
JIM HARKIN, LIAM MCDAID, MALACHY MCELHOLM & 
THANDASSERY NIDHIN

SCHOOL OF COMPUTING, ENGINEERING
& INTELLIGENT SYSTEMS

ULSTER UNIVERSITY

MARTIN TREFZER, ANDY TYRRELL, ANDREW WALTER
& SHIMENG WU

SCHOOL OF PHYSICS, ENGINEERING & TECHNOLOGY
UNIVERSITY OF YORK

Neuromorphic 
Hardware Overview



What is “Neuromorphic” Hardware?
NEURO: “RELATING TO NERVES OR THE NERVOUS SYSTEM”
MORPHIC: “OF OR PERTAINING TO FORM”

MARTIN.TREFZER@YORK.AC.UK

• Term coined by Carver Mead in 1990[1], referring to analogue VLSI mimicking biological neural 
systems.

• The original idea of Brain-like computing is much older, discussed by Alan Touring[2] and John 
von Neumann[3] in the 1950’s.

• Neuromorphic systems are typically based on some combination of:

• analogue data processing
• asynchronous communication
• massively parallel information processing
• spiking-based information representation
• collocating memory and processing
• efficient, robust, low-power



Neuromorphic vs von Neumann
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Image from [16] Schuman, Catherine D., Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022. 

“Opportunities for Neuromorphic Computing Algorithms and Applications.” Nature Computational Science 2 (1): 10–19.



Why Neuromorphic Hardware?
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1980’s 
Parallelism[4-6]

Simple 
processing 
elements, 
densely 
connected (Brain 
inspired).

1990’s 
Computation 
Speed[7-9]

Inherent 
parallelism, 
machine learning 
acceleration with 
custom HW.

1990’s Real-time 
Comp[10-11]

(Autonomous) robot 
control, image 
reconstruction, 
parallelism for 
application 
performance.

late 1990’s 
Robustness[4,12]

Inherent fault-
tolerance, 
capability for HW 
to adapt and self-
heal, advantage 
when dealing with 
intrinsic variability 
of novel devices.

2010’s Low-
power[13]

20W Brain 
power, no 
A2D/D2A, AI/ML 
for edge 
applications.

All-time goals[14-16]:
- Scalability
- von Neumann   
bottleneck (in-
memory computing)

- Autonomous –
online learning

- Neuroscience
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Designing Neuromorphic HW Systems
NETWORK TOPOLOGY AND HARDWARE MAPPING
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Feed-forward
Feed-forward

with some recurrence
Sparsely-connected

Recurrent
Locally-connected

Recurrent
Fully-connected

Recurrent

Abstract view Hardware mapping
Illustrations from [15] Schuman, Catherine D., Thomas E. Potok, Robert M. Patton, J. Douglas Birdwell, Mark E. Dean, Garrett S. Rose, and James S. Plank. 

2017. “A Survey of Neuromorphic Computing and Neural Networks in Hardware.” arXiv [cs.NE]. arXiv. http://arxiv.org/abs/1705.06963.



Neuron (& Synapse) Models
BIO-INSPIRED COMPUTATION MODEL ABSTRACTIONS
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Biological plausibility
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Learning Rules and Training Methods
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Image sources [15,16]

(Quasi) Backpropagation Mapping Post-training Reservoir Computing

Evolutionary Optimisation Hebbian Rules, STDP

• Supervised
• Unsupervised
• L2L



Materials and Technologies
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Memristors Spintronics

Floating Gate Phase Change Memory

Optical CBRAM

Atomic Switch Nanomaterials

Image source [15], VLSI [40]



Landscape of Neuromorphic Hardware
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Image source Mehonic et al. [23]
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BrainScaleS vs SpiNNaker (HBP)
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BrainScaleS
• physical VLSI (analogue or mixed-signal)
• emulations of neuron, synapse and 

plasticity models 
• digital connectivity
• 10,000X times faster than real time

SpiNNaker
• digital multicore chips
• numerical models of neuron, synapse 

and plasticity on ARM
• custom optimised connectivity
• 10X real time on 1-Mio cores

BrainScaleS SpiNNaker



TrueNorth & Loihi
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IBM TrueNorth [34,41]

• 4096 Neuro Cores
• Each 256 fully-connected neurons
• 256x256 crossbar  (locally synchronous)
• mesh event routing between Neuro 

Cores  (globally asynchronous)
• LIF neurons, multi-valued synapses

Intel Loihi [35]

• 128 Neuromorphic Cores
• Each 1024 primitive neurons
• scalable mesh routing (locally 

synchronous, globally asynchronous)
• LIF neurons, precision synapses
• Programmable on-chip synaptic learning 

rules (STDP)
• Programmable synaptic delays



ReASOn / Dynap-sel (28nm FD-SOI) [24]
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Overview of Applications – Next Talk!
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• Data from 
2017[15]

• In 2023, probably 
larger portion of 
smart sensors 
and edge AI



Research Areas and Challenges
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Applications
Unique 

capabilities of 
neuromorphic 

HW?

Algorithms
Algorithms 
specific to 

neuromorphic 
HW?

Software
Programming 

language / 
model for 

neuromorphic?

Devices
Integration and 
interfacing of 

novel 
materials?

Materials
Design 

materials 
specific for 

neuromorphic?Architecture
Function based 

on neuro-
morphic 

architecture?
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