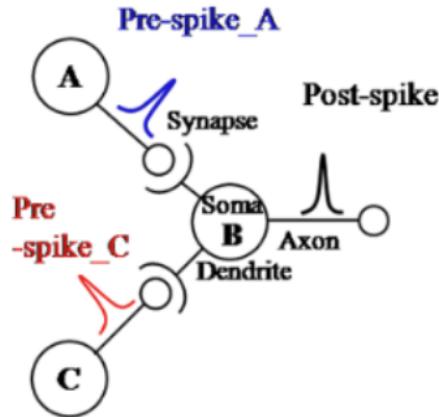
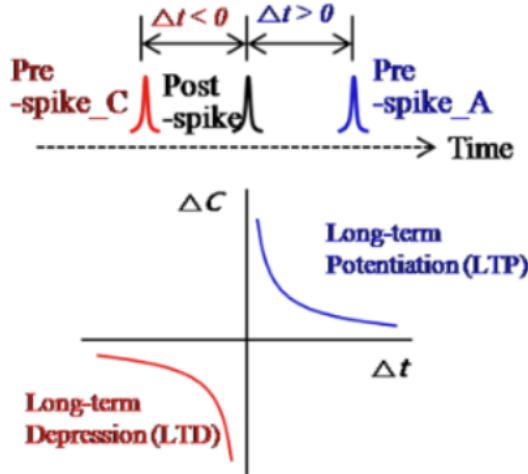
Temporal Coding: e.g. Time-to-first-spike (TTFS) - High intensity pixel corresponds to a fast spike time.

Learning Mechanisms

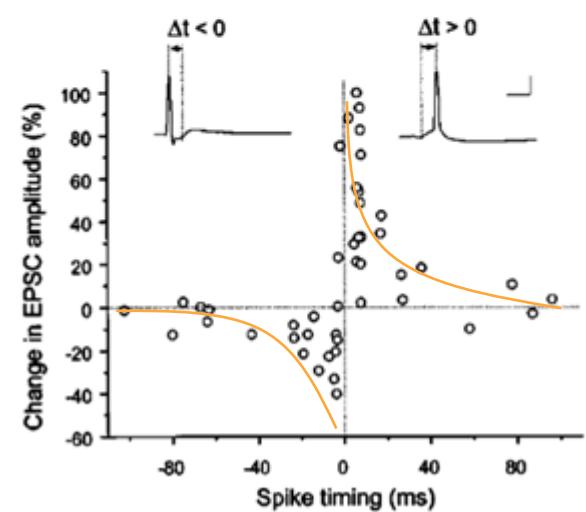
- **Unsupervised Learning**

- Hebbian rule and STDP - *those who fire together, wire together (Hebbian rule); and those who fire out of sync, lose their link (STDP)*.

STDP is a biological process that adjusts the strength of connections between neurons in the brain



$$\Delta W = A_+ e^{(t_{pre} - t_{post})/\tau_+} \quad \text{if } t_{post} > t_{pre}$$
$$\Delta W = -A_- e^{-(t_{pre} - t_{post})/\tau_-} \quad \text{if } t_{post} < t_{pre}$$

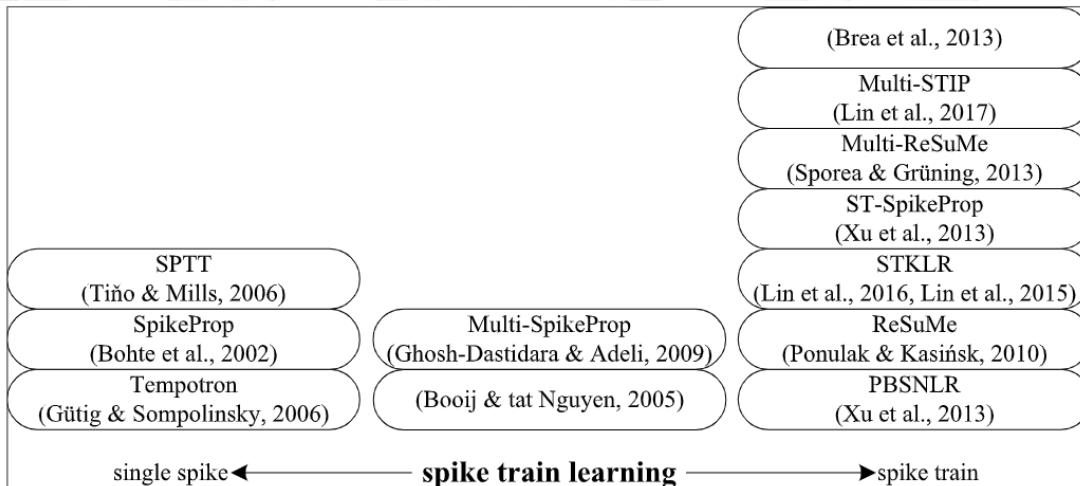


Source: Dae-Hwan Kang, Neurocomputing 155 (2015), 153-158

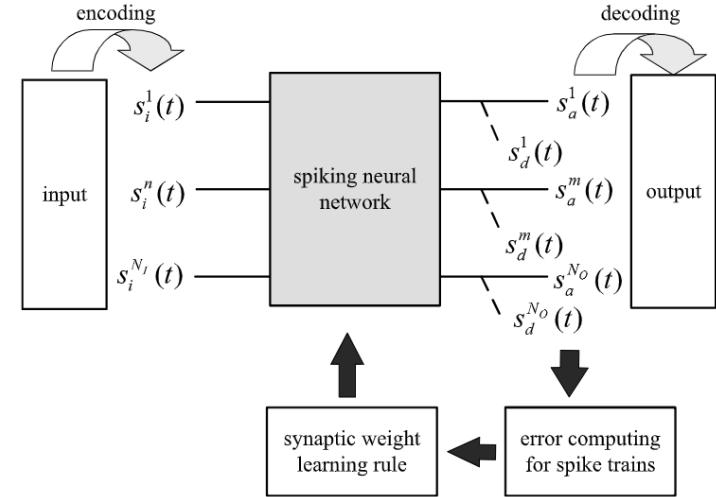
Learning Mechanisms

• Supervised Learning

- Modified Error-Backpropagation
- SpikeProp
- Synaptic weight association training (SWAT) algorithm
- Evolutionary algorithms approaches



Source: X. Wang et al.; Neural Networks 125, pp. 258–280, 2020



Source: X. Wang et al.; Neural Networks 125, pp. 258–280, 2020

- **Supervised learning for SNNs is implemented through learning the spatiotemporal patterns of spike trains.**

P. Rowcliffe, IEEE Transactions on Neural Networks, 19(9), 2008.

S. M. Bohte, Neurocomputing, 48(1-4), 2002

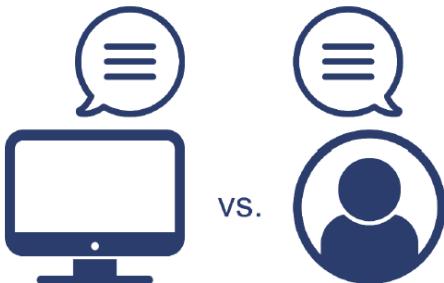
J. Wade, IEEE Transactions on Neural Networks, 21(11) 2010

A. Belatreche, Proc. IEEE Cybernetics Intelligence - Challenges and Advances, pp. 39-44, Sep. 2003

Motivation for SNNs

- SNN is a dynamic system → map well to speech and image recognition
- More energy efficient as it is asynchronous in operation
- Speed of computation improved due to event processing
- Challenges in 'learning' SNNs remain.
- Challenges in developing hardware mimics to exploit low energy, high-speeds

Turing test



Embodied Turing test



"An AI animal model – whether robotic or in simulation – passes the test if its behavior is indistinguishable from that of its living counterpart."

jg.harkin@ulster.ac.uk