

UNIVERSITY
of York

Engineering and
Physical Sciences
Research Council

Concept Neural Microcircuits with Novelty Search

MARTIN TREFZER, ANDY TYRRELL, ANDREW WALTER
& SHIMENG WU

SCHOOL OF PHYSICS, ENGINEERING & TECHNOLOGY
UNIVERSITY OF YORK

JIM HARKIN, LIAM MCDAID, MALACHY MCELHOLM &
THANDASSERY NIDHIN

SCHOOL OF COMPUTING, ENGINEERING
& INTELLIGENT SYSTEMS
ULSTER UNIVERSITY

XILINX

ThalesAlenia
Space
a Thales / Leonardo company

arm

The Nervous Project Methodology

System on Chip

⚡ - Fault ✗ - Resulting Errors

WP1

Invertebrate cardiac control pathways

Crayfish startle pathways

Leech muscle control pathways

Spiking Neurons / Small-world SNNs

Orange circle - Sensor Neuron, Purple circle - Neuron, Green square - Actuator, Blue square - Anomaly Manager

WP2

Nervous System on Chip

Orange circle + Purple circle + Green square + Blue square = Overlay Architecture

WP3 / WP4

C. elegans

Leech

Lobster

Fruit fly

Ant

Honeybee

Zebrafish

Behavioural complexity of nervous systems

The Nervous Project Proposition

System on Chip

⚡ - Fault ✕ - Resulting Errors

Spiking Neurons / Small-world SNNs

○ - Sensor Neuron ⚡ - Neuron □ - Actuator □ - Anomaly Manager

Nervous System on Chip

○+○+□+□ = Overlay Architecture

Aim: Maximise electronic systems reliability and autonomy with a new “nervous system” design methodology and overlay architecture, that is capable of detecting and predicting anomalies or faults, is scalable and capable of analysing their cause and location in order to inform or trigger mitigation.

C. elegans

Leech

Lobster

Fruit fly

Ant

Honeybee

Zebrafish

Behavioural complexity of nervous systems

Rethinking Neuromorphic HW Systems

TAKING INSPIRATION FROM THE NERVOUS SYSTEM **ARCHITECTURE**

Rethinking Neuromorphic HW Systems

TAKING INSPIRATION FROM THE NERVOUS SYSTEM **ARCHITECTURE**

Key:
■ = Structure
■ = Function

Figures from https://en.wikipedia.org/wiki/Nervous_system

MARTIN.TREFZER@YORK.AC.UK

Biological Neural Microcircuits

- “Elementary processing units” within the nervous system.
- Crayfish Startle Reflex -> fault tolerance?
- Sophisticated behaviours.
- Temporal correlation of multiple environmental stimuli.
- **Translate microcircuits to electronic systems?**

Postexcitatory Inhibition of the Crayfish Lateral Giant Neuron: A Mechanism for Sensory Temporal Filtering; Journal of Neuroscience 15 November 1997, 17 (22) 8867-8879; DOI: <https://doi.org/10.1523/JNEUROSCI.17-22-08867.1997>

Crayfish Tail Startling Reflex

Postexcitatory Inhibition of the Crayfish Lateral Giant Neuron: A Mechanism for Sensory Temporal Filtering; Journal of Neuroscience 15 November 1997, 17 (22) 8867-8879; DOI: <https://doi.org/10.1523/JNEUROSCI.17-22-08867.1997>

Making Artificial Microcircuits

- Building blocks (Neural Motifs)
- Components

- Design Language (Matrices)

- Design Methodology (Genetic Algorithm)
- Neuromorphic Design Automation (Novelty Search)

- Physical representation (Netlist for Brian2, NEST)
- FPGA prototyping (VHDL Model)

Neural Motifs as Components

- **Recurring patterns (motifs) in biological nervous systems:**
 - FeedForward Excitation (FFE)
 - FeedBack Excitation (FBE)
 - FeedBack Inhibition (FBI)
 - ReCurrent Excitation (RCE)
 - ReCurrent Inhibition (RCI)
 - LaTeral Inhibition (LTI)
 - Central Pattern Generator (CPG)

Microcircuit Evaluation – Diverse Behaviours

Spike Train Distance	FBE/FFE	CPG/FBE	RCI/FBI
FBE/FFE		0.2282	0.1520
CPG/FBE	0.2282		0.2360
RCI/FBI	0.1520	0.2360	

Microcircuit Design using Novelty Search

Solving Problems with Artificial Microcircuits

Punctuation Detector with 9 Neurons

- Many different behaviours in the catalogue.
- Examples in the subsequent hands-on session.
- Hands-on session <https://www-users.york.ac.uk/~mt540/nervous-systems/index.html#resources>

Thanks

TO THE LAB TEAM AND COLLEAGUES:

SIMON BALE, LINAN CAO, LIAM MCDAID, TIAN GAN, JIM HARKIN,
SIMON O'KEEFE, ALEX MCDONNELL, MALACHI MCELHOLM,
MOHAMMAD MUSAMEH, AMRUTHA R K, RINKU SEBASTIAN,
SUSAN STEPNEY, NIDHIN THANDASSERY, ANDY TYRRELL,
ARUNKUMAR VENKATESHAIAH, RIVERSDALE WALDEGRAVE,
ZIWEI WANG, ANDREW WALTER, ISAAC WATSON, CHESTER
WRINGE, SHIMENG WU, GUANGSHA XU.