

Martin Trefzer, Andy Tyrrell, Andrew Walter
& Shimeng Wu

School of Physics, Engineering & Technology
University of York

Applications of SNNs - Networks for Fault-tolerance

Jim Harkin, Liam McDaid, Malachy McElholm
& Thandassery Nidhin

School of Computing, Engineering
& Intelligent Systems
Ulster University

jg.harkin@ulster.ac.uk

Motivation

- **Reliability** is a significant challenge for modern **electronic systems**.
- Increased physical defects in advanced silicon manufacturing processes; wear-out faults etc. Permanent, Temp. (SEU, Electromagnetic Interference)

(2021) Apple M1 Pro (33 billion) and M1 Max (57 billion)

FEBRUARY 20, 2020						
Logic/Foundry Process Roadmaps (for Volume Production)						
	2015	2016	2017	2018	2019	2020
Intel	14nm+	10nm FinFET	14nm++	10nm	10nm+	7nm EUV
Samsung	28nm FDSOI	10nm	8nm	7nm EUV	6nm EUV	5nm EUV
TSMC	16nm+ FinFET	10nm	7nm	7nm+ EUV	5nm	5nm+ EUV
GlobalFoundries	14nm FinFET	22nm FDSOI	12nm FinFET	12nm FDSOI	12nm+ FinFET	12nm+ FinFET
SMIC	28nm		14nm FinFET	12nm FinFET		
UMC		14nm FinFET		22nm planar		

Note: What defines a process "generation" and the start of "volume" production varies from company to company, and may be influenced by marketing embellishments, so these points of transition should only be seen as very general guidelines.

Sources: Companies, conference reports, IC Insights

*“With device feature sizes projected to decrease to **less than 5 nm** within the next 10 years, scaling as we know it is expected to soon reach its physical limits or get to a point where cost and **reliability issues** far outweigh the benefits.”*

Now 2nm and below

IEEE International Roadmap for Devices and Systems (IRDS), 2020

Self-X

Self-X {
self-monitor
self-detect
self-repair

- Traditional approaches: redundancy/replication models, error correction techniques, radiation hardening, Evolutionary/reconfigurable.
- Limited levels of reliability – constraints on:
 - **number of faults** that can be tolerated (degree)
 - **level of granularity** with which repairs can be implemented
 - Often a **central repair mechanism** not distributed, therefore fault-prone

Operation of Fault Tolerant Systems

- There are several key areas in the development of fault tolerant hardware computing systems:
- Fault **monitoring/detecting**
 - be able to detect a fault has occurred
- Fault **test** and **diagnostics**
 - where the fault is located
 - the type of fault (transient, temporary or permanent)
- Fault tolerant **decision**
 - what can be done to restore the system's operation, i.e. how can the fault be tolerated.

‘Reliability’: Unmet Need

- We can learn a lot from biology, in particular neuroscience!
- Brain processing : robust and power-efficient information computing.

Look to **mimic** fault-tolerant capability of the human brain (to a degree) to build reliable computing hardware.

Brain employs a massively parallel computational network comprising of $\sim 10^{11}$ neurons and $\sim 10^{15}$ synapses.

- Exploit the brain’s self-repair mechanism (**astrocyte** cells)
- Aim to develop **astrocyte-neuron networks**.....
“Self-rePAiring spiking Neuron NEtwoRK” (SPANNER)

More Knowledge on Brain Repair

- Astrocyte enwraps many ($\sim 10^5$) synapses and can connect to multiple ($\sim 6-8$) neighbouring neurons.
- The connection between the astrocyte and neurons is named the ***tripartite synapse***.
- When an action potential (AP) arrives at the presynaptic axon how do we describe the interactions between the neurons, synapses and astrocyte?

Astrocyte-Neuron (AN) Model

Nicola J. Allen & Ben A. Barres, "Glia — more than just brain glue," Nature, vol. 457, 675-677, 2009. doi:10.1038/457675a

Software Model (AN) - A tripartite synapse story

Action potential (Spike) - presynaptic axon

Neuro-transmitter (**Glutamate**) is released across the cleft and binds to the receptors of the postsynaptic terminal.

After depolarization of postsynaptic neuron, a type of endocannabinoid (**2-AG**) is synthesized and released from dendrite. **2-AG** feeds back to the *pre-synaptic terminal* in two ways:

- Directly**
- Indirectly**

2-AG binds directly to the type 1 Cannabinoid Receptors (CB1Rs) of the presynaptic terminal.

This causes a decrease of transmission probability rate (**PR**) of the synapses, and is termed Depolarization-induced **Suppression of Excitation (DSE)**.

Indirectly

2-AG binds to CB1Rs of the astrocyte cell.

Increasing the **IP₃** level

Triggers the release of calcium (Ca^{2+})

Releases the glutamate (**Glu**) and binds to the receptors in the synapse

Termed **e-SP**, this results in an **increase** of synapse probability of release (**PR**).

New Probability of Release!

The Bigger Picture - “Astro-Neuron Network”

The Bigger Picture - “Astro-Neuron Network”

Self-repair of a ‘Small’ Astrocyte-Neuron Network

Temporary
Faults
injected

PR of Synapse #1

PR of Synapse #10

Moving to Hardware

- Explored the mapping to hardware as it enables repairs to be achieved when the underlying hardware is unreliable.

FPGA Hardware Implementation

- Astrocyte-neuron network with 2 neurons (N1, N2), 20 synapses (C1, C2), and 1 astrocyte cell (A).

- Xilinx Virtex-7 XC7VX485T
- Vivado High Level Synthesis tool to generate the IP blocks

Xilinx VC707 development board

'Small' Astrocyte-Neuron Network to FPGAs

- 1 astrocyte, 2 neurons (20 synapse)

Xilinx Virtex-7 XC7VX485T

Neuron #1

Neuron #2

Challenges

- **Model real applications:** Larger networks.
- **Key functional blocks:** Astrocyte, tri-partite synapse and learning rule (trade-off computational complexity for key principle with area/power efficiency)
- **On-chip interconnect:** High levels of connections, different time scales, different data – spike events, numeric data values (increased interconnect problem due to astrocyte connections – scalability solutions required)
- **Tool-chain:** Tools to map application to network paradigm, program the hardware, fault injection, data analysis and visualisation.

Summary

- ❑ Opportunities to fault tolerance not just from the parallelization of partial computations across multiple synapses and neurons.
- ❑ Challenges remain in classification of faults and mitigations and **system level** approaches to bio-inspired fault tolerance.

