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Motivation
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• Reliability is a significant challenge for modern electronic systems.

• Increased physical defects in advanced silicon manufacturing processes; 
wear-out faults etc. Permanent, Temp. (SEU, Electromagnetic Interference)

IEEE International Roadmap for Devices and Systems (IRDS), 2020

“With device feature sizes projected to 
decrease to less than 5 nm within the 
next 10 years, scaling as we know it is 
expected to soon reach its physical limits 
or get to a point where cost and 
reliability issues far outweigh the 
benefits.” 

(2021) Apple M1 Pro (33 billion) and M1 Max (57 billion)

IEEE International Roadmap for Devices and Systems (IRDS), 2020

Now 2nm and below



Self-X
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• Traditional approaches: redundancy/replication models, error correction 
techniques, radiation hardening, Evolutionary/reconfigurable. 

• Limited levels of reliability – constraints on: 

➢ number of faults that can be tolerated (degree)

➢ level of granularity with which repairs can be implemented 

➢ Often a central repair mechanism not distributed, therefore fault-
prone

self-monitor
self-detect
self-repair

Self-X 



Operation of Fault Tolerant Systems 

• There are several key areas in the development of fault tolerant 
hardware computing systems: 

• Fault monitoring/detecting

- be able to detect a fault has occurred

• Fault test and diagnostics

- where the fault is located

- the type of fault (transient, temporary or permanent)

• Fault tolerant decision

- what can be done to restore the system’s operation, i.e. how can 
the fault be tolerated.
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‘Reliability’: Unmet Need
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Look to mimic fault-tolerant capability 
of the human brain (to a degree) to 
build reliable computing hardware.

• We can learn a lot from biology, in particular neuroscience!

• Brain processing : robust and power-efficient information computing.

• Exploit the brain’s self-repair mechanism (astrocyte cells) 

• Aim to develop astrocyte-neuron networks…….                                   
“Self-rePAiring spiking Neuron NEtwoRk” (SPANNER)

Brain employs a massively parallel 
computational network comprising of ∼
1011 neurons and ∼ 1015 synapses.



More Knowledge on Brain Repair
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Nicola J. Allen & Ben A. Barres, "Glia — more than just brain glue," Nature, vol. 457, 675-
677, 2009. doi:10.1038/457675a

▪ Astrocyte enwraps many (~105) synapses
and can connect to multiple (~6-8)
neighbouring neurons.

▪ The connection between the astrocyte and
neurons is named the tripartite synapse.

▪ When an action potential (AP) arrives at the
presynaptic axon how do we describe the
interactions between the neurons, synapses
and astrocyte?

Astrocyte-Neuron (AN) Model 

12
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Software Model (AN) - A tripartite synapse story
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Action potential (Spike) - presynaptic axon

Neuro-transmitter (Glutamate) is released across the 
cleft and binds to the receptors of the postsynaptic 

terminal.

Glu

After depolarization of postsynaptic neuron, a type of 
endocannabinoid (2-AG) is synthesized and released 
from dendrite. 2-AG feeds back to the pre-synaptic 

terminal in two ways:

2-

AG

2-

AG

Directly

2-AG binds directly to 
the type 1 Cannabinoid 

Receptors (CB1Rs) of the 
presynaptic terminal.

This causes a decrease of 
transmission probability 

rate (PR) of the 
synapses, and is termed 
Depolarization-induced 

Suppression of 
Excitation (DSE).

Indirectly

2-AG binds to CB1Rs of 
the astrocyte cell.

Direct feedback 

(DSE)

Decreasing the PR

IP3

Increasing the IP3 level

Ca2+

Triggers the release of 
calcium (Ca2+)

Glu

Releases the glutamate 
(Glu) and binds to the 

receptors in the synapse

Termed e-SP, this results 
in an increase of synapse 

probability of release (PR). 

Indirect feedback (e-

SP)

Increasing the PR

J. Wade, L. McDaid, J. Harkin, et. Al Frontiers in Computational Neuroscience, 6(76), pp. 1–12, 2012.
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Action potential - presynaptic
axon

Neuro-transmitter (Glutamate) is released across the 
cleft and binds to the receptors of the postsynaptic 

terminal.

After depolarization of postsynaptic neuron, a type of 
endocannabinoid (2-AG) is synthesized and released 
from dendrite. 2-AG feeds back to the pre-synaptic 

terminal in two ways:

Directly

2-AG binds directly to 
the type 1 Cannabinoid 

Receptors (CB1Rs) of the 
presynaptic terminal.

Indirectly

2-AG binds to CB1Rs of 
the astrocyte cell.

(Calcium signal 

broadcast) IP3

The Bigger Picture - “Astro-Neuron Network”

Many synapses to one Astrocyte

J. Wade, L. McDaid, J. Harkin, et. Al Frontiers in Computational Neuroscience, 6(76), pp. 1–12, 2012.



Action potential - presynaptic
axon

Neuro-transmitter (Glutamate) is released across the 
cleft and binds to the receptors of the postsynaptic 

terminal.

After depolarization of postsynaptic neuron, a type of 
endocannabinoid (2-AG) is synthesized and released 
from dendrite. 2-AG feeds back to the pre-synaptic 

terminal in two ways:

Directly

2-AG binds directly to 
the type 1 Cannabinoid 

Receptors (CB1Rs) of the 
presynaptic terminal.

Indirectly

2-AG binds to CB1Rs of 
the astrocyte cell.

(Calcium signal 

broadcast) IP3
Many synapses to one Astrocyte

PR+ PR=0 PR

+

The Bigger Picture - “Astro-Neuron Network”

J. Wade, L. McDaid, J. Harkin, et. Al Frontiers in Computational Neuroscience, 6(76), pp. 1–12, 2012.
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Self-repair of a ‘Small’ Astrocyte-Neuron Network
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Naeem M, McDaid L, Harkin J, Wade J, et al. IEEE Transactions Neural Networks & Learning Systems, 2015.
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❑ Explored the mapping to hardware as it enables repairs
to achieved when the underlying hardware is
unreliable.



FPGA Hardware Implementation

▪ Astrocyte-neuron network with
2 neurons (N1, N2), 20 synapses
(C1, C2), and 1 astrocyte cell (A).

▪ Xilinx Virtex-7 XC7VX485T

▪ Vivado High Level Synthesis tool
to generate the IP blocks

Xilinx VC707 
development 
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▪ 1 astrocyte, 2 neurons (20 synapse)
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‘Small’ Astrocyte-Neuron Network to FPGAs

Liu J, Harkin J, Maguire LP, et al.; IEEE International Symposium on Circuits and Systems, 2016



➢On-chip interconnect: High levels of connections, different time scales, different 

data – spike events, numeric data values (increased interconnect problem due to 

astrocyte connections – scalability solutions required)

➢ Tool-chain: Tools to map application to network paradigm, program the hardware, 

fault injection, data analysis and visualisation.

Tool-
chain

Inter-
conne

ct

Block
s

➢ Model real applications: Larger networks.

➢ Key functional blocks: Astrocyte, tri-partitie synapse and 

learning rule (trade-off computational complexity for key 

principle with area/power efficiency)

14

Challenges



Summary

❑ Opportunities to fault tolerance not just from the parallelization of partial 

computations across multiple synapses and neurons.

❑ Challenges remain in classification of faults and mitigations and system 

level approaches to bio-inspired fault tolerance.

jg.harkin@ulster.ac.uk 
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