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What is “Neuromorphic” Hardware?

NEURO: “RELATING TO NERVES OR THE NERVOUS SYSTEM”
MORPHIC: “OF OR PERTAINING TO FORM”

« Term coined by Carver Mead in 1990}, referring to analogue VLSI mimicking biological neural
systems.

» The original idea of Brain-like computing is much older, discussed by Alan Touring!?! and John
von Neumanni3! in the 1950’s.

* Neuromorphic systems are typically based on some combination of:

e analogue data processing

e asynchronous communication

e massively parallel information processing
* spiking-based information representation
e collocating memory and processing

» efficient, robust, low-power

MARTIN.TREFZER@YORK.AC.UK



Neuromorphic vs von Neumann

Von Neumann architecture <“———— VersuS — 5 Neuromorphic architecture

Neural network

e | o
2aPn
01001001 01001111 ,éﬂ'&f@
Binary Binary S
input output (Neurons and
synapses for
both processing
and memory)
Sequential processing S Operation —_— Massively parallel processing
Separated computation and memory <«——  Organization —> Collocated processing and memory
Code as binary instructions <«—— Programming —> Spiking neural network
Binary data <«—— Communication —— Spikes
Synchronous (clock-driven) —— Timing — Asynchronous (event-driven)

Image from [16] Schuman, Catherine D., Shruti R. Kulkarni, Maryam Parsa, J. Parker Mitchell, Prasanna Date, and Bill Kay. 2022.
“Opportunities for Neuromorphic Computing Algorithms and Applications.” Nature Computational Science 2 (1): 10-19.
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Why Neuromorphic Hardware?

1980’s
Parallelism[4]
Simple
processing
elements,
densely
connected (Brain
inspired).

von Neumann
bottleneck

1990’s
Computation
Speed!’-
Inherent
parallelism,
machine learning
acceleration with
custom HW.

1990’s Real-time

Complio-1l

(Autonomous) robot
control, image
reconstruction,
parallelism for
application
performance.

New devices and

materials

End of Dennard

scaling

late 1990’s
Robustness!412]
Inherent fault-
tolerance,
capability for HW
to adapt and self-
heal, advantage
when dealing with
intrinsic variability
of novel devices.

2010’s Low-
power(t3]

20W Brain
power, no
A2D/D2A, Al/ML
for edge
applications.

Deep learning “Al”

All-time goals!14-16l;

- Scalability

-von Neumann
bottleneck (in-
memory computing)

- Autonomous -
online learning

- Neuroscience
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Desighing Neuromorphic HW Systems

NETWORK TOPOLOGY AND HARDWARE MAPPING
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Abstract view Hardware mapping
lllustrations from [15] Schuman, Catherine D., Thomas E. Potok, Robert M. Patton, J. Douglas Birdwell, Mark E. Dean, Garrett S. Rose, and James S. Plank. MART| N TREFZER@YORKACU K

2017. “A Survey of Neuromorphic Computing and Neural Networks in Hardware.” arXiv [cs.NE]. arXiv. http://arxiv.org/abs/1705.06963.



Neuron (& Synapse) Models

BIO-INSPIRED COMPUTATION MODEL ABSTRACTIONS
A

Hodgkin-
Huxleyt]

Hindmarsh-
Rose
Morris-
Fitzhugh- Lecar!20]
Nagumo

Integrate & Izhikevich!18]

McCullo B
ch-
Pitts17]

Model complexity

Hopfield,
Binary!21.22]

>

Biological plausibility
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e Supervised

Learning Rules and Training Methods = Ve

a (Quasi) Backpropagation b Mapping Post-training ¢ Reservoir Computing
—

-
— Input Output Input Output
ANN (artificial) | SNN (spiking)

for training for inference

Input layer Hidden layers Output layer Modification of weights
and activations Input layer Reservoir Readout layer
d Evolutionary Optimisation e Hebbian Rules, STDP
I @ (LA w o £(t(i), 1))
1
Parameter optlmlzatlon 7 \

Network, structure, weights, delays, thresholds

ALGORITHMS PROS AND CONS

. An, Device | Complex to . Fast Time Demonstrated Biologically-Inspired
Algorithm Class | yytv) | 0 | Tmplement | O™Line | "Goiiion | Broad Applicability or Plansible
Back-Propagation No No Yes No Yes Yes No
Evolutionary Yes Yes No No No Yes Maybe Image sources [15,16]
Hebbian No Yes No Yes Maybe No Yes
STDP No | ¥es | Maybe | Yes | Maybe No Yes MARTIN.TREFZER@YORK.AC.UK




Materials and Technologies

Analog Circuitry/
Digital Communication

Analog Circuitry/

Digital Memory\

Mixed Circuitry

® Memristors B Spintronics

m Floating Gate m Phase Change Memory

m Optical m CBRAM \
FPAA/FPNA

m Atomic Switch m Nanomaterials

Image source [15], VLSI [40]
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Landscape of Neuromorphic Hardware

Analogue/mixed
CMOS

Digital CMOS

Modelling of Application-driven
biological systems research
(analysis) (synthesis)

| Neurogrid [39]|

| MNIFAT

|
I

| BrainScaIeSnl : | Spirit®
1

[321|

ReASOn?2

[24]|

| DYNAP |
| DYNAP-SEL,|
| ROLLS |

DeepSouth,|

| Intel Loihi 5|

| Tianjic 5
SpiNNaker 5, |

! | ODIN 5

I | Intel SNN chip |

|IBM TrueNorth |3,

38]

Including properties
such as:

@ In-memory computing
@ Fine-grained parallelism
@ Learning in hardware

@ Event-based and
asynchronous
communication

@ Reduced precision
@ Spike-based processing
® Adaptability

@ Leveraging noise
and stochasticity

@ Brain-inspired

a. memristor
technology

b. SpiNNaker2 with
FP+other
features

Image source Mehonic et al. [23]

MARTIN.TREFZER@YORK.AC.UK



BrainScaleS vs SpiNNaker (HBP)

BrainScaleS

e physical VLSI (analogue or mixed-signal)

* emulations of neuron, synapse and
plasticity models

* digital connectivity

* 10,000X times faster than real time

SpiNNaker

* digital multicore chips

* numerical models of neuron, synapse
and plasticity on ARM

e custom optimised connectivity

 10Xreal time on 1-Mio cores

https://wiki.ebrains.eu/bin/view/Collabs/neuromorphic/  MARTIN.TREFZER@YORK.AC.UK



TrueNorth & Loihi

IBM TrueNorth 3441l

4096 Neuro Cores

Each 256 fully-connected neurons
256x256 crossbar (locally synchronous)
mesh event routing between Neuro
Cores (globally asynchronous)

LIF neurons, multi-valued synapses

neurosynaptic core dondrites synaptic
crossbar
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LEARNING

——— Input spike handling

~——— Compartment update
bAP notification P P

~————  Output spike generation
——— Synaptic update

Ipalpals

[’4'\
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ApaPaln

Intel Loihi 3% Chocooin
* 128 Neuromorphic Cores Elﬁﬂ [] 7_"2
e Each 1024 primitive neurons [ |00
* scalable mesh routing (locally

synchronous, globally asynchronous)
* LIF neurons, precision synapses
* Programmable on-chip synaptic learning

rules (STDP)

Programmable synaptic delays
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1.9 mm

ReASOn / Dynap-sel (28nm FD-SOI)
Block | Number | Dewl

Non-Plastic
Core

Plastic Core

Neuron

Non-plastic Synapse

Plastic Synapse

256 X 4 analog AExp Leaky I&F neurons,

= 16k X4 TCAM-based synapses
64 analog AExp Leaky I&F neurons,
X1 8k digital plastic synapses

4k digital non-plastic synapses
256 virtual synapses

Computation: Pure current based

Biological features: NMDA, frequency adaptation, tunable refractory period,
firing threshold, fast/slow leaky time constants.

Tunable Parameter: 12 biases for Ith, Itau1/2, Idc, Irefr, Imemthr...

Local latches for configuration: NMDA, Monitor, tau1/2

11-bit TCAM(synapse addresses)+5-bit SRAM (Exc/inh, 4-bit synaptic
weight)

4-bit up/down counter-based digital with Fusi stop learning rule
Configurable feature: Exc/Inh, Set weight from 0 to 15, weight monitor
enable, Learning Enable/disable, Broadcast event enable/disable

MARTIN.TREFZER@YORK.AC.UK



Overview of Applications — Next Talk!

Non-Neural

N rk Implantable/
mplantable

NLP Anomaly Wearable

Smart Detection
Sensor f

e Data from
2017025

* In 2023, probably
larger portion of
smart sensors
and edge Al

MARTIN.TREFZER@YORK.AC.UK



Research Areas and Challenges

Applications
Unique
capabilities of
neuromorphic
HW?

Algorithms
Algorithms
specific to
neuromorphic
HW?

Devices
Integration and
interfacing of
novel
materials?

Software
Programming
language /
model for

neuromorphic? Architecture

Function based
on neuro-
morphic
architecture?

Materials
Design
materials
specific for
neuromorphic?

MARTIN.TREFZER@YORK.AC.UK
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