
DATE 2023 - NERVOUS Systems Tutorial - Artificial Neural Microcircuits

NERVOUS Systems Tutorial - Artificial Neural Microcircuits
This part of the tutorial concerns NERVOUS’ first experiments with the artificial neural

microcircuit concept. Using the Python script provided, you will be able to observe the

operation of a few of the microcircuits thus far produced.

To follow this tutorial document, you will need the following:

1. An installation of Python 3.10, along with the following packages:

a. Brian2 version 2.5.1

b. numpy version 1.23.3

c. matplotlib version 3.6.1

2. The “NERVOUS Systems Tutorial - Artificial Neural Microcircuits” .zip, containing:

a. The Brian2_Wrapper.py Python script

Brian2 is a Python & C++ based Spiking Neural Network (SNN) simulator.

This script uses Brian2 to assemble a microcircuit (according to the

configuration in the file passed to it as a parameter), before then applying the

test stimulus to it (stored in the stimulus_indices and stimulus_times files).

The spike trains corresponding to the inputs to and outputs of the

microcircuit will then be displayed as plots.

b. A simple 2x2 grid network config file (named 2x2_Grid.txt)

These files contain the configuration for a 2x2 grid of spiking neurons, where

the two neurons on one side are inputs and a fi�h neuron attached to the

other side is the output.

c. A set of microcircuit config files (named in the format

Microcircuit_[number].txt)

These files contain the configurations for the various microcircuits that can

be assembled and tested using the Python script.

Both the grid network and microcircuit configuration files have the

following format:

1. Number of Inputs

2. Number of Neurons

3. Number of Outputs

4. A number of lines containing the input weight matrix

5. A number of lines containing the internal connection matrix

6. A number of lines containing the output connections

1



DATE 2023 - NERVOUS Systems Tutorial - Artificial Neural Microcircuits

d. .png images of the structures of the network & microcircuits

These files provide illustrations of the network & various microcircuits

described by the config .txt files, and are named accordingly.

e. The stimulus_indices.txt and stimulus_times.txt files

These files contain the test stimulus that will be applied to the network or

microcircuit. The times file contains the times at which input spikes occur,

while the indices file contains the ids of the input those spikes occur at. For

example, an index entry of 1, 7, 2, 4 and a times entry of 0.5, 0.5, 0.6, 0.7 would

correspond to a spike at inputs 1 & 7 at time 0.5, followed by a spike at input

2 at time 0.6, and finally a spike at input 4 at time 0.7.

The stimulus for the 2x2 grid network, in the files prefixed “2_bit_”, consists

of a pair of spike trains 500 ms long. One spike train has a fixed frequency,

while the second starts the same as the first, but slowly diverges.

The stimulus for the microcircuits, in the files prefixed “8_bit_”, represent a

stream of text, translated into UTF-8 values and then encoded as bursts of

spikes. Each burst lasts 25ms, resulting in a full duration of 50750ms. The full

text can be found in appendix 1 of this document.

2



DATE 2023 - NERVOUS Systems Tutorial - Artificial Neural Microcircuits

Execution

To run the Python script enter the following command:

python3 Brian2_Wrapper.py [file_name] [-d stimulus_duration] [-p plot_mode]

A�er a short period of time, a window will appear, displaying the input and output spike

trains produced by the execution of the microcircuit.

● file_name is the name of the configuration file for the network you want to use

(including the .txt extension);

● -d stimulus_duration is an optional parameter to specify how long you want to run

the network and apply stimulus to it. If not given a stimulus_duration, or a duration

is provided that exceeds the duration of the stimulus, the script will run for the full

duration of the test stimulus;

● -p plot_mode is an optional parameter to specify what spike trains you want to see

when the script finishes. If le� blank or set to “simple”, only plots of the input &

output spike trains will be displayed; if set as “full”, an additional window will

display the spike trains of all the neurons in the network or microcircuit.

If you repeat this process with a few different configuration files, you should see how

differently structured spiking networks respond to the stimulus.

Microcircuits

Each of the microcircuits respond to one or more patterns of input spike trains, which of

course correspond to different characters in the text stream. While this might be hard to see

from the output full plots of all the spike trains, the match ups are as follows:

● Microcircuit 49: Full Stops

● Microcircuit 67: Comas, Dashes & Full Stops

● Microcircuit 392: Dashes

● Microcircuit 466: Spaces, Comas, Dashes & Full Stops

3



DATE 2023 - NERVOUS Systems Tutorial - Artificial Neural Microcircuits

Appendix 1 - Text Stream

AN EXTENSION OF ARTIFICIAL GENE REGULATORY NETWORKS ARTIFICIAL

EPIGENETIC NETWORKS IMPLEMENT AN ADDITIONAL LAYER OF BIO-INSPIRED

CONTROL TO ALLOW FOR ENHANCED PERFORMANCE ON CERTAIN TYPES OF

CONTROL TASKS BY FACILITATING TOPOLOGICAL SELF-MODIFICATION. THIS

WORK LOOKS TO EXPAND THE APPLICATIONS OF ARTIFICIAL EPIGENETIC

NETWORKS BY TRANSLATING THE EXISTENT SOFTWARE ARCHITECTURE INTO

A FORM SUITABLE FOR IMPLEMENTATION ON A FIELD PROGRAMMABLE GATE

ARRAY. THIS OPENS THE POSSIBILITY OF ARTIFICIAL EPIGENETIC NETWORKS

BEING USED IN APPLICATIONS WHERE HIGH-PERFORMANCE COMPUTATIONAL

RESOURCES ARE IMPRACTICAL, SUCH AS ROBOTIC CONTROL. THIS THESIS

DEVELOPS A MORE RESOURCE EFFICIENT ARCHITECTURE FOR EPIGENETIC

NETWORKS BASED ON REDUCED PRECISION INTEGER MATHEMATICS, AND

THEN TRANSLATES IT INTO HARDWARE TO PROVIDE IMPROVEMENTS IN

RESOURCE UTILISATION AND EXECUTION SPEEDWHILE NOT SACRIFICING THE

UNIQUE BENEFITS PROVIDED BY THE EPIGENETIC MECHANISMS. THE

APPLICATION TO ROBOTIC CONTROL IS INVESTIGATED BY UTILISING THE

HARDWARE ARTIFICIAL EPIGENETIC NETWORK TO PERFORM VARIOUS

VERSIONS OF A FORAGING TASK, CULMINATING IN ONE DESIGNED TO

REPLICATE A SEARCH AND RESCUE SCENARIO. WHILE THE ARTIFICIAL

EPIGENETIC NETWORKS DID NOT DEMONSTRATE SIGNIFICANT PERFORMANCE

IMPROVEMENTS COMPARED TO THEIR NON-EPIGENETIC COUNTERPARTS, THIS

DID INDICATE THAT NOT EVERY TYPE OF CONTROL TASK BENEFITS FROM THE

INCLUSION OF THE EPIGENETIC MECHANISM. IN ADDITION, THIS WORK

INVESTIGATES ANOTHER ASPECT OF ARTIFICIAL EPIGENETIC NETWORKS,

SPECIFICALLY THE LIMITS OF THEIR TOPOLOGICAL SELF-MODIFICATIONWITH

RESPECT TO REACTING TO CHANGES IN THEIR ENVIRONMENT. MORE

SPECIFICALLY, IT IS ASKED IF AN ARTIFICIAL EPIGENETIC NETWORK CAN

MAINTAIN ITS ABILITY TO PERFORM A SPECIFIC TASKWHEN CONFRONTED

WITH FACTORS OUTSIDE OF THOSE IT HAS BEEN OPTIMISED TO HANDLE.

WHILE NOT CONCLUSIVELY DEMONSTRATED, THERE IS SUFFICIENT EVIDENCE

THAT THE ANSWER TO THIS QUESTION DEPENDS ON THE PERFORMANCE

GAINS IMPARTED BY EPIGENETIC BEHAVIOURS UNDER NORMAL

CIRCUMSTANCES.

4


