
Evolution of Circuits in Hardware and

The Evolvability of Artificial Development

Tüze Kuyucu
Intelligent Systems Group

Department of Electronics

University of York, York, UK

Dissertation for the degree of Doctor of Philosophy in Electronics, June 2010.

Thesis Committee:

Prof. Andy Tyrrell, University of York

Dr. Julian Miller, University of York

Dr. Gianluca Tempesti, University of York

Prof. Yaochu Jin, University of Surrey

Anacığma,

Eğitimim için verdiğin emekleri asla unutmayacağım.

To Mom,

I will never forget your efforts for my education.

Abstract

Automatic design of digital electronic circuits via evolutionary algorithms is a promising area of

research. When evolved intrinsically on real hardware, evolved circuits are guaranteed to work

and the emergence of novel and unconventional circuits is likely. However, evolution of digital

circuits on real hardware can cause various reliability issues. Thus, key mechanisms that produce

reliable evolution of digital circuits on a hardware platform are developed and explained in the

first part of this thesis.

On the other hand, the evolution of complex and scalable designs without any assistance is

thwarted due to increasingly large genomes. Using traditional circuit design knowledge to assist

evolutionary algorithms, the evolution of scalable circuits becomes feasible, but the results found

in such experiments are neither novel anymore nor are they competitive with engineered designs.

A novel, biologically inspired gene regulatory network based multicellular artificial developmen-

tal model is introduced in this thesis. This developmental model is evolved to build digital circuits

that can automatically scale to larger designs. However, the results achieved still remain inferior

to engineered digital circuit designs.

Evolving a developmental system for the design of engineering systems or computational paradigms

provides a variety of desirable properties, such as fault tolerance, adaptivity, and scalable designs

automation. However, developmental systems in their role as computational networks are as yet

poorly understood. Many mechanisms and parameters that a developmental system comprises

are based on various assumptions, their biological counterparts, or educated guesses. There is a

lack of understanding of the roles of these mechanisms and parameters in forming an evolvable

platform for evolutionary computation.

Initially, various experiments are shown to demonstrate the evolvability of the new developmen-

tal system. A thorough investigation is then undertaken in order to obtain large amounts of em-

pirical data that yields a better understanding of some of the crucial developmental mechanisms

and parameters on the evolvability of multicellular developmental systems.

Acknowledgements

I would like to start by thanking my supervisors: Andy Tyrrell for his continuous en-

couragement and support, for proof reading, for his role in the funding of my PhD,

and always being so punctual; Julian Miller for his help, advice, ideas and numerous

discussions on evolution, development, and teaching.

I would like to thank Martin Trefzer, my research partner for the past 3 years; for the

endless discussions, pair programming sessions, never ending ideas and enthusiasm,

and above all for all the kit-kat and coffee sessions. Without him, it would have been

impossible to finish this thesis within 3 years. It was a real blast working with you dude!

In addition to above, I would like to thank all my office colleagues for their support and

constant supply of coffee and laughter: James Walker, for his help with genetic program-

ming and university administration, and always convincing me that I have something

worth to write about; Omer Qadir, for the beer, socials, and various discussions about the

ultimate question of life, the universe, and everything; Yang Liu (Jerry), Cristina Santini

and Mic Lones, for the discussions and advice on biological development, and research

in general; Andy Greensted, Antonio, and James Hilder for their company and help with

various geekery such as electronic hardware and Linux.

I would like to thank my undergraduate supervisors, Steve Cobb and James Hereford,

for their valuable support and advice during and after my undergraduate years, who

also inspired me to follow up a career in academia.

6

I would like to thank my parents, Dervişe and Sadi Kuyucu, whose passion for my

education and ever growing support made this thesis possible. I would also like to thank

my future wife, Jie Chen, for all her emotional support, understanding, valuable advice,

and ability to cheer me up at the worst of times.

Finally, I would like to thank the Engineering and Physical Sciences Research Council

(EPSRC) UK, for their financial support (project reference EP/E028381/1).

Ph.D. Thesis 7 Tüze Kuyucu

Contents

Acknowledgements 6

Contents 8

List of Tables 14

List of Figures 17

List of Algorithms 23

Hypothesis 24

1 Introduction 25

1.1 Thesis Layout . 26

1.2 Contributions . 27

2 Evolvable Hardware 29

2.1 Innovative Circuit Design . 33

2.2 Fault Tolerant Circuit Design . 35

2.3 Adaptive Design . 37

8

Contents

2.4 Extrinsic Evolution . 38

2.5 Intrinsic Evolution . 39

2.5.1 Hardware for Intrinsic Evolution of Circuits 39

2.6 Challenges of Evolving Hardware . 40

2.6.1 Scalability . 41

2.6.2 Evolvability . 45

2.7 Summary . 49

Publications I 50

3 Evolving Circuits in Hardware 51

3.1 Reconfigurable Integrated System Array (RISA) 51

3.1.1 Experimental Setup . 54

3.2 Getting Acquainted with Evolution in Hardware 57

3.3 Constrained vs Unconstrained Evolution

in Hardware . 58

3.4 Evolving Valid Circuits on Hardware . 59

3.4.1 Hardware Sampling . 60

3.4.2 Randomness of the Input Pattern . 60

3.4.3 Testing the Evolved Circuits for Validity 62

3.5 Tricks and Treats . 63

3.5.1 Fitness Functions . 63

3.5.2 Multiplying Inputs . 72

Ph.D. Thesis 9 Tüze Kuyucu

Contents

3.5.3 Decomposing Outputs . 74

3.5.4 Input Pattern Order Problem . 77

3.5.5 Getting Stuck in Local Optima . 78

3.5.6 Experiments . 81

3.6 Circuits Evolved on RISA . 83

3.7 Summary . 84

4 Development 87

4.1 Biological Development . 88

4.2 Benefits of Multicellular Development to Evolutionary Computation (EC) 93

4.2.1 Scalability . 93

4.2.2 Fault Tolerance . 94

4.2.3 Adaptivity . 96

4.3 Models of Artificial Development . 98

4.3.1 Macro-model Developmental Systems 98

4.3.2 Micro-model Developmental Systems 99

4.4 Summary . 101

Publications II 102

5 Modelling Multicellular Development 103

5.1 Micro-model Developmental Systems . 104

5.1.1 Gene Regulatory Network . 104

5.1.2 Cell Signalling . 106

Ph.D. Thesis 10 Tüze Kuyucu

Contents

5.1.3 Growth/Cell Division . 109

5.1.4 Genotype-Phenotype Mappings . 111

5.2 The Artificial Developmental System . 113

5.2.1 Gene Representation and Processing 114

5.2.2 Protein Synthesis . 116

5.2.3 Chemicals . 118

5.3 Summary . 123

6 Validating the Artificial Developmental System (ADS) 124

6.1 Algorithm Configuration . 125

6.1.1 The Evolutionary Algorithm . 125

6.1.2 The Gene Regulatory Network (GRN) Settings 126

6.1.3 The ADS Settings . 127

6.2 Single Cell Experiments . 127

6.3 Multi-Cellular Experiments . 137

6.3.1 Simple Motifs and Dynamics . 138

6.3.2 Higher Complexity Patterns . 141

6.4 Fault Tolerance and Recovery . 146

6.4.1 Permanent Faults . 148

6.4.2 Transient Faults . 151

6.5 Summary . 153

Publications III 156

Ph.D. Thesis 11 Tüze Kuyucu

Contents

7 Developing Digital Circuits 157

7.1 Mapping the Developmental Organisms to Circuits 157

7.2 Circuits Developed . 160

7.2.1 Development of Even n-bit Parity Circuits 160

7.2.2 Development of a 2-bit Multiplier 166

7.2.3 Developing a Parity Solving Organism 167

7.3 Summary . 169

8 Developmental Mechanisms and Parameters 172

8.1 Experiments on Mechanisms and Parameters 174

8.2 Direct Contact Signalling . 176

8.3 Diffusion . 180

8.4 Mapping The Phenotype . 188

8.5 Parameters for Transcription Factors . 191

8.5.1 Protein Production and Chemical Consumption Rates 192

8.5.2 Gene Binding Threshold . 197

8.6 Miscellaneous Developmental Mechanisms 200

8.7 Improving the ADS . 204

8.8 Summary . 207

9 Conclusions 210

9.1 Future Work . 214

Acronyms 218

Ph.D. Thesis 12 Tüze Kuyucu

Contents

A Resource Consumption on RISA 220

B Cluster and IO Routing in RISA 222

C Explaining Box and Whisker Plots 226

D Stability and Fault Tolerance 228

Bibliography 232

Ph.D. Thesis 13 Tüze Kuyucu

List of Tables

3.1 The results for the tone discriminator and 4 bit parity circuit experiments

are shown. 62

3.2 Ambiguities in fitness assignment for an XOR are shown. 66

3.3 Truth table used as input test pattern for XOR experiments. 70

3.4 Evolutionary run results on evolving an XOR gate on RISA. 70

3.5 The results for the tone discriminator and 4 bit parity circuits are shown. . 72

3.6 The results of evolving the tone discriminator circuit on the constrained

and unconstrained versions of the RISA platform. 73

3.7 Results obtained from 20 independent runs for 4-bit parity, 2-bit full adder

and 2-bit multiplier are shown. 76

3.8 Truth table for a 2-bit multiplier and a 4-bit Parity. 79

3.9 Results with the unbalanced and balanced output patterns for 4-bit parity,

4-bit AND, 2-bit full adder, and 2-bit multiplier. 83

5.1 List of some of the micro-model artificial developmental systems specif-

ically designed for computational problems with a list of the common

developmental mechanisms used by each model. 110

6.2 The explanations of aliases for experiment results in Figure 6.6. 140

14

List of Tables

6.3 The explanations of aliases for experiment results in Figure 6.8. 143

6.4 The explanations of aliases for experiment results in Figure 6.10. 147

7.1 The multiplexers used for the experiments presented. A, B and C are the

inputs to the multiplexer. 159

7.2 Results of the even parity experiments. 161

7.3 Results of 9-bit parity experiments with different developmental steps. 30

evolutionary runs were done for each experiment listed. 164

7.4 Results of the development of larger parity experiments (10–12 bit) with

bigger organism sizes. 30 evolutionary runs were done for each experi-

ment listed. 165

7.5 Results of the 2-bit multiplier experiments are given. 30 evolutionary runs

were done for the experiment listed. 166

8.1 The direct contact signalling cases used in the experiments. 178

8.2 The diffusion mechanisms used in the experiments. 185

8.3 Statistical comparison of diffusion mechanism using chemical specific dif-

fusion protein with six other diffusion mechanisms. 187

8.4 Statistical comparison of developmental system using the concentration

of a single protein for cell structuring to the developmental system using

structuring protein. 189

8.5 The labels for each structuring mechanism used in the experiments. 190

8.6 Statistical test results for the developmental system that uses the concen-

tration of multiple proteins to map the cell phenotype compared with the

developmental system with structuring protein. 191

8.7 The labels for each protein production and chemical consumption values

used in the experiments. 195

Ph.D. Thesis 15 Tüze Kuyucu

List of Tables

8.8 The labels for protein concentration threshold values used in the experi-

ments for activating or inhibiting a gene. 198

8.9 The labels for the charts and plots of experiments with various develop-

mental mechanisms. 202

8.10 Summary of the investigations done on the evolvability of a multicellular

ADS in forming various patterns. 205

8.11 The labels for the charts displaying the results for experiments with the

best mechanisms. 206

Ph.D. Thesis 16 Tüze Kuyucu

List of Figures

2.1 The life cycle of an evolutionary algorithm. 31

2.2 The graph showing the increase in the number of transistors in Intel pro-

cessors, and the number of gates in the circuits evolved in Evolvable HardWare

(EHW) from 1992 to 2006. 43

2.3 A simplified Field Programmable Gate Array (FPGA) architecture with

Configurable Logic Block (CLB)s and a routing layer. 47

3.1 The structure of a single RISA chip. 52

3.2 The FPGA substrate of RISA. 53

3.3 The schematic of a function unit (four in each cluster) in the RISA FPGA. . 55

3.4 Example fitness calculation for all four approaches (Bitwise, Bitwise Fit-

ness Modified for Hardware (BMH), Hierarchical IF-and-only-iF (HIFF),

Hierarchical Bit-string Sampling (HBS)) are shown. 67

3.5 Resulting fitness values for all approaches and all 256 possible logic input

vectors for t0 and t1 (refer to table 3.2)are calculated and plotted. 69

3.6 Partitioning of problem outputs on the RISA chip 75

3.7 An example process determining the weights and repetition parameters

for the inputs and outputs for the 2-bit multiplier problem is demonstrated. 80

17

List of Figures

3.8 The corresponding output occurrences are shown for the balanced and un-

balanced output patterns used in the experiments presented in Section ref-

subsection:LocalOptima for all the circuits. 81

4.1 A simplified depiction of development of a multicellular organism. 89

4.2 A gene is activated by the correct matching of proteins that favour the

transcription of the gene. 90

4.3 A simple overview of protein synthesis in biological cells. 91

4.4 The initial stages of human embryogenesis. 92

4.5 Adaptivity. 97

5.1 Example ways of obtaining information from a developmental cell in a

digital system to build part of the organism phenotype. 112

5.2 An example gene of 32 bits is shown. The first 16 bits are reserved for the

preconditional part, which specifies the rules to activate the gene. There

are 8 chemicals defined in this figure; the first 4 being reserved for proteins,

while the last 4 are messenger molecules, see Section 5.2.2. Each chemical’s

required presence or absence is specified by a 2 bit number, which provide

two don’t care states. In the event of a don’t care state, the presence or

absence of a chemical has no effect on the activation of the particular gene.

The second 16 bits of the gene is reserved for the postconditional part,

which provides the ID of the chemical produced as a 2 bit number (this

means that only the first four chemicals [proteins] can be produced, i.e.

the messenger molecules can not be produced via the activation of a gene),

which is then followed by a 14 bit number. The last 14 bits in the gene

define the action of the chemical produced if it has one (further explained

in Subsection 5.2.2), if not the last 14 bits are treated as junk. 115

Ph.D. Thesis 18 Tüze Kuyucu

List of Figures

5.3 In a multicellular environment using the 4 basic protein types a cell is able

to: interact with its environment, grow, structure itself, and form a mul-

ticellular organism. The basic functions of the listed proteins are demon-

strated in this figure. Only cell 1 is drawn completely, certain components

are omitted in other cells. In the actual implementation of the organism

there are no spaces between cells, they are only separated by their borders.

In the example above, cells 1 and 2 both have active plasmodesma proteins,

which cause the formation of a channel on both cells towards the other,

creating a plasmodesmata to allow free movement of proteins from one

cell to other. Cells 1 and 2 both also have active plasmodesma proteins

on their southern sides. Cell 1’s southern neighbour does not exist, so

the active plasmodesma protein initiates a growth process in that direc-

tion. However, cell 2’s southern neighbour is an alive cell with no active

plasmodesma protein, thus cell 2 forms an unconnected channel on its

southern wall. The 4 sensors drawn monitor the outside activity on 4 sides

of each cell and produce sensor proteins with the changing environment.

The Structuring proteins are produced by the GRN to change the physical

structure of the cell, which is connected to the physical inputs and outputs

of the cell. 121

6.1 A hypothetical state space represented by possible states and state transi-

tions for a dynamical system. 128

6.2 Desired GRN output protein to input stimulus is graphed for the ‘ON’

switch and ‘BOOSTER’ cases. 130

6.3 Evolved GRNs that mimic an ‘ON-OFF’ behaviour. 132

6.4 Evolved GRNs that produce oscillating outputs. 136

6.5 Three simple patterns used for Section 6.3.1. 139

6.6 The average number of evolutionary generations it takes to find the perfect

solution for the “simple patterns”. 140

Ph.D. Thesis 19 Tüze Kuyucu

List of Figures

6.7 Three patterns of size 6x6 used for different experimental runs in ”higher

complexity patterns” subsection (Section 6.3.2. 142

6.8 Success rates of the evolution of patterns with and without non-deterministic

maturing. 143

6.9 The method of evaluating a patch pattern only for its organisational prop-

erties is shown. 146

6.10 Number of successful runs out of 20 for patch pattern experiments with

different evolutionary conditions. 147

6.11 Development of a French flag pattern. 148

6.12 Development of an asymmetric borders pattern. 148

6.13 The changes that occur in the French flag pattern formed by the develop-

mental organism after permanent faults occur. 150

6.14 The changes that occur in the asymmetric borders pattern formed by the

developmental organism after permanent faults occur. 150

6.15 Patterns achieved with knocked out genes. 151

6.16 Patterns achieved with knocked out genes for the asymmetric borders pat-

tern organism. 151

6.17 The changes that occur in the French flag pattern formed by the develop-

mental organism after permanent faults occur. 152

6.18 The changes that occur in the asymmetric borders pattern formed by the

developmental organism after transient faults occur. 153

7.1 The connectivity of an example 4×4 organism with 10 inputs is shown. . 158

7.2 An example decoding process is shown for 2 cells, each with a single

Cartesian Genetic Programming (CGP) node (i.e. 64-bit long cell function). 159

Ph.D. Thesis 20 Tüze Kuyucu

List of Figures

7.3 The cells alive at the end of the fully developed organism of a 3-bit even

parity circuit are categorized via enumeration from 1-8. 160

7.4 The GRN interaction graph of two fully developed cells in a 3-bit parity

circuit is illustrated as examples. 162

7.5 The final cellular states of the two fully developed organisms are shown:

for 5-bit parity only 30 of the cells are alive, whereas for 12-bit parity all

100 of the cells are alive. 166

7.6 An organism that was evolved to act as a growing parity circuit is shown,

with the list of its evolved genes and the GRN graph for the alive cells. . . 168

8.1 The patterns used for investigating the influence on evolvability of devel-

opmental mechanisms and parameters. 176

8.2 Bar charts displaying the number of successful runs out of fifty runs for

five of the six experimental patterns tried by developmental models using

different contact signalling mechanisms. 178

8.3 A fitness box and whisker plot of the different contact signalling models

for 8 patches pattern. 179

8.4 Bar charts displaying the number of successful runs for different diffusion

mechanisms. 184

8.5 Box plots for the different diffusion mechanisms in achieving all the patterns.186

8.6 Box and whisker plots of different methods of constructing cell phenotype. 190

8.7 Success rates of experiments with different protein production and chemi-

cal consumption rates. 194

8.8 Box plots of each experiment with different protein production and chem-

ical consumption rates. 196

8.9 Success rates of experiments with different chemical to gene binding thresh-

olds. 198

Ph.D. Thesis 21 Tüze Kuyucu

List of Figures

8.10 Fitness box plots of every pattern except the asymmetric borders pattern

are displayed in this figure for different chemical to gene binding threshold

experiments. 199

8.11 The success rates achieved by the various developmental mechanisms. . . 202

8.12 The box plots of the results from the experiments with various develop-

mental mechanisms. 203

8.13 Combination of all the best mechanisms compared to the “original setting“

and each best mechanism. 207

A.1 A map of the RISA clusters that are relevant for the operation of typical

solutions found with constrained and unconstrained evolution respectively. 220

B.1 The complete schematic for one of the Input/Output (IO) blocks surround-

ing the RISA FPGA. 222

B.2 The schematic for the routing between the clusters and IO blocks of RISA

FPGA. 223

D.1 The development of organisms for 1 million developmental steps for each

pattern used in Chapter 8. 229

D.2 Transient faults on organisms forming the French flag and asymmetric

borders patterns. 230

D.3 Cells are killed in the organisms forming the French flag and asymmetric

borders patterns. 230

Ph.D. Thesis 22 Tüze Kuyucu

List of Algorithms

1 The pseudo-code for the variable mutation rate. This is part of a function

that is called once every evolutionary generation. 56

2 The pseudo-code for the simulation of Gene Regulatory Network for one

time step. 117

3 The pseudo-code for the simulation of artificial development for one time

step. 122

4 The fitness function pseudo-code of the ‘ON-OFF’ switch experiment. . . 134

5 The pseudo-code for fitness function of patch patterns. 145

23

Hypothesis

Evolution of digital circuits in hardware can provide interesting and novel designs, but

not complex and human competitive results. Multicellular development in biology can

be simulated to create a scalable system for the evolutionary design of electronic systems.

By understanding the evolution of circuits on real hardware and the behaviour of multi-

cellular development in a computational environment, the key factors that determine the

evolvability of an artificial developmental system can be determined.

24

Chapter 1

Introduction

Technology is an ever growing endeavour of human avidity, since the invention of simple

tools like the wheel, spoon, or knife, the development of technology has never ceased.

What has allowed us to progress and advance our lives into a global social structure

today, has sometimes been labelled as the nemesis of nature [Kovel, 2002]. The invention

of the steam engine, gun powder, combustion engine, paper, nuclear fission and fusion,

are all outstanding sources of technology that have advanced against nature and its

equilibrium. The degrees of advancement achieved in technology is awe-inspiring, and

it provides us with prodigies that surpass the abilities of nature’s organisms. The su-

percomputers that can carry out quadrillions (order of 1015) of mathematical operations

in a second [Bland et al., 2009], mobile phones that allow a person to talk to another

from the other end of the world, the telescopes that can look into the depths of galaxies

outside the Milky Way. Technology has created designs that operate beyond the scope

of any biological organism inhabiting earth. Despite this, technology has so far failed to

faithfully imitate even the simplest functions nature has long mastered for sustainability

and survival.

Today as researchers, a group of us tries to analyse and understand nature and its or-

ganisms. We try hard to understand, mimic and compete with nature itself. Biological

organisms exhibit behaviours that contrast markedly with engineering design. Adap-

tivity to unknown conditions, self-repair, self-replication, fault tolerance, intelligent and

intuitive decision making, and learning are some of the properties biological organisms

exhibit. Artificial Intelligence (AI) is a sub-field in engineering, where the latest technol-

25

Chapter 1 - Introduction

ogy is used to build intelligent systems. However, the intelligent systems built in AI are

far from achieving the intelligent behaviour and self control that biological organisms

demonstrate.

Natural sciences study nature and the origin of the biological organisms and their envi-

ronment. The study of natural sciences has partially revealed the complicated processes

that have built and shaped the biological organisms to their current state. Hence, some

researchers try to model what has been learnt from the biological way of building com-

plex systems in the hope of achieving comparable behaviours in engineering technology.

Perhaps technology does not need to go against or at a different direction to nature.

Lessons learnt from nature could be valuable in expanding technology to another dimen-

sion. This thesis attempts to model a small part of the knowledge attained from natural

sciences for building artificial systems. More specifically, this thesis presents chapters on

biologically inspired (bio-inspired) computational models. In an effort to learn from na-

ture in advancing the technology present in computer science and electronics, this thesis

attempts to develop and use bio-inspired techniques for the design of electronic circuits

and computational systems. It aims to develop techniques that enable effective use of bio-

inspired models of evolutionary design and multicellular development. The end result

also provides a study for a better understanding of these bio-inspired techniques, which

is progress towards understanding the evolution of biological organisms and the use of

bio-inspired techniques for the design of computational technologies.

1.1 Thesis Layout

This thesis is organised into eight chapters.

Chapters 2 and 3 are focused on Evolvable HardWare (EHW). Chapter 2 introduces the

field of EHW, where the process of evolution in nature is used as the inspiration for

designing hardware models in engineering. Chapter 3 uses a new hardware platform for

the evolution of real circuits on hardware, and develops a group of essential techniques

for quick and effective evolution of digital circuits on real hardware.

Ph.D. Thesis 26 Tüze Kuyucu

Chapter 1 - Introduction

Chapter 4 provides background on multicellular development and its existing artificial

models in evolutionary computation. It also discusses the potential benefits of multicel-

lular development to Evolutionary Computation (EC).

Chapter 5 introduces a new bio-inspired developmental model to assist the evolutionary

design of artificial systems. The design of the developmental model is described in detail

and compared with similar models in literature.

Chapter 6 investigates the performance of the new developmental system and validates

its developmental properties. The general setup of the experimental environment used

for the evolutionary developmental experiments in the rest of the thesis is provided in

the algorithm configuration section (Section 6.1). Chapter 6 demonstrates; the responsive

and dynamic nature of the Gene Regulatory Network (GRN), the ability of the individual

cells in the multicellular Artificial Developmental System (ADS) to self-organise and

differentiate, and the fault tolerant abilities of the ADS via simple experiments.

Chapter 7 investigates the design of digital circuits via the use of evolution and the

proposed developmental system. For the first time, the design of a digital circuit via

the evolution of a GRN based ADS includes the connectivity of the circuit components as

well as the type of components. Chapter 7 demonstrates that the proposed ADS can be

used for the scalable design of digital circuits.

Chapter 8 provides detailed investigations on the properties of various parameters and

mechanisms that affect the performance of the artificial developmental system in order

to better understand the use of multicellular development in evolutionary computation

and improve the overall performance of the presented system.

The final conclusions on the work done and the future directions for the use of artificial

development in evolutionary computation is presented in Chapter 9.

1.2 Contributions

The novel contributions of this thesis are:

Ph.D. Thesis 27 Tüze Kuyucu

Chapter 1 - Introduction

1. The evolution of gate-level digital circuits on a novel hardware platform (Chap-

ter 3).

2. The development of mechanisms that enable the effective evolution of valid circuits

on real hardware (Chapter 3).

3. Providing experiments and discussions that supply evidence and support for the

development of an effective evolutionary platform (Chapter 3 and Appendix B).

4. The design of a new artificial genetic regulatory network model and multicellu-

lar developmental system, which use inspirations from biology and engineering

(Chapter 5).

5. Experiments, evidence, and discussions on improving the evolvability of a devel-

opmental system via identifying the suitable and the correct use of mechanisms,

parameters, and constraints (Chapters 6, 7, and 8).

6. Demonstration of a scalable approach to the evolution of digital circuits via the

evolution of a scaling circuit via the use of artificial development (Chapter 7).

7. An understanding of developmental mechanisms and their effects on the evolvabil-

ity of a multicellular developmental system (Chapter 8).

8. Multiple demonstrations on the importance of an effective fitness function for the

successful evolution of a system (Chapter 3, 6, and 7).

Ph.D. Thesis 28 Tüze Kuyucu

Chapter 2

Evolvable Hardware

Evolution, a mechanism of random alterations and intelligent selection that was first

proposed by Darwin in 1859 [Darwin, 1859], is regarded as a key element in the emer-

gence and advance of biological organisms. These biological organisms are complex

and competent; they can survive harsh environmental conditions and are capable of

accomplishing highly sophisticated tasks. Although the emergence of any interesting

behaviour via evolution is a time consuming process due to the stochastic behaviour of

evolution, the biological marvels that exist in nature today are all a result of evolutionary

change. Thus evolution is and has been a fascinating and fundamental topic in biology.

The resulting evolved biological systems, possess an important set of characteristics that

the products of engineering can, at present, only aspire to. Adaptivity, fault tolerance and

recovery, regeneration, and learning are a few of these characteristics, which engineering

methods struggle to (or are unable to) capture.

Evolution has also attracted a large community of researchers outside biology who take

inspiration from the principles of evolution to tackle problems in their fields. The early

use of evolution in the field of computer science, electronics and engineering was with

the works of Von Neumann in late 40s, Box and Friedberg in late 50s, and Bremermann

in early 60s [Box, 1957; Bremermann, 1962; Friedberg, 1958; Neumann, 1966]. However,

it was not until the introduction of Evolutionary Algorithm (EA) that the field of Evolu-

tionary Computation (EC) started getting attention. EAs took inspiration from evolution

in solving mathematical problems, and they were introduced in late 60s / early 70s [Back

et al., 1997; Fogel et al., 1966; Holland, 1973; Rechenberg, 1973].

29

Chapter 2 - Evolvable Hardware

An EA uses random alterations and an intelligent selection mechanism to optimise an

existing solution to a given problem. An EA creates multiple variations of the solution at

hand and evaluates each of the new solutions for any improvements. The given problem

defines the most important part of the selection mechanism: the fitness function. The

fitness function is used for guiding the algorithm in its search for the optimal solution to

a given problem. The fitness function assigns a fitness, a score, to each of the potential

solutions, which reflects the quality of each solution. Once each candidate solution has a

fitness, selection is undertaken and a new batch of candidate solutions are created via

mutation1 and crossover2 for the next generation. The process of evaluation (using

the fitness function), selection, mutation and crossover carries on over and over again

until a satisfactory solution or a time (or more often generations) limit is reached. The

representations of a candidate solution in an evolutionary algorithm is referred to as

the genotype –inspired by the DeoxyriboNucleic Acid (DNA)3 in biological organisms–,

which is often a binary string.

Other than optimising an existing solution, EAs are also used for finding a previously

unknown solution to an existing problem. In such a case the EA starts with a random set

of candidate solutions and optimises these. Figure 2.1 depicts the process a generic EA

goes through in finding a solution.

Three types of EAs that are widely used today are:

• Genetic Algorithm (GA): introduced by Holland [Holland, 1973], is the most common

form of EA, and was designed to model adaptive processes. The original represen-

tation of the “genotype”, which the algorithm worked on was in binary, and both

mutation and crossover operations were used during the search process.

• Evolution Strategy (ES): introduced by Rechenberg and Schwefel is similar to GAs [Back

et al., 1997; Rechenberg, 1973], and was designed for parameter optimisation. A

floating point representation was used in the initial implementation of ES, and

only the mutation operation was implemented during the search process. The

key differences with the classic GAs are the lack of crossover operation, use of

1Random alterations in a candidate solution.
2Joining parts of two candidate solutions (parents) to produce a new candidate solution (child).
3A double helix structured nucleic acid that contains all the genetic information used in the development

of all biological organisms.

Ph.D. Thesis 30 Tüze Kuyucu

Chapter 2 - Evolvable Hardware

Cross-over (Sexual Reproduction)

Natural Selection
(Survival of the Fittest)

3

No
Finish

Done?

Yes

Figure 2.1: The life cycle of an evolutionary algorithm.

self-adaptation to adjust control parameters, and the strict definition of parent–

offspring relationships in ES. The parent–offspring relationship in ES is defined by

two versions of the ES as

ES(µ,λ) and ES(µ +λ).

Here µ is the parent size, and λ is the offspring size. The parents for the next

iteration (referred to as generation in EAs) are deterministically selected only from

the set of offspring of the current iteration (for the first case above) or from the set

of parents of the current iteration and offspring (for the second case above).

• Evolutionary Programming (EP): introduced by Fogel [Fogel et al., 1966], was de-

veloped for the design of artificial intelligence through the evolution of finite state

machines. EP is very similar to ES, and it also uses self-adaptation of algorithm

parameters.

All these types of EAs share a similar process flow shown in Figure 2.1 with some dif-

ferences such as the exclusion of crossover, different representations or selection mecha-

nisms, and it is easy to create a different flavour of each of these EAs.

Ph.D. Thesis 31 Tüze Kuyucu

Chapter 2 - Evolvable Hardware

Initially, EAs were mostly used as optimisation algorithms to search for the global maxi-

mum or minimum in a mathematical function. They were successfully used for solving

classical optimisation problems such as travelling salesman, or even tough Engineering

Applications [Bramlette and Bouchard, 1991; Muller, 2002; Periaux et al., 1995]. Start-

ing with the work of Fogel [Fogel et al., 1966], EAs were also used as a method to

automatically create new designs. The popularity of the use of EAs as a method to

automatically create new designs increased greatly by the start of 90s (more than 20 years

after Fogels work). In 1990 Koza developed an evolutionary algorithm based automatic

program design technique further and named it Genetic Programming (GP), which was

first introduced by Cramer in 1985 [Cramer, 1985]. GP is an EA based methodology

specifically developed for the evolution of computer programs that perform predefined

tasks [Koza, 1992]. With the introduction of GP, more researchers started using EAs in

the automatic design of computer programs and electronic circuits. GP has contributed

to the EA community various novel computer program and circuit designs, and various

researchers also worked on improving GP and developed their own versions [Banzhaf,

1993; Lones and Tyrrell, 2001; Miller and Thomson, 2000; Poli, 1996; Spector and Stoffel,

1996; Stoffel and Spector, 1996; Teller, 1993]. Traditionally GP uses an EA to evolve its

genome, and the evolved genome is represented as a tree structure, which specifies the

program being evolved. The early version of GP was designed to evolve LISP programs,

and LISP is a programming language that favours tree structures. However GP and its

many variations were later used for the design of various engineering problems, such as

circuits and mathematical functions.

With the start of automatically generating designs using EAs, the field of EC expanded

beyond combinatorial optimisation problems. EC involves the use of EAs on optimisa-

tion problems as well as design problems such as control systems and hardware design.

The increasing interest in “evolving” hardware designs (particularly digital electronic

circuits) in the research community, has lead to the emergence of the sub-field Evolvable

HardWare (EHW). The use of EAs in the field of EC to create hardware designs is

referred to as EHW. Evolving digital electronic circuits is the most popular and common

design problem in EHW, and it is achieved on reconfigurable hardware platforms or

more usually using computer simulations.

Ph.D. Thesis 32 Tüze Kuyucu

Chapter 2 - Evolvable Hardware

There can be various reasons for evolving electronic circuits rather than engineering

them. Evolution is able to discover circuit topologies that an engineer would never

consider as a design option. Therefore evolving circuits allows us to sample design spaces

we have never sampled before. One of the most obvious advantages of discovering new

circuit topologies is innovation.

2.1 Innovative Circuit Design

Evolution has a unique approach in designing electronic circuits and programs when

compared to human designers. Human designers use the engineering approach of top-

down, divide and conquer; dividing the problem into smaller sub-problems that are

easily understood by the designer, then the designer combines the solutions to these

sub-problems using conventional design techniques. Evolution on the other hand uses

a bottom-up search, putting/removing components to find partial solutions to the prob-

lem, which are then further modified until the final solution is found. Unlike the engi-

neering approach, the partial solutions found to a problem by evolution does not nec-

essarily represent a sub-solution to the problem. The different nature of the design

approach gives evolution the ability to sample a different design space that may not be

within the reach of traditional design methodologies.

Part of the EHW community is interested in the creation of circuits for discovering in-

novative designs that are unattainable by conventional design methods. Thompson’s

work on evolving a tone discriminator in a Field Programmable Gate Array (FPGA)

substrate via combinational logic only is a good example of evolution’s ability to achieve

innovative designs [Thompson, 1996]. Thompson discovered that evolution was able to

design a circuit that could differentiate between a 1kHz and 10kHz wave by exploiting

the analogue properties of the FPGA. Such a design is impossible when engineering

design methods are used, since the components of an FPGA are considered to be strictly

digital. Some examples of work towards finding unusual circuits using evolution are

[Huelsbergen et al., 1999; Miller and Downing, 2002; Miller et al., 2000; Thompson, 1995a;

Thompson et al., 1996; Trefzer, 2006]. A few years after Thompson’s work, Linden was

able to utilise evolution for the design of a complex antenna and obtain efficient and im-

pressive designs that could not be achieved via traditional antenna design methodologies

Ph.D. Thesis 33 Tüze Kuyucu

Chapter 2 - Evolvable Hardware

[Linden and Altshuler, 1999]. This was a good demonstration of the importance of the

choice of hardware design problem as an EHW application. The simple but innovative

designs achieved via evolution were not only innovative but they were also good enough

to perform as real-world antenna designs [Linden and Altshuler, 1999].

Although the early work on evolving digital circuits showed promise, in the recent years

the interest in the evolution of digital circuits had diminished. This is because of the low

complexity barrier that evolution encountered using digital components, which means

that the digital circuits designed by evolution are too simple to be of any real use or

interest.

In 2006 Harding demonstrated a proof of concept by evolving circuits on a liquid crystal

substrate [Harding, 2006]; Harding used evolution purely for exploiting the character-

istics of a liquid crystal, where there is no known circuit design methodology. Harding

successfully evolved simple circuits on the liquid crystal, which is a good example for

the ability of evolution in making use of the available substrate in its entirety.

The ability of evolution to create unusual designs is thus one of the main reasons why

EHW is so attractive to the research community. As it was mentioned earlier, this ability

of evolution is due to evolution’s unusual approach to designing hardware. This unusual

approach allows evolution to sample different design areas, which may yield to designs

that are innovative and/or even fault tolerant.

One of the downsides of evolving circuits to create an unusual designs is that the result-

ing designs are not portable. Unusual designs such as Thompson’s tone discriminator

[Thompson, 1996] or Koza’s “embryonic” analogue circuits [Koza et al., 1996] most often

create configurations that are only valid for the specific piece of hardware used (in the

first case) or cannot be implemented or guaranteed to work if implemented in real hard-

ware. The evolution of designs that are not portable is a big disadvantage of evolution of

unusual circuits.

Ph.D. Thesis 34 Tüze Kuyucu

Chapter 2 - Evolvable Hardware

2.2 Fault Tolerant Circuit Design

Fault tolerance has probably been the biggest area of research in evolvable and bio-

inspired hardware in the last decade. With the increasing amount of hazardous, vital, and

remote processes depending heavily on electronic hardware, it has become important

that the hardware used is highly fault tolerant and maintenance free. Recent advances in

nanotechnology have even brought more reliability issues into the fabrication processes

[Jeng et al., 2007], which increased the need for effective fault tolerant designs.

The field of fault tolerance is a valued area with many diverse models. The variety of

approaches in the field provide a good selection of methods that can be suited to meet the

demands of specific cases. Redundancy is the key to achieving fault tolerance, whether

it is via hardware, software, information, or time redundancy. In the special case of

electronic hardware devices where failure of a device even for a moment is not acceptable,

hardware redundancy is the solution [Lala, 2001].

There are various hardware redundancy techniques; each with major differences in their

implementations. The three main hardware redundancy techniques are:

• Static Redundancy: Static redundancy works with multiple components that all

contribute to the outcome, and the faulty ones are masked via the majority. Hence,

in a simple case, there is a single common voter that receives the inputs from the

redundant components and outputs the result of the majority vote. An example of

this is N-Modular Redundancy (NMR) (Triple Modular Redundancy (TMR) being

a special case) [Lala, 2001].

• Dynamic Redundancy: In dynamic redundancy only one module contributes to

the outcome of the circuit, and when this module fails a fault detection system

rules out the faulty module and replaces it with a working version. Hence, there is

a single fault detection mechanism that monitors the working module and makes

the decision about when to replace a working module (so long as there are spare

ones). Dynamic redundancy systems are further divided into two classes: cold-

standby systems and hot-standby Systems depending on the implementation [Lala,

2001].

Ph.D. Thesis 35 Tüze Kuyucu

Chapter 2 - Evolvable Hardware

• Hybrid Redundancy: As the name suggests this is when both dynamic and static

redundancy is included in a system. An NMR system with spare standby modules

to replace the faulty ones would be an example of this type [Lala, 2001].

Fault tolerance via circuit redundancy can be a costly and inefficient approach. Replicat-

ing the same circuit N times can be an expensive solution, and a fault may not always be

caused by a component (or routing) failure; it could also be the changing environmental

conditions which affect the normal behaviour of a healthy circuit. These environmental

effects and the fabrication faults cannot be solved via circuit redundancy. Hence if a given

design is rendered useless due to changing environmental conditions, all its implemen-

tations will fail in those conditions. Thus there is a need for more adaptable techniques

that can tackle unforeseen circumstances.

Evolution has been used by researchers to evolve circuits that can sustain various faults

[Canham and Tyrrell, 2002; Gwaltney and Ferguson, 2003; Hounsell and Arslan, 2001;

Thompson, 1995b; Tyrrell et al., 2001], and it has been proven to be suitable and successful

in creating fault tolerant circuits. Evolving circuits that are fault tolerant effectively

creates circuits with redundant behaviour, but due to the bottom-up design approach

taken by evolution the circuit redundancy can be kept to a much lower level than an

engineered design [Gwaltney and Ferguson, 2003]. On top of hardware redundancy, time

redundancy can also be achieved by evolution. Evolution can be used to reconfigure

a faulty system once the fault is detected, e.g. [Teerakittikul et al., 2009] reconfigures

a robot controller using evolution when a fault occurs in the controller. Thus using

evolution, a fault tolerant system with hardware redundancy can be accompanied with

a time redundancy element that can recover the system in case it is unable to sustain any

more faults.

Further techniques have also been investigated to enhance evolution’s ability to design

fault tolerant circuits. Some of the implemented methods are borrowed from the non-

evolutionary fault tolerant systems, and used in conjunction with evolution to obtain

more effective fault tolerance mechanisms, e.g [Garvie and Thompson, 2004]. On the

other hand, a lot of researchers try to use bio-inspired techniques to create fault tol-

erant systems. Examples of bio-inspired techniques used for the evolution of robust

systems include the modelling of neural networks [Arad and El-Amawy, 1994; Here-

Ph.D. Thesis 36 Tüze Kuyucu

Chapter 2 - Evolvable Hardware

ford and Kuyucu, 2006], multicellular organisation via endocrinology based communica-

tion [Greensted and Tyrrell, 2003, 2004], immune systems and embryo development [Bradley

et al., 2000; Bradley and Tyrrell, 2002; Canham and Tyrrell, 2003], and multicellular de-

velopment [Liu et al., 2005; Miller, 2004; Tyrrell and Sun, 2006].

Although fault recovery is the final goal of fault tolerant circuits, fault detection is an

important step towards recovery. Most of the fault tolerant systems achieve fault detec-

tion via Built-In Self Testing (BIST). BIST mechanisms are easy to implement and does

not consume many resources [Davidson, 2005], but the mechanism itself is vulnerable to

faults. On the other hand a fault tolerant system that has an emergent fault detection as

part of the mechanism can provide a robust solution. In such a case, another link that can

fail is eliminated from the chain.

A system may sometimes fail to work not because of existing faults but because of the

changing environment. In a dynamic environment a system that works with the environ-

ment needs to be able to adapt to changes and respond appropriately. One of the research

areas of EC is on real-time autonomous adaptation of systems, which is also applied to

adaptive hardware systems in EHW.

2.3 Adaptive Design

Designing real-time systems that do not require human input to function in a changing

environment is a challenging task, it requires the system designed to be interactive and

adaptive with its environment. Engineering design methodologies in this area are not

yet well developed, hence most of the time human intervention is required to adapt an

existing system to the changing environment [Fahrmair et al., 2006]. EHW approaches to

more adaptive hardware systems can be promising [Spector and Stoffel, 1996; Tufte and

Haddow, 2000]. Continuous online evolution of already functioning systems may enable

them to adjust to small unpredictable environmental changes quickly.

Evolution has been effectively used to create systems that are able to survive changing

environments. Common examples of such systems are control, data compression, and

signal processing systems. The most popular test case for control systems has been

the wall avoidance in robots [Floreano and Mondada, 1994; Haddow and Tufte, 1999;

Ph.D. Thesis 37 Tüze Kuyucu

Chapter 2 - Evolvable Hardware

Krohling et al., 2003; Thompson, 1995a]. Metta et al. [Metta et al., 1999] demonstrate

an adaptive evolutionary system for the control of visually guided reaching. A good

example for successful adaptive data compression applications achieved via evolution

is the adaptive image compression system evolved by Sakanashi et al [Sakanashi et al.,

2001]. Adaptive digital filters [Sundaralingam and Sharman, 1998; Tufte and Haddow,

2000] and analogue filters [Zebulum et al., 2003] have also been successfully shown to

evolve on hardware.

In EHW an EA is used to change the configuration of a hardware architecture and be-

haviour dynamically and autonomously by using the provided resources and environ-

ment to achieve the design goals. Two major methods of evolving hardware systems

have been established in EHW: extrinsic and intrinsic.

2.4 Extrinsic Evolution

When a hardware design is extrinsically evolved, the complete process of evolution and

evaluation is done in simulation. Typically the EA runs in a PC (or multiple PCs) and the

generated hardware designs are simulated to determine how “fit” they are. An extrinsic

EHW approach is flexible and generic, as the level of abstraction can be determined

and conveniently altered by the experimenter, and it provides a portable EHW platform.

Extrinsic EHW is also the cheaper and quicker way of setting up a basic EHW experiment,

and its results are generally easier to analyse than those of an intrinsic approach. For

these reasons extrinsic EHW is quite appealing to researchers as a first step of testing

their EHW systems even if their final goal is to use intrinsic EHW. Examples of successful

application of extrinsic EHW includes but not limited to digital circuit design by using

synthesis tools [Araujo et al., 2003], simple gate level simulations [Koza, 1992; Miller et al.,

2000] and function level simulations [Kalganova, 2000b]. Evolution of wire antennas

[Linden and Altshuler, 1999], and synthesis of analogue circuits [Mattiussi and Floreano,

2006] are also successful examples of extrinsic hardware evolution.

Ph.D. Thesis 38 Tüze Kuyucu

Chapter 2 - Evolvable Hardware

2.5 Intrinsic Evolution

When the evolved designs are implemented and evaluated on real hardware rather than

being simulated to test their fitness, the evolution is referred to as intrinsic. Intrinsic

evolution brings many advantages such as, more reliable evolution of hardware systems

and greater possibility of finding novel designs; since the substrate properties can be

explored as well and the conventional engineering system design constraints can be

relaxed. In some cases intrinsic EHW speeds up the evolution process as well since

the evaluation time for hardware systems such as circuits is much shorter in hardware

than it is in software simulations. Examples of Intrinsic Evolution in literature include

most commonly the use of FPGAs: to evolve digital circuits [Hollingworth et al., 2000;

Thompson, 1996; Thompson et al., 1996], and robot controllers [Krohling et al., 2003;

Thompson, 1995a; Thompson et al., 1996]. The intrinsic evolution of antennas [Linden,

2001], transistor circuits [Trefzer, 2006], and analogue circuits [Zebulum et al., 1998] have

also been explored. In the early applications of intrinsic evolution Thompson [Thomp-

son, 1996] was able to evolve an unconventional circuit that made use of the physics of the

FPGA substrate, which is not possible to achieve using conventional design techniques

or extrinsic evolution of digital circuits.

2.5.1 Hardware for Intrinsic Evolution of Circuits

There are a number of different systems that could be evolved on hardware, such as robot

controllers on real robots, filters on Digital Signal Processors, and circuits on a range of

available hardware architectures.

EHW started with the evolution of digital circuits, which eventually became the most

popular target application. Evolution of digital circuits could be done on various avail-

able reconfigurable digital circuit architectures the two current and most popular recon-

figurable logic devices being Complex Programmable Logic Device (CPLD) and FPGA [Brown

and Rose, 1996]. FPGAs provide a larger amount of logic and rich routing, thus they

dominate most of the reconfigurable logic market. Most of the intrinsic EHW experi-

ments target combinational logic designs, and even though CPLDs are meant to be the

Ph.D. Thesis 39 Tüze Kuyucu

Chapter 2 - Evolvable Hardware

preferred design platform for combinational digital circuits, FPGAs still dominate the

EHW experiments.

FPGAs are reconfigurable devices that provide Configurable Logic Block (CLB) and con-

figurable routing that connect the CLBs. Each CLB provides simple digital elements

(usually a few look-up tables and flip-flops) that can be programmed to perform simple

logic functions, which then can be connected together using the configurable routing to

create large functional circuits.

Although intrinsic EHW started with the evolution of digital circuits, later the intrinsic

evolution of analogue circuits started getting attention as well [Terry et al., 2006; Trefzer,

2006; Zebulum et al., 1998]. Intrinsic analogue hardware evolution is done either using

Field Programmable Analogue Array (FPAA) [Hereford and Pruitt, 2004; Terry et al.,

2006; Zebulum et al., 1998] or Field Programmable Transistor Array (FPTA) [Gwaltney

and Ferguson, 2003; Stoica et al., 2001; Trefzer, 2006]. Both types of devices are similar to

FPGAs in the way they work, but instead of having logic blocks, they have Configurable

Analogue Block (CAB), at different levels of granularity; FPAAs being more coarse than

FPTAs.

These reconfigurable devices are important in EHW, since they render intrinsic evolution

of circuits possible. With the reliability issues in the recent advances in nanotechnology

[Jeng et al., 2007], intrinsic evolution within reconfigurable devices that have been pro-

duced with latest fabrication processes could be used to build circuits that are tolerant

to fabrication faults and variability. Evolution has been demonstrated to be effective in

designing circuits tolerant to transistor variability [Hilder et al., 2009], but these experi-

ments remain in simulation and can not be guaranteed to work once implemented.

2.6 Challenges of Evolving Hardware

Evolving hardware brings many promising properties; fault tolerance, adaptivity, au-

tonomous reconfiguration. However, there exists some challenges that limit the practical

applicability of the evolution of hardware systems, especially digital circuits. The two

major issues in EHW that are regarded to be the main bottleneck in many EHW applica-

tions are scalability and evolvability.

Ph.D. Thesis 40 Tüze Kuyucu

Chapter 2 - Evolvable Hardware

2.6.1 Scalability

Over the years of research in EC, the complexity of the evolved designs has not increased

significantly. The inability of evolution to find circuits at the desired level of complexity

in a reasonable amount of time is a major problem. Scalability has been a problem for the

evolution of digital circuits in FPGAs [Haddow and Tufte, 2001; Murakawa et al., 1996;

Torresen, 1998], as well as in simulations [Kalganova, 2000a; Koza, 1994; Vassilev and

Miller, 2000b; Walker and Miller, 2004]. The ability to achieve higher complexity systems

from a smaller system in a reasonable amount of time is referred to as scalability. An

example scalable technique would be to design a full adder, and create a 16-bit adder

from the knowledge gained from the design of a full adder. In this way, the effort of

designing the 16-bit adder is not greatly different from the effort of designing the full

adder. If scalable engineering techniques did not exist, the design of many systems that

would be considered simple today would have been impossible.

After re-introducing GP in 1990, Koza realised the limited complexity GP could obtain

in the evolved designs. Therefore, shortly after his introduction of GP, he suggested

the use of Automatically Defined Function (ADF) [Koza, 1994]; a method of gene reuse

during evolution. ADFs introduced modularity to GP aiming to speed up evolution and

increase the achievable complexity. Koza demonstrated in his work that ADFs increase

the evolutionary speed of GP [Koza, 1994]. However even the use of ADFs did not

introduce scalability in the evolution of higher complexity systems. A similar modularity

was introduced by Walker and Miller [Walker and Miller, 2004], for Cartesian Genetic

Programming (CGP) [Miller and Thomson, 2000] to speed up the evolution of more

complex problems with CGP, a different form of GP. It was shown that evolution of

problems with modular CGP was much faster (20x in some cases), and scaled better

for complex problems. The modularity in GP and CGP is done systematically, where a

mechanism works in parallel with evolution to create modules from the already existing

parts of the evolved system which can be reused by evolution.

Although achieving scalability in EHW is important, it is also important that the desired

properties (such as innovation and fault tolerance) of evolution are not lost while doing

so, e.g. [Shanthi et al., 2004] uses conventional circuit design knowledge to partition the

desired problem before evolving, which constrains evolution to the traditional design

Ph.D. Thesis 41 Tüze Kuyucu

Chapter 2 - Evolvable Hardware

space. One of the obvious reasons for the scalability challenge evolution faces is the direct

genotype4–phenotype5 mapping that is present in most EHW systems; this causes the

genotype to grow linearly with the phenotype, which creates an exponentially growing

design space. This problem has already been addressed in detail by researchers, and

biological development inspired approaches has been suggested as ways to introduce

scalability to EC in general [Bentley and Kumar, 1999; Dellaert and Beer, 1994; Eggen-

berger, 1997] and specifically for evolvable hardware [Gordon, 2005; Haddow et al., 2001;

Miller and Thomson, 2003; Roggen, 2005].

As listed above, there are many researchers that suggested the use of modularity [Had-

dow and Tufte, 2001; Kalganova, 2000a; Koza, 1994; Murakawa et al., 1996; Torresen, 1998;

Vassilev and Miller, 2000b; Walker and Miller, 2004], and some of them have achieved

some improvement by the use of modularity in EC. However, even with an explicitly

defined mechanism that incorporates modularity into evolution, the scalability can not be

fully achieved so long as there is a direct genotype-phenotype mapping. However, the ex-

tensive research and successful results on modular evolution suggests that a mechanism

that provides modularity during evolution is desired and more likely to be successful

than a one that does not.

Sekanina, in his paper in 2006, mentions that evolutionary algorithms are limited to a

search space size of approximately 1000 bits [Sekanina, 2006]. He compares various en-

coding schemes used for the evolution of electronic circuits with respect to their scalabil-

ity and innovativeness. Sekanina claims that all these methods have the potential to find

innovative circuit designs, however their scaling properties vary greatly. He suggests that

developmental approaches have the potential to be infinitely scalable [Sekanina, 2006].

Figure 2.2 shows the increase in the complexity of the circuits evolved vs the increase

in the number of transistors per chip in Intel processors over a 14 year period. The

biggest circuit that was evolved in year 1992 was a 5-bit parity that is composed of

approximately 20 gates [Koza, 1992]. In year 2005 the biggest circuit evolved was a

6-bit multiplier that was formed of 500 gates [Stomeo et al., 2006, 2005], even though

traditionally it would be much less. This is a 25 times increase in the number of gates used

for the largest evolved circuit in 13 years, which is extremely low when compared to the

4Genetic information in a cell that is used to obtain a certain phenotype
5The physical form and characteristics of an organism; i.e the circuit.

Ph.D. Thesis 42 Tüze Kuyucu

Chapter 2 - Evolvable Hardware

1992 1993 1994 1995 1997 1999 2000 2003 2004 2005 2006
0

0.5

1

1.5

2

2.5

3

3.5

Years

A
ug

m
en

t a
t io

n
in

 c
irc

u i
t s

iz
e

 (o
n

a
L o

g a
rit

h m
ic

 S
ca

le
)

The transistor ratio in
Intel CPUs since 1992

The gate ratio in the
evolved circuits since 1992

Figure 2.2: The graph showing the increase in the number of transistors in Intel processors,
and the number of gates in the circuits evolved in EHW from 1992 to 2006, on a logarithmic
scale. Traditional design techniques advanced much quicker than the evolutionary circuit design
in obtaining large circuits.

increase in transistors per chip on the commercially available CPUs. In 1993 the number

of transistors in an Intel Pentium chip was 3.1 million [Alpert and Avnon, 1993] and this

number went up to 1.7 billion in the Intel Dual-Core Itanium 2 chips that were released

in 2006 [Shiveley, 2006], a near 550 times increase in the number of transistors used per

chip over 13 years. Even though this is not strictly a fair comparison, we can see that

the increase in the complexity of the human designed circuits could scale up comfortably

as the new fabrication processes allowed the scaling up, where as the evolved circuits

remained at the similar level of complexity without demonstrating much scalability. On

top of this, the graph in Figure 2.2 show that the size of the circuits evolved was not

greatly affected by the advancements in CPU technology. Figure 2.2 shows the increase

in the number of transistors and gates on the CPUs designed and digital circuits evolved

as a ratio to the biggest circuit/CPU in 1992 on a logarithmic scale. A logarithmic scale

is used in order to fit the data from both of the sources into one graph, since the increase

in the number of transistors in the CPUs designed over the years is much larger than the

increase in the number of gates in the evolved digital circuits.

As mentioned earlier there has been considerable amount of work done in evolving larger

circuits. In 1994 Koza was able to double the number of gates in his parity circuits by

evolving an 11-bit even parity (traditionally ∼ 40 basic gates) using ADFs [Koza, 1994].

Ph.D. Thesis 43 Tüze Kuyucu

Chapter 2 - Evolvable Hardware

The number of gates was almost doubled by Thompson’s innovative tone discriminator

application, which was done in 1995 (approximately 70 gates) [Thompson, 1995a]. Then 8

years later a comparably larger circuit (a 5-bit multiplier) was evolved in 2003 by Torresen

[Torresen, 2003]. 2-3 years after Torresen’s evolved multiplier, Stomeo et al. managed

to evolve a 6 bit multiplier [Stomeo et al., 2006, 2005]. The progress of evolving large

circuits have been slow due to the evolvability and scalability issues. In the last few

years the interest in the evolution of digital circuits has reduced and researchers have

had more success and interest in other EHW applications such as analogue circuits [Gao

et al., 2008; Hilder et al., 2009], antenna design [Hornby et al., 2007], printed circuit board

tracing [Yasunaga et al., 2008] and micro-electromechanical devices [Hornby et al., 2008].

One of the reasons for the slow progress in the evolution of digital circuits is due to the

evolvability of digital circuit problems. Evolvability will be discussed in Section 2.6.2.

The criteria for choosing the evolved circuits used to plot the graph in Figure 2.2 is listed

below.

1. The building blocks of the circuits evolved had to be simple logic components, i.e.

gates. However, some cases were discarded even though the evolved circuit was

theoretically more complex at the time and only logic gates were used to evolve

the circuit: the reason for this was the evolution of the popular problem even/odd

parity generator circuits with XOR gates. Even though theoretically a 10 bit parity

generator is more complex than a 5 bit parity generator, evolving a 10 bit parity us-

ing XOR gates is easier than evolving a 5 bit parity using AND/NAND, OR/NOR

gates. The fact that the evolved circuit uses XOR gates does not make the evolved

design less meaningful. These designs do not represent an increase in the achiev-

able complexity by automated evolutionary mechanisms when compared with the

earlier designs that used AND/NAND, OR/NOR gates, but a small improvement

in the parity circuit size via the use of traditional engineering knowledge.

2. The circuit had to be evolved from scratch, i.e. not from an already existing design

or building blocks.

One of the most impressive and largest circuits evolved up to date but not included in

the graph is the prime number predicting circuit evolved by Walker and Miller, which

was composed of approximately 400 multiplexers [Walker and Miller, 2007]. Due to the

Ph.D. Thesis 44 Tüze Kuyucu

Chapter 2 - Evolvable Hardware

design evolved by Walker and Miller being an unconventional circuit design with the use

of multiplexers instead of basic gates their solution was not graphed in Figure 2.2.

2.6.2 Evolvability

In biology, evolvability has been termed to refer to “the capacity to generate heritable,

selectable phenotypic variation” [Kirschner and Gerhart, 1998]. Kirschner and Gerhart

explain such capacity as being able to reduce: the potential lethality of mutations and

the number of mutations needed to produce phenotypically novel traits [Kirschner and

Gerhart, 1998]. In evolutionary biology, evolvability is an important concept as it explains

the possibility of meaningful evolutionary adaptation in biological organisms.

Evolvability is also important in evolutionary computation; it refers to the ability of

generating fitter offspring from an individual via evolutionary operations [Turney, 1999].

The lack of evolvability may mean that the target design can never be found using evo-

lutionary design. The problem at hand, the phenotypic substrate, and the genotypic

representation all determine the evolvability of an evolutionary system.

The low evolvability of genotypic representation in the evolution of circuits is one of

the reasons of the limited level of complexity that evolution can achieve when designing

circuits. A genotype representation that can easily be manipulated by evolution and

a genotype mapping that can provide a smooth design space in the face of operations

like mutation and crossover are essential for an evolvable system. A representation and

mapping system that is not easily evolvable severely limits the complexity achievable via

evolutionary design.

Other important factors for the success of evolution in designing a system depend on

the suitability of the design problem, the individual functions/components used to build

the target system, and for intrinsic circuit design; the platform used. Evolving systems

on well understood problems such as digital design may not return impressive results.

Digital circuit design is well understood and has already been mastered by engineer-

ing techniques, thus evolving digital circuits that compete with the engineered designs

would be a highly challenging task. Problems that are not well understood via the

engineering techniques may provide an easier task for evolutionary design.

Ph.D. Thesis 45 Tüze Kuyucu

Chapter 2 - Evolvable Hardware

The building blocks used for the evolution of a system also determine the evolvability

of the problem. Asking evolution to come up with designs that are not realistic even for

engineers in a well understood design area would not be sensible. For example designing

an 8-bit Multiplier from the most basic digital elements without resorting to reuse would

not be a realistic task for either engineers or evolution. Therefore it is important to

choose an evolvable application domain with an evolvable application in order to achieve

success in evolutionary design.

Evolving circuits on hardware presents evolvability issues in terms of both the available

components and the suitability of the achievable design problems. The commercially

available hardware technologies are specifically designed for traditional top-down circuit

design methods. Hence these hardware architectures provide the necessary components

and routing for designs that have been mastered by the engineering design techniques.

Therefore it is quite likely for evolution to struggle in finding solutions using a bottom-

up design approach. Although there is no known definite programmable hardware

structure for circuit evolution that favours the bottom up approach of evolution, there

has been some work in the research community in developing hardware systems that

favour evolutionary method of designing circuits. There have been various suggestions

and implementations of evolvable hardware architectures specifically designed for digi-

tal circuit evolution [Greensted and Tyrrell, 2007b; Haddow and Tufte, 2000], controller

evolution [Kajitani et al., 1999], analogue circuit evolution [Langeheine et al., 2001; Stoica

et al., 2001], and evolution of biologically inspired systems [Samie et al., 2009; Tyrrell

et al., 2003]. These hardware systems aim to provide a platform for modelling certain

biologically inspired processes easily, and/or provide evolution with the freedom to

discover designs in the unconventional design space.

Earlier work done in EHW used off the shelf programmable devices such as FPGAs

(see Figure 2.3) for evolving circuits [Higuchi, 1994; Thompson, 1995a], since these de-

vices were the only available digital hardware platforms most suitable for evolution.

Commercially available FPGAs are still popular with EHW experiments [Lambert et al.,

2006]; they are highly reconfigurable, and provide a large amount of programmable

digital logic components (both combinational and sequential). Unfortunately, FPGAs

are designed to be used as part of an intelligent design process; the complex routing

and logic components on an FPGA are designed to provide the optimal implementation

Ph.D. Thesis 46 Tüze Kuyucu

Chapter 2 - Evolvable Hardware

Routing Routing

Routing Routing

CLB CLB CLB

CLB

CLBCLB

CLBCLB

CLB

Figure 2.3: A simplified FPGA architecture with CLBs and a routing layer. Generally, the CLBs
are able to communicate with their nearest neighbours via local connections or via an extra routing
layer (which usually consists of an array of switch blocks for long distance communication as well).

for traditional designs, and if some of the constraints of the traditional digital design are

ignored, it is possible to damage an FPGA. For example, if the bit string that programs an

FPGA is altered in an uncontrolled manner it is possible to create invalid configurations

that will damage the hardware. The only commercially available FPGA that allowed

unconstrained configuration possibilities was the Xilinx XC6200 (no longer available in

the market) [Xil, 1997]. XC6200 had a simpler routing scheme than the newer generation

FPGAs, which limited the capabilities of the FPGA.

Haddow and Tufte discuss the shortcomings of the commercially available digital hard-

ware devices and suggest a new design that would favour evolution and adaptive sys-

tems [Haddow and Tufte, 2000]. Their design is a simpler FPGA architecture with unlim-

ited and unconstrained reconfigurability, simpler routing, finer grained logic blocks, and

self and partial reconfiguration of the chip. These are some of the properties lacking in

most of the commercially available reconfigurable devices for EHW applications, and

many other researchers have tried to tackle these problems by developing their own

Ph.D. Thesis 47 Tüze Kuyucu

Chapter 2 - Evolvable Hardware

custom reconfigurable platforms. Some of the platforms developed by researchers are

designed on existing FPGAs, which mask the underlying architecture to provide a more

evolutionary friendly platform. Examples of this type of “virtual” platforms are [Had-

dow and Tufte, 2001; Sekanina, 2003]. Although this approach is easy to implement

and it makes use of widely available commercial devices, it is not an efficient way of

using the underlying substrate. Another approach to implementing an evolution friendly

reconfigurable platform is to design and manufacture a custom Application Specific Inte-

grated Circuit (ASIC). This is a less flexible, more costly and time consuming approach,

however it gives the designer greater design freedom for a more evolvable platform and

makes best use of the underlying silicon. The examples for this type of platform which

were suggested as a replacement for commercial FPGAs include “RISA” [Greensted and

Tyrrell, 2007b] and POEtic [Tyrrell et al., 2003] chips.

Considering the literature, the most powerful evolved digital circuits were evolved ex-

trinsically in simulations [Stomeo et al., 2006; Walker and Miller, 2007]. Extrinsic evolu-

tion of circuits has the advantage of having a much higher variety of components and a

much more flexible routing than intrinsic evolution. On top of that extrinsic evolution

does not suffer from unwanted transient effects of unconstrained intrinsic evolution that

may occur from looping connections and sequential components. But there is still an

attraction to the intrinsic evolution of circuits; evolution of circuits on real hardware has

the potential to use the properties of the underlying hardware in an unusual manner to its

advantage, which may provide us with novel designs and provide further insight on the

capabilities of evolution and the underlying substrate [Harding, 2006; Thompson, 1996].

In Chapter 3 an FPGA platform designed for EHW applications will be introduced and

used for evolving digital circuits. This platform will be used to address the numerous

issues of unconstrained evolution of digital circuits on hardware. A set of techniques

will be introduced for quick and successful evolution of reliable digital circuits on hard-

ware. Once an effective method of evolving circuits on hardware is accomplished, the

complexity and characteristic of the evolved circuits will be discussed, and suggestions

to evolving more scalable systems will be presented.

Ph.D. Thesis 48 Tüze Kuyucu

Chapter 2 - Evolvable Hardware

2.7 Summary

A brief introduction to evolutionary algorithms and their use in the design of electronic

circuits was presented in this chapter. Evolution of circuits is an unconventional method

of designing electronic circuits. Therefore, it provides a way to achieve designs that

are novel and innovative in the electronics field. Evolution of circuits can be a way of

achieving adaptive and fault tolerant circuits as well, hence making EHW an attractive

research area.

The ability to evolve a design makes that an evolvable design. Lack of evolvability can

be a serious set back in EHW. The target circuit, the medium of evolution and various

other factors (such as the fitness function) determine the evolvability of the design for

the problem at hand. Digital circuit domain is a tough area to evolve impressive designs

in. This is because the digital circuit domain has already been mastered by engineering

design techniques and available reconfigurable circuit platforms provide mediums that

are not evolution friendly. Thus, evolving competitive digital circuits is a tough task.

However the latter statement is not only due to evolvability issues, but also to scalability

problems encountered in EC. Since evolution uses a bottom up design method, when

there is one to one mapping of genotype to the phenotype, the growing phenotype (cir-

cuit) size correlates to an exponential increase in the evolutionary search space.

Ph.D. Thesis 49 Tüze Kuyucu

Publications I

The work presented in the following chapter (Chapter 3) is not solely the work of the

author of this thesis, but a joint work with Dr. Martin A. Trefzer. The work presented in

the following chapter has been published in a number of conferences as listed below:

Kuyucu, T.; Trefzer, M.; Greensted, A.; Miller, J. & Tyrrell, A. Fitness Functions for the

Unconstrained Evolution of Digital Circuits. 9th IEEE Congress on Evolutionary Computa-

tion (CEC08), 2008, 2589-2596.0

Trefzer, M.; Kuyucu, T.; Greensted, A.; Miller, J. F. & Tyrrell, A. M. The Input Pattern

Order Problem: Evolution of Combinatorial and Sequential Circuits in Hardware. The

8th International Conference on Evolvable Systems: From Biology to Hardware, 2008.

Trefzer, M.; Kuyucu, T.; Miller, J. F. & Tyrrell, A. M. The Input Pattern Order Problem II:

Evolution of Multiple-Output Circuits in Hardware. IEEE Symposium Series on Computa-

tional Intelligence - IEEE SSCI 2009, 2009.

Kuyucu, T.; Trefzer, M.; Miller, J. F. & Tyrrell, A. M. Task Decomposition and Evolvability

in Intrinsic Evolvable Hardware. IEEE Congress on Evolutionary Computation, 2009.

50

Chapter 3

Evolving Circuits in Hardware

This chapter presents a hardware evolution platform designed to allow the unconstrained

evolution of digital circuits. An introduction to the evolution platform is followed by

investigations into techniques that assist the evolvability of Evolvable HardWare (EHW).

These investigations include evolutionary experiments that assess the capabilities of the

hardware platform, and new techniques are subsequently developed to enhance the

evolvability of hardware evolution systems in general. Section 3.1 describes the evolution

platform used, and sections 3.2 and 3.4 discusses important issues that ensure circuit

validity when evolving circuits on hardware. Section 3.5 presents simple methods to

enhance evolution to achieve valid designs. Section 3.6 presents circuit designs achieved

using the hardware evolution platform and investigates the progress made to ensure the

evolvability of the platform. Finally, a summary on the progress made and conclusions

are presented in Section 3.7.

3.1 Reconfigurable Integrated System Array (RISA)

RISA is a reconfigurable Field Programmable Gate Array (FPGA) device with an embed-

ded on-chip microprocessor. RISA was specifically designed as a platform for intrinsic

hardware evolution at the Department of Electronics, University of York [Greensted and

Tyrrell, 2007a,b].

51

Chapter 3 - Evolving Circuits in Hardware

FPGA

uC

RISAOrganism

Cell

Nucleus
(with DNA)

RISA
Cell

Organism

Cell

Nucleus

DNA

Biological

RISA

RISA Cell

uC
Configuration

Bitstreams

Electronic

Figure 3.1: The structure of the RISA cell is inspired by biological cells. The micro-controller
operates as a centre for cell operations, controlling the cell functionality implemented in the
FPGA fabric. FPGA fabric configuration bits may be stored and manipulated in the micro-
controller [Greensted and Tyrrell, 2007a,b].

One RISA chip provides both a programmable micro-controller and a configurable logic

substrate, which are inspired by the main constituents of biological cells, namely the

nucleus and the cell body, as shown in Figure 3.1. The custom designed micro-controller

on RISA is called Simple Networked Application Processor (SNAP). Taking inspiration

from the cell nucleus, SNAP stores and processes configuration data and is able to (re-

)configure the FPGA substrate at runtime, i.e. without interfering with the currently run-

ning circuit configuration. SNAP is a Reduced Instruction Set Computer (RISC) and its

instruction set is specifically tailored for Evolutionary Computation (EC). Furthermore,

it provides communication interfaces to other RISA modules, as well as to the outside

world.

The RISA chip is physically small in size, thus making it useful for various practical

projects, e.g robotics and sensor networks. But the available microprocessor and FPGA

fabric on the chip is considerably smaller in size when compared with commercial FPGAs

with on-chip microprocessors.

Ph.D. Thesis 52 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

Cluster

5,34,33,32,31,30,3

5,44,43,42,41,40,4

5,54,53,52,51,50,5

5,24,23,22,21,20,2

5,14,13,12,11,10,1

5,04,03,02,01,00,0W0

W1

W2

W3

W4

W5

E0

E1

E2

E3

E4

E5

S5S4S3S2S1S0

N5N4N3N2N1N0

IO Block

Function

Unit

Cluster

Figure 3.2: The FPGA substrate of RISA consists of an array of 36 functional clusters surrounded
by IO blocks. The configuration chain for the clusters and the IO blocks are connected serially,
but each cluster and IO block can be configured individually, providing partial reconfiguration.
To configure a single cluster 152 bits are required for the logic and 320 bits are required for
the routing; resulting in a total of 16992 bits for the whole 36 cluster configuration bit-string.
Each cluster features four directional function units (north, east, south, west), and each function
unit provides a 16-bit LUT that can also be configured as a shift register or RAM. Each cluster
also provides configurable routing among the four function units, and outside to the other
clusters [Greensted and Tyrrell, 2007a,b]. See Appendix B for the schematics of cluster and IO
routing in RISA.

The configurable logic of RISA is designed in a similar fashion to generic FPGAs. As can

be seen from Figure 3.2, the configurable fabric consists of an array of 6×6 Configurable

Logic Block (CLB)s (referred to as clusters), surrounded by IO blocks. The IO blocks pro-

vide a total of 12 IO connections at each side of the RISA module (each block providing

2 IOs), which can be independently configured as either an input or an output of the

FPGA, but not as both. Additionally, configurable logic of different RISA chips can be

directly interconnected in order to build larger circuits, while the SNAP of different RISA

modules can communicate to form a network of processors.

The FPGA substrate of RISA cannot be destroyed by random configuration bit strings,

allowing unconstrained evolution. As discussed in Chapter 2, this feature is not present

Ph.D. Thesis 53 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

in current commercial FPGAs: the access to the bit-string for configuring device is either

constrained to be only modified by the manufacturer’s synthesis tools in order to protect

the device, or it is actually possible to damage the device by invalid configurations. The

configuration of clusters in RISA FPGA can be changed independently from each other,

hence offering partial reconfiguration. Partial reconfiguration can considerably accelerate

hardware evolution [Hollingworth et al., 2000], since only the parts of the bit-string that

have actually been changed by the Evolutionary Algorithm (EA) need to be reloaded into

the device instead of reconfiguring the entire device.

The RISA was designed to provide an evolution friendly FPGA substrate, and it has a

variety of properties that make intrinsic evolution of circuits on chip convenient. How-

ever RISA’s FPGA substrate lacks a flexible routing scheme, and the number of available

IOs for the FPGA substrate is very small. A maximum of 12 inputs can be used to access

one section of the RISA chip, which only allows the addressing of a maximum of 3 16 bit

LUT, when the number of available LUT is much higher (See Appendix B).

3.1.1 Experimental Setup

The essential components of the system used for the experiments reported in this chapter

are a RISA chip, a Xilinx Spartan 3 FPGA, and a PC. The Spartan chip is interfaced to

the RISA chip, and it runs the EA which evolves the circuits for the FPGA substrate on

RISA. The Spartan chip is instantiated with a soft-core Microblaze processor, which runs

the EA with RISA chip in the loop. The Spartan chip is also connected to a PC via a serial

interface for storing the evolutionary progress during evolution on a PC as a text file.

The code for the EA is written in C programming language, and the evolution is done on

the configuration bit-string of the RISA. With each evaluation step, a candidate solution

is loaded into RISA and tested by a set of data in accordance with the fitness function.

The experiments presented in this chapter are evolution of circuits on the unconstrained

FPGA substrate of the RISA platform. Experiments that are marked “constrained” are

done on a constrained version of the FPGA substrate of the RISA platform. In the con-

strained RISA platform the size of configuration bits per cluster are reduced from 472

to 58 bits. Although the possible configuration options in the constrained version of the

Ph.D. Thesis 54 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

fgEnable3

4

7

0
1

enable

mode(0)

0

0
1

0 1

0
1

0
1

9

12

0
1

14

0
1

0 1 13

15

0
1

shChnIn cyChnOut

shChnOut cyChnIn

muxDOut

fDOut

muxDIn(0)

muxDIn(1)

muxSel

fDIn

mode(1)

dIn(0)

dIn(1)

dIn(2)

dIn(3)

d0

d1

d2

d3

LUT Add/Sub Mux

A

B

addSub

A

B

sel0

sel1

regDOutregDIn

regEn

regSet

regReset

clk

dIn

clk

add(0)

mode(0)

mode(1)

enable

dOut

shiftOut

add(1)

add(2)

add(3)

d q

en

s r

2

8

10

11

16

18

19

20

1

6

5

enable

mode(0)

shChnIn cyChnOut

shChnOut cyChnIn

muxDOut

fDOut

muxDIn(0)

muxDIn(1)

muxSel

fDIn

mode(1)

dIn(0)

dIn(1)

dIn(2)

dIn(3)

regDOutregDIn

regEn

regSet

clk

regReset

regR

regS

regE

regD

muxA

muxB

muxS

carryInject

muxS1

fgDOut

bigMuxOut

muxOut

FOutSelect

CySelect

abMuxOut

Function
Generator

fgMode(0)

fgMode(1)

ExtMux

22 37

21

DInSelect

fgDIn

sel

data

carry

data

CarryMuxABMux

BigMux

17

1
0 regOut

RegDInSelect

Figure 3.3: The schematic of a function unit (four in each cluster) in the RISA FPGA.

RISA platform are greatly limited, the local and inter-cluster feedback loops as well as

delays are still possible. The large reduction in the configuration bits per cluster refer

to the limited programmability of the routing, especially between the four functional

units present in each cluster. Figure 3.3 illustrates the components available in a single

RISA function unit. The constrained case allows the signals to be routed to the “Function

Generator”, which can only be used in a single mode (as a LUT), or the flip flop. Other

components and routing lines are disabled in the constrained case.

A total of 10 clusters of the RISA chip is used for the evolution of all the experiments pre-

sented in this chapter unless stated otherwise. The remaining 26 clusters are configured

in a way that they pass incoming signals unchanged to their opposite side. This ensures

that the circuit’s output reaches the IO blocks and can be measured from outside the chip.

Inputs are applied to the west side of the chip and the output is measured at the east side.

RISA is operated at a frequency of 4MHz and the inputs and outputs are sampled with

a frequency of 0.5MHz. The sampling frequency was chosen as a consequence of delays

in input and output buffers of IO blocks and the expected delay of the candidate circuits.

The input and output data consist of 512 samples for each measuring cycle. A (2 + 5)

Evolution Strategy (ES) is used (i.e. no cross-over), with a fitness proportional mutation

strength of 1%..10% (never to be less than 1 bits per generation), that changes with respect

Ph.D. Thesis 55 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

to the rate of change in the fitness, see Algorithm 1. 20 randomly initialised evolution runs

have been carried out for all experiments and the generation limit is 5000.

The selection scheme used is a simple “best selection”. Out of a population of 7 the two

best candidates are chosen. Offspring are preferred over parents in case of candidates

with best fitness, and in such cases with multiple offspring with same fitness, the se-

lection is done at random. From the two best the rest of the population is created by

mutating the two, 3 mutants are created from the first choice, and 2 mutants are created

from the second choice.

The number of data samples used for each cycle, and the population size were chosen

for the values stated above due to the memory limitations on the hardware architecture

used in the experiments. The generation limit, lack of cross-over and the number of

evolutionary runs were also chosen with the considerations of the speed of the hardware

Algorithm 1 The pseudo-code for the variable mutation rate. This is part of a function
that is called once every evolutionary generation.

1: comment: At the start of evolution convergence is set to 1 and Mutation Rate is set to
0.5%

2: if one of the top two individuals from the previous evolutionary generation is now
the best individual then

3: convergence−−;
4: else
5: convergence++;
6: end if
7: if convergence = 0 then
8: comment: Mutated individuals are all worse; decrease the mutation rate
9: if MutationRate > 0 then

10: MutationRate−−;
11: end if
12: convergence← 1;
13: else if convergence > 0 then
14: comment: Mutation did not hurt; increase the mutation rate
15: MutationRate++;
16: convergence← 1;
17: end if
18: if MutationRate < 0.5% then
19: MutationRate← 0.5%;
20: else if MutationRate > 10% then
21: MutationRate← 10%;
22: end if

Ph.D. Thesis 56 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

platform used and the time required to evolve a design for the target circuit. The range of

the mutation rate was manually determined, and the variable mutation rate function was

specifically designed to be simple due to the limited computational resources available

on the experimental hardware used.

3.2 Getting Acquainted with Evolution in Hardware

Hardware evolution has various aspects that are not addressed in software evolution. In

particular, intrinsic hardware evolution demonstrates various types of behaviours that

are not recognised by simple fitness evaluations. Transient effects are encountered in

hardware, but do not exist in software evolution [Harding, 2006; Thompson et al., 1996].

It has been suggested that in order to get the most out of intrinsic hardware evolution

and evolve complex and novel systems, an evolvable platform capable of implementing

complex behaviours together with an unconstrained evolutionary approach is required

[Huelsbergen et al., 1999; Thompson et al., 1996].

Unconstrained intrinsic hardware evolution is particularly good at exploiting the envi-

ronmental conditions, and even though this is considered a big advantage for intrinsic

evolution, it also brings extra challenges regarding the evolution of fully functioning

circuits. When allowed to interact with its environment in a rich substrate, evolution

is capable of finding various solutions that can satisfy its goal, and often these solutions

are valid only for the exact environment presented during evolution, even though the

desired result is aimed to satisfy a much broader problem.

The initial experiments with RISA included the evolution of a simple XOR gate. However

due to several challenges, the evolution was unsuccessful. Since evolution was uncon-

strained, feedback loops could be generated by evolution on RISA. These feedback loops

would create so called transient effects [Harding, 2006; Thompson et al., 1996]. When

unconstrained, evolution explores any solution that is available in the medium, and it

can sometimes find solutions that are only transient, this can trick the fitness function

into believing that it has found the correct solution. In the initial experiments this was

found to be the case, and the simple fitness function used in evaluating the resulting

circuits was unable to distinguish the transient results. The fitness function that was

Ph.D. Thesis 57 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

used would simply award/penalise the circuit evolved by making bitwise comparisons

on the evolved circuit’s current and desired outputs. Thus in most of the experiments

performed, the evolution would either fail to find a solution under the maximum number

of allowed generations, or find a solution that would behave like an XOR gate only in

certain cases but not always.

To be able to guide evolution towards more robust and meaningful solutions without

reducing its evolvability, effective yet computationally inexpensive mechanisms are re-

quired. These mechanisms are needed to ensure that the evolved circuits are fully func-

tional, and they meet the minimum design requirements. In the rest of this chapter,

mechanisms for unconstrained intrinsic hardware evolution that can help guide evolu-

tion better are explored.

3.3 Constrained vs Unconstrained Evolution

in Hardware

Truly unconstrained evolution on an FPGA substrate is not strictly possible since an

FPGA is already constrained by its design. A truly unconstrained hardware evolution

would use the substrate to its fullest without any human constraints, i.e no gates or

transistors. However building complex systems using such a model can be impractical

for real applications, the use of such an approach is interesting for research purposes

to investigate the behaviour of evolution [Harding, 2006], or may be to discover a new

alternative to the current technology of transistors.

In the field of EHW, “unconstrained evolution” has been used in a few different ways

one of which refers to the evolution of circuits without any design constraints. Thompson

uses the term “unconstrained evolution” to refer to the evolution of digital circuits with

relaxed design constraints, such as having no strict synchronisation of a sequential circuit

to a global clock [Thompson et al., 1996]. Unconstrained evolution is used to refer to

evolution of circuits that can use the properties of the digital substrate to its fullest while

evolving circuits. Thus by “unconstrained evolution” Thompson refers to the lack of

traditional design constraints for circuit evolution rather than meaning a substrate com-

Ph.D. Thesis 58 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

pletely free of any constraints. However evolving circuits without any traditional design

constraints on an FPGA substrate will enlarge the design space greatly with designs that

are mostly unwanted and designs that can create local optima.

It is also worth explaining what is meant by “constrained evolution” in evolvable hard-

ware in this thesis. The term refers to the application of domain knowledge to provide an

evolvable hardware platform that has the essential components to aid the successful evo-

lution of a design. Such an approach usually decreases the time required for evolutionary

search in finding a functioning system, but it may limit the number of available designs

and possibly prevent the emergence of novel designs. “Constrained evolution” however,

should not be confused with Constrained Optimisation Problems (COP), which refer to

the challenging task of locating a very specific solution of small feasibility in a very large

search space. The “constrained evolution” here is more like “guided evolution”, where

the user provides a large amount of guidance to the evolutionary search using his/her

engineering knowledge in order to speed up the evolutionary design.

Consequently one of the key questions when using intrinsic hardware evolution is whether

unconstrained evolution is worth undertaking, or would it simply hamper the evolu-

tionary design? In the rest of this chapter the intrinsic evolution of circuits on hardware

is investigated, and the performance of evolution will be improved to allow the evo-

lution of meaningful circuits via unconstrained evolution. The experiments involving

unconstrained and constrained evolution of circuits will be presented for the purpose of

exploring whether unconstrained evolution is worth undertaking.

3.4 Evolving Valid Circuits on Hardware

For the evolution of digital circuits correct operation of the evolved circuits is crucial.

It is important that the evolved circuits provide a fully functional device that meets the

design specifications. If a digital circuit does not function exactly the way it is supposed

to, then most of the time that circuit is considered useless.

As stated earlier, evolution often finds specific solutions that are only valid for exactly the

pattern of inputs and environment that are presented during evolution. Unfortunately,

in the case of digital circuits the evolved circuits are likely to be only valid for exactly

Ph.D. Thesis 59 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

the set of inputs and the environment that are presented during evolution. Even when

certain parameters are varied, e.g. the location on the substrate where the candidates are

tested or the order of the input vectors, evolution can produce circuits that only meet

these minimal requirements. In the worst case, an evolved circuit can be just a pattern

generator that always generates the same set of outputs irrespective of the applied inputs.

As a consequence, the resulting circuits are not fully functional. This is due to the rich

options hardware substrates provide in terms of components, and evolution may find it

easier to find a “cheat” that appears to produce a valid circuit.

3.4.1 Hardware Sampling

Although this is a topic that does not receive much attention, if provided the opportunity,

evolution can find a way to present solutions that only work at the output sampling rate

used during evolution. In research on the evolution of combinational circuits, output

sampling rate uses have received little, if any, attention; it is mostly chosen to be slower

than the worst case settling time of the circuit. Using a sampling rate that is too slow may

cause evolution to miss changing outputs and evaluate circuit incorrectly. Sampling at

the rate of output change in the evaluated circuit ensures that every output is received

and evaluated by the evolutionary system. This gives a more precise evaluation of the

candidate circuits during evolution.

In the hardware experiments presented in this chapter, the sampling of the outputs of

the evolved circuit is always set at a “cycle accurate” fashion (i.e. the outputs are always

measured the instant they change without any delay) unless specified otherwise.

3.4.2 Randomness of the Input Pattern

There are only a few examples where input pattern problems are discussed, e.g. [Ima-

mura et al., 2000]. Usually the work done is either related to validation and Built-In Self

Testing (BIST) [Corno et al., 1996; Skobtsov et al., 2004] or sets the focus on the fitness

function [Torresen, 2002] rather than the input pattern.

Since the structure and behaviour of an evolving circuit are unknown, EAs work on a

black box problem [Imamura et al., 2000]. Thus it is necessary to include randomness in

Ph.D. Thesis 60 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

both inputs and environment of the evolving circuit. The most effective test to assess

whether a resulting circuit is sufficiently fit to cope with previously unknown input

vectors is to measure its output multiple times while applying random test patterns. The

success rate of the latter measurement provides a measure for the validity of the evolved

circuit. When a circuit is being tested, randomising the input pattern avoids an incorrect

assessment of the circuit by removing the chance of creating a valid test case for circuits

that rely on a regular pattern of inputs.

Applying randomness in the order of applied input patterns is possibly one of the most

crucial things that have to be ensured when setting up evolution experiments that depend

on those patterns. If static or periodic input patterns are used in the assessment of

solutions for circuits in hardware, it is highly likely that evolution finds circuits that

produce the desired output, which might not be correlated to the input and will therefore

generally fail for random test patterns. Thus creating a new random input pattern for

each generation prevents evolution from exploiting regularities in the input pattern and

drives evolution to find the acceptable solutions to a given task. This in turn should also

help to keep the EA away from local optima caused by static input patterns.

In order to investigate the effect of including randomness in the input pattern, three

different methods of organising the input pattern are used for the experiments in this

section: first, the ordered input pattern, where the input pattern is fixed during evolution

and the samples are ordered according to the truth table of the logic function. Second,

the static random input pattern, where the input pattern contains all entries of the truth

table of a logic function in random order. Third, random input patterns, which are newly

created for each generation in order to prevent evolution from exploiting regularities in

the input pattern. Therefore, evolution is driven to find more general solutions and is

kept away from locally optimal solutions caused by static input patterns. The experi-

ments carried out involve evolving circuits for a combinational 4 bit parity generator and

a tone discriminator. The task for the tone discriminator circuit is to distinguish between

a 31.25kHz and a 250kHz tone. As stated earlier, the input and output patterns consist

of 512 samples for each measuring cycle. This allows the full truth table of 4-bit parity

circuit to be applied 32 times, and the slowest tone discriminator circuit 31.25kHz can be

applied for 4 frequency samples over each measuring cycle.

Ph.D. Thesis 61 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

Table 3.1: The results for the tone discriminator and 4 bit parity circuit experiments are shown.
The number of runs where a perfect solution was found out of 20 runs is given in column entitled
“Solution Found”. The number of the circuits, which are successfully reloaded to the chip and
tested with multiple (20) random input patterns is given in column entitled “Random Pattern”.
Solutions that also pass the test when measured at a different location on the chip are given in
column entitled “Different Location”.

Target Genome Input Solution Random Different

Pattern Found Pattern Location

Tone Disc. Constr. Ordered 8 0 0

Tone Disc. Constr. Static Rand. 0 0 0

Tone Disc. Constr. Random 6 4 4

Tone Disc. Unconstr. Ordered 0 0 0

Tone Disc. Unconstr. Static Rand. 0 0 0

Tone Disc. Unconstr. Random 7 0 0

4 bit parity Constr. Ordered 10 0 0

4 bit parity Constr. Static Rand. 9 5 5

4 bit parity Constr. Random 7 6 6

4 bit parity Unconstr. Ordered 0 0 0

4 bit parity Unconstr. Static Rand. 1 0 0

4 bit parity Unconstr. Random 2 1 1

3.4.3 Testing the Evolved Circuits for Validity

Three different tests are carried out in order to assess the evolved circuits: first, the suc-

cess rate for random test patterns is measured. Second, different sampling frequencies are

tested and the frequency discrimination range of the tone discriminator is determined.

Finally the candidate circuits are measured at different locations on the chip. A valid

circuit is expected to be independent of the particular location of the chip it has been

evolved on. Hence, the presented evolved circuits are tested at different locations of the

chip, whenever it was possible.

In the constrained evolution experiments (see Section 3.1.1 for the difference in con-

strained vs. unconstrained experiment on RISA hardware platform), using ordered input

patterns during evolution produced invalid solutions that failed the random inputs test as

well as the testing of the circuit at a different part of the chip for both of the target circuits,

see Table 3.1. Using static random input patterns was sufficient for the successful evolution

Ph.D. Thesis 62 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

of fully working 4-bit parity circuits but they were still ineffective for the sequential

circuit problem, the tone discriminator. In both constrained and unconstrained versions

of the RISA chip using full randomised input patterns provided the best and most reliable

evolutionary performance in evolving all the circuit problems. Furthermore, the ability

of the resulting tone discriminator circuits to distinguish other pairs of frequencies than

those demanded during evolution has been tested. The evolved circuits are able to

correctly distinguish different frequencies with a typical range for the lower frequency

at 0..62.5kHz, and a typical range for the higher frequency at 125..250kHz.

3.5 Tricks and Treats

One of the aims of EHW is to facilitate and automate the design process for increasingly

complex applications. In order to achieve this, effective techniques are required to ef-

ficiently use the given substrate and solve the problem at hand as quickly as possible.

Evolution of circuits on hardware is an arduous task with many obstacles, and if not

taken care of, these obstacles could make the evolution of the simplest circuit impossible.

Four simple “tricks” are introduced in this section with supporting empirical evidence

showing their positive effect (the “treats”–reliable and quick evolution of circuits) on the

evolution of digital circuits on hardware.

It is shown that the newly developed approaches can be used to cope with four im-

portant issues (some of which are commonly neglected) in the intrinsic evolution of

digital circuits: computational ambiguities, transient effects, scalability, and rough fitness

landscapes.

3.5.1 Fitness Functions

The design of the fitness function is one of the most important aspects of an EA whether it

be for optimisation purposes, extrinsic or intrinsic hardware design. The fitness function

is the specification of what is expected from the solution. In the case of extrinsic evolution

most of the time the fitness function only needs to specify the desired outputs for all

possible inputs. For a simple circuit this can be the truth table being applied to the test

Ph.D. Thesis 63 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

circuit and the circuit output being compared to the desired output bit by bit. However

for intrinsic evolution the circuit being evolved may require more information for an

effective guidance.

New fitness functions are introduced to help evolution tackle transient effects in hard-

ware evolution. Feedback loops in evolution of circuits are most often not allowed, even

though they may yield interesting results. In this case, the term feedback refers to circuits

that feature the ability to oscillate rather than being merely finite sequential circuits:

examples for this can be found in [Huelsbergen et al., 1999; Thompson et al., 1996].

Obtaining feedback paths in circuits evolved on RISA is possible, and as a consequence of

this the additional challenge for the EA is to find a static solution in a transient dynamic

system. If a suitable fitness evaluation method is used that is able to accurately assess

and control transient effects, it can speed up the evolution of circuits in hardware.

However, a further question is whether the fitness measuring method has an effect on

the ability of an evolved circuit to cope with random, unknown input test vectors. In

particular when random input patterns are applied during evolution, a desired property

of the fitness function is not to immediately assign candidate circuits that perform poorly

in a single case. At the same time, it is not supposed to promote bad solutions when they

perform well by chance.

Three new fitness evaluation methods are listed, explained and further investigated in

this subsection in addition to the classic bitwise fitness calculation. The first fitness

evaluation method that was developed is a different version of the simple bitwise fitness

calculation, it is intended to deal with the transient effects of hardware; it is called Bitwise

Fitness Modified for Hardware (BMH). The second fitness evaluation method is the

Hierarchical IF-and-only-iF (HIFF) method described in [Watson et al., 1998]. The final

fitness evaluation method is a customised version of the HIFF. It is based on sampling

the bit-string by evaluating blocks of bits of variable size and is therefore referred to as

Hierarchical Bit-string Sampling (HBS).

• Bitwise Fitness Calculation: This is the classic way of measuring a candidate cir-

cuit’s fitness. It’s simply calculated as the Hamming distance between the mea-

sured output and the desired output. Thus every incorrect bit is penalised for one

fitness score.

Ph.D. Thesis 64 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

• BMH: BMH fitness evaluation method is specifically developed for combinational

hardware evolution on unconstrained hardware where feedback loops are allowed.

It is built around the simple bitwise comparison between measured and desired

outputs, but it also undertakes a parity check and a check for transient faults: thus,

the complete logic input pattern has to be iterated through the solution at least

twice for every evaluation.

To overcome the problem of being deceived by intermittent solutions, the BMH

fitness evaluation method penalises transient behaviour by comparing the outputs

of a given input combination at two different time steps for a change in the corre-

sponding outputs: i.e. on the same circuit evolved, for test case XN if the output of

input A at time tn is different to its output at time tn+1, the fitness is penalised by an

appropriate value. This is a simple yet effective way of directing evolution away

from the solutions that provide intermittent results.

One of the other common problems in hardware evolution is the unconnected or

stuck-at output, that always provides a ‘0’ or ‘1’, no matter what the inputs are.

In bitwise fitness calculation, this often gives a 50% (for an XOR gate or parity

circuit) or higher success in the fitness value, thus possibly trapping evolution in

local optima. To overcome this problem BMH fitness evaluation method awards bit

variance to push evolution away from the solutions where outputs are all ‘0’s or all

‘1’s and push it towards better solutions; see Figure 3.4 for an example.

• HIFF: The HIFF method was proposed for hierarchical if-and-only-if problems in

[Watson et al., 1998]. It extends the bitwise fitness calculation (Hamming distance)

by introducing additional steps of fitness calculation, where blocks of bits of in-

creasing size are compared, and the penalty is increased proportionally to the block

size of the respective step. As a consequence of this, larger schema within the bit-

string are recognised, and accordingly penalised (or rewarded) and are therefore

preserved in case they match the desired output.

• HBS: In order to benefit from the context sensitivity of the HIFF method and at

the same time further increase the granularity of the fitness value range, the HBS

method is proposed. Rather than dividing the bit string into disjunct blocks of

increasing size, the bit string is evaluated by sampling it with overlapping windows

(blocks) of increasing size and adding the resulting penalties. It is also suggested

Ph.D. Thesis 65 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

Table 3.2: Ambiguities in fitness assignment for an XOR are shown. The goal is to minimise the
fitness. There are two inputs, namely A:0011 and B:0101. The desired output is the result of an
XOR:0110. Four different fitness measures, Bitwise, BMH, HIFF and HBS are compared . The
values in the parentheses used for fitness calculation refer to; for BMH: bitwise, parity, transient
fault penalty, for HIFF: binary block sizes 1,2,4, and for HBS: binary block sizes 1,2,4.

Case Measuring at Fitness

t0 t1 Bitwise BMH HIFF HBS

A XOR B 0110 0110 0 0 (0+0+0) 0 (0+0+0) 0 (0+0+0)

X0 0101 0101 4 4 (4+0+0) 16 (4+4+8) 48 (4+12+32)

X1 0000 0000 4 8 (4+4+0) 20 (4+8+8) 50 (4+14+32)

X2 0101 0111 3 12 (3+1+8) 15 (3+4+8) 45 (3+10+32)

X3 0101 1111 4 22 (4+2+16) 18 (4+6+8) 48 (4+12+32)

X4 0101 1010 4 36 (4+0+32) 16 (4+4+8) 42 (4+10+28)

that the increased context sensitivity—preceding and succeeding bits are now taken

into account—can provide further benefit to the EA.

An example fitness calculation using all four methods are demonstrated in Figure 3.4.

3.5.1.1 Computational Ambiguities in Fitness Assignment

When evaluating the fitness of binary strings that result from measuring digital circuits,

ambiguities in the fitness measure have to be considered. If the fitness values calculated

from distinct solutions with different outputs are the same, then it is unclear which

solution to promote when in reality one might be a better solution than the other. This

is particularly true when the fitness is given as the Hamming distance between desired

and measured output. As can be seen from Table 3.2, where bitwise fitness represents

Hamming distance, four different outputs (X0, X1, X3 and X4) result in the same fitness

value, although, X0 is considered to be a better solution than X1. This is because a

measuring of X1 could mean unconnected outputs and in such a case the probability

of evolution to improve the candidate circuits becomes lower. The consequence of this

can be either getting stuck in a local optimum or, even worse, misleading the EA towards

worse solutions.

Furthermore, in the case of measuring circuits with feedback on hardware, transient

effects and possible oscillations have to be considered as well. These effects cause further

Ph.D. Thesis 66 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

0110 0110
1010 0001

Bitwise

BMH

HIFF

HBS

0110 0110
1010 0001

0110 0110
1010 0001

0110 0110
1010 0001

0110 0110
1010 0001

0110 0110
1010 0001

0110 0110
1010 0001

0110 0110
1010 0001

0110 0110
1010 0001

0110 0110
1010 0001

0110 0110
1010 0001 1010 0001

0110 0110

0110 0110
1010 0001

0110 0110
1010 0001

0110 0110
1010 0001

5 x 1 = 5 5 x 1 = 5

3 x 2 = 6

2 x 4 = 8

total penalty = 19

3 x 8 = 24

total penalty = 31

1 x 2 = 2

5 x 1 = 5

1 x 2 = 2

1 x 2 = 2

0 x 2 = 0

0 x 2 = 0 1 x 2 = 2

1 x 2 = 2

1 x 2 = 2

1 x 2 = 2

total penalty = 12

total penalty = 5

Generation N, Generation N,
Individual I Individual I
 tt₁₁ t₂ t₂

Generation N, Generation N,
Individual IIndividual I
 tt₁₁ t₂ t₂

Generation N, Generation N,
Individual IIndividual I
 tt₁₁ t₂ t₂

Generation N, Generation N,
Individual IIndividual I
 tt₁₁ t₂ t₂

Generation N, Generation N,
Individual IIndividual I
 tt₁₁ t₂ t₂

Figure 3.4: Example fitness calculation for all four approaches are shown; first line of the two
sets of outputs is always the desired output (XOR in this case), and the second line is the actual
outputs of individual I at generation N. Bitwise: Only a single iteration is needed to calculate the
fitness value, and it involves bit by bit comparison, for every wrong bit the fitness is increased by 1
(there are 5 in this case). BMH: For calculating the fitness using this method, 3 checks are done in
a single iteration on the output, the first one is the same with the bitwise fitness calculation,
the second check involves a bit variety check: constant × (absolute value(No. o f ′1′s in tn −
No. o f ′0′s in tn) + absolute value(No. o f ′1′s in tn+1−No. o f ′0′s in tn+1)); the constant is 1
in the example above and the result is 2 because of 3 ’0’s in t2. The third check looks for a change in
the outputs at different time steps (3 in the case above), and penalises each change by the number
of output bits tested (8 in this case). HIFF: For HIFF 3 iterations are needed to calculate the fitness
value: the first iteration is same with bitwise, the second iteration compares bits in sets of two and
penalises each non-matching set by 2 (in this case there are 3 non-matching sets), and in the third
iteration the bits are compared in the sets of 4 (a complete set of outputs), and each non-matching
set is penalised by 4. HBS: In the example above only a binary block size of 2 bits is used, so only
1 iteration is needed. The only difference from HIFF block size 2 is that the binary block is moved
every bit rather than every 2 bits. For the last output bit the binary block wraps around to the first
output bit in the generation.

Ph.D. Thesis 67 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

ambiguities in the fitness assignment, thus misleading the EA. For instance, in the case

of oscillations and unknown settling times, the same input can produce different outputs

when measured at different points in time; as a consequence, good solutions cannot easily

be recognised.

In Table 3.2 four different fitness measures are compared for a set of examples of possible

solutions to evolve an XOR gate. It can be seen that the bitwise fitness assignment is

not able to distinguish among the four different examples shown. Even though these

solutions are not considered as equally good, the decision on which one to promote can

only be based on random selection in the latter case. BMH, HIFF and the HBS approaches

provide finer grained fitness measures, however, note that the distribution of the fitness

values is different in each case.

Depending on the chosen measure, the fitness ranking is ambiguous and task dependent.

Since the fitness landscape is not known before actually performing sufficient evolution-

ary runs, it is not always clear which solution is better. Consider for example solution

X0 or X1 from Table 3.2, which cannot be distinguished by the bitwise fitness measure;

BMH, HIFF and the HBS methods overcome this ambiguity and assign better (lower)

fitness values to X0.

The respective rank of X1 and X2 is different for BMH than for HIFF and HBS, due to the

fact that in the case of BMH, transient faults are additionally penalised, independent of

the actual position of the bit that causes the fault. Therefore, despite the fact that X2 is

featuring more correct bits than X1, it obtains a worse fitness due to the extra penalty for

bit 3, which delivers different results for measurements at different times.

The full consequence of using the different fitness measures can be seen in Figure 3.5,

where the fitness values for all approaches and all possible results for t0 and t1 are plotted.

The values are sorted in ascending order for BMH to provide a better overview over the

fitness landscape.

Figure 3.5 demonstrates that bitwise comparison has the worst fitness landscape with

lots of wide horizontal steps, which is a challenging problem for evolution to tackle.

HIFF provides a better landscape than bitwise with smaller steps, whereas BMH and

HBS methods provide even better sampling of the landscape with very small horizontal

steps.

Ph.D. Thesis 68 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

Figure 3.5: Resulting fitness values for all approaches and all 256 possible logic input vectors
for t0 and t1 (refer to table 3.2)are calculated and plotted. In all cases, the values are sorted in
ascending order of fitness providing a better overview over the fitness landscape. Ambiguities in
the fitness measures become visible in regions where the fitness remains constant for a wide range
of different input patterns. In these cases, the EA is not able to decide which solution to promote.

3.5.1.2 Experiments

The EA used in the experiments described operates directly on the configuration bit-

string of RISA and evolution is completely free to use any resources available (routing

and logic) and connect them freely. The 3×3 upper left RISA clusters are used, which are

connected to two predefined inputs and one output of the chip.

Forty independent evolution runs with a target function of XOR are carried out using the

four fitness evaluation methods explained earlier: bitwise, BMH, HIFF and HBS. For all

experiments, an array of 64 input vectors is used for the evaluation of each candidate:

for the first 32 entries, each test case I-IV (shown in Table 3.3) is repeated 8 times. The

second half of the input vector contains 8 times the full input pattern I-IV, half of them

in randomised order. Repeatedly testing the same test case and randomising the full

input pattern makes it possible to measure transient effects like oscillations and delayed

Ph.D. Thesis 69 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

Table 3.3: Truth table used as input test pattern for XOR experiments.

Test Case XOR A B

I 0 0 0

II 1 1 0

III 1 0 1

IV 0 1 1

Table 3.4: Evolutionary run results on evolving an XOR gate. Forty experiments for each fitness
calculation method has been run, and the results of these runs have been analysed and put together
in this table to give an idea of the performance and reliability of each method. Displaying: number
of solutions found in 40 runs (Sol Found), number of successful solutions found (Success), average
number of generations for each experiment (Avg Gens), standard deviation of average number of
generations (Std Dev), average run time for each experiment (Avg RT), run time per generation
(RT/Gen).

Fitness Results

Sol Avg Std Avg RT RT/gen

Found Success Gens Dev (mins) (secs)

Bitwise 16 10 3792 1684 206.03 3.26

BMH 34 26 2351 1720 127.65 3.26

HIFF 39 30 1600 1271 87 3.26

HBS 39 31 1364 1054 75.2 3.31

changes of the output. Therefore, through this method it is possible to detect and avoid

intermittent results.

For the HIFF and HBS method, the block sizes used for evaluating the output—which

is 64 bit wide due to the number of input test vectors—were 1, 2, 4, 8, 16 and 32 bits

per block respectively. In the case of HBS there was no wrap around when the sampling

window reached the end of the bit-string to conserve computational resources.

As can be seen from the results in Table 3.4, the problem caused by transients has been

solved by using the new fitness functions. The type of fitness calculation method has

little effect on the average speed of evolution, which is in each case ≈ 3.3 seconds per

generation. Thus the higher complexities of BMH, HBS and HIFF fitness calculation

methods do not appear to add considerable overhead to the evolutionary process.

The results show that bitwise fitness calculation method had the lowest evolutionary

success rate where it found 16 solutions out of 40 runs and only 10 of these were success-

Ph.D. Thesis 70 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

ful (i.e the other 6 were intermittent, and did not provide stable XOR gates). Whereas

BMH method found 34 solutions out of 40 runs with 26 successful solutions, and HIFF

and HBS found solutions in 39 of the 40 runs with 30 and 31 of them being successful

respectively. If we look at the average runtime or number of generations as well as the

standard deviation of the number of generations for each fitness calculation method, it

can be seen that bitwise takes longer than any other method on average to finish a run,

and HBS is the fastest and most dependable of all four. Thus in the results, HBS proves

to be the most reliable, and fastest evaluation technique among the four tested methods.

Further experiments were carried out to intrinsically evolve a 4 bit parity and a tone dis-

criminator on RISA. The task for the tone discriminator circuit is to distinguish between

a 31.25kHz and a 250kHz tone (input as digital waves). Two different versions of the 4

bit parity problem are evolved; one combinational implementation, and one sequential

implementation. The sequential implementation of the 4-bit parity problem and the tone

discriminator circuits were devised to test whether the proposed fitness measure HBS

works for sequential circuits or it is only effective for evaluating combinational circuits.

In the sequential 4-bit parity experiments a stream of bits is applied to only one input of

the circuit and the output is required to deliver the even parity result after the final input

bit is applied. A constrained version of RISA, as well as the unconstrained version, is

used for a set of the 4-bit parity experiments.

The same evolutionary settings were used as with the XOR experiments, but this time

only 20 runs were carried out for each experiment. The reason for reducing the number

of runs to 20 for each experiment is due to the increase in the evolutionary time for the

experiments in this section, which involve circuits more complex than an XOR function.

Table 3.5 details the results from the 4-bit parity and tone discriminator experiments

comparing the HBS and bitwise fitness functions. The results displayed are the perfect

solutions to the circuits being evolved, which worked correctly when they were tested

with new random inputs and at different locations on the chip after they were evolved.

The HBS fitness method works equally well as the bitwise fitness calculation in the case

of constrained evolution for the 4-bit parity problem but suffers when used for the tone-

discriminator circuit. Using HBS fitness function evolution features a significantly better

performance in the case of unconstrained evolution for the 4-bit parity circuit. When

the 4bit parity task is implemented in a sequential way, the HBS fitness method again

Ph.D. Thesis 71 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

Table 3.5: The results for the tone discriminator and 4 bit parity circuits are shown. The number
of runs where a perfect solution was found during evolution is given for each run.

Tone Discriminators 4 bit parity

Genome Fitness Combinational sequential

Constrained Bitwise 4 6 -

Constrained HBS 0 6 -

Unconstrained Bitwise 0 1 3

Unconstrained HBS 0 3 10

works better than the bitwise fitness calculation. This suggests that hierarchical fitness

evaluation is not limited to combinational circuits but can also be applied to sequential

problems. However, the fact that HBS performs worse than the bitwise fitness in the case

of the tone discriminators indicates that its performance is task dependent.

It is important to choose the right fitness function for whatever the application may be. In

the case with unconstrained intrinsic evolution it was shown that the conventionally used

bitwise fitness measure fails to resolve ambiguities in the hardware measurements, which

are caused by transient effects. These transient effects in many cases resulted in tricking

the bitwise fitness measure with intermittent results that are not the true solutions to

the target circuit being evolved. Due to its coarseness the Bitwise approach requires on

average the largest number of generations and number of runs before finding a solution.

However it was also shown that a fitness measure that works well for one problem may

not do so for another. Fitness measures designed for a particular problem is likely to

contain extra information for that problem, and when used for the evolution of a solution

to another problem these fitness measures are likely to create unwanted biases. For

example the hierarchical fitness measures (HIFF and HBS) favour circuits that implement

the XOR function in them.

3.5.2 Multiplying Inputs

Applying the inputs of the target system multiple times to the evolutionary platform

during evolution may provide higher chances of success by introducing richer environ-

mental information to the hardware architecture.

Ph.D. Thesis 72 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

Table 3.6: The results of evolving the tone discriminator circuit on the constrained and
unconstrained versions of the RISA platform are shown for two cases; the original case where
the inputs of the circuit is applied from a single input port, and another case where the inputs of
the circuit are applied at two different input ports.

Genome Inputs Tone Discriminators

Constrained Multiple Input 8

Constrained Single Input 4

Unconstrained Multiple Input 6

Unconstrained Single Input 0

In the case of intrinsic hardware evolution where the substrate usually features a con-

siderable amount of predefined interconnections of components and routing, it can be

helpful to provide the input at different locations. This relieves the EA from having to

distribute the input signals itself. Furthermore, in the case of unconstrained evolution it

becomes less likely that the input is disconnected from the circuit with the flip of a single

bit.

Applying the inputs of the target system multiple times might create scalability issues

in evolving circuits with large number of inputs. Therefore this technique appeals to the

evolution of circuits that require a small number of inputs (more often sequential circuits)

that are applied serially. Therefore, the earlier used tone discriminator circuit is evolved

in this subsection by applying the input of the circuit at two different locations of the

RISA chip. The results are shown in Table 3.6.

The runs where the inputs were applied at multiple locations of the evolutionary hard-

ware platform as opposed to the case where only one input is present indicate that the

EA benefits from input signals that are more easily accessible from different locations.

This suggests that for intrinsic hardware evolution experiments the task of routing and

distributing signals on a given substrate is much more difficult than solving the computa-

tional task itself. This also hints that RISA’s FPGA substrate’s routing scheme, although

simple, is not highly evolvable.

Ph.D. Thesis 73 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

3.5.3 Decomposing Outputs

Many researchers have encountered the problem that the evolution of electronic cir-

cuits becomes exponentially more difficult when problems with an increasing number

of outputs are tackled. Although this is an issue in both intrinsic and extrinsic evolution

experiments, overcoming this problem in intrinsic evolution of circuits is particularly

challenging. This is due to the highly constrained and limited logic and routing resources

in a reconfigurable hardware architecture. Various approaches have been presented in

the extrinsic evolution of circuits to solve the multiple output problem: partitioning the

task with respect to the input or output space, incremental evolution of sub-tasks. In most

cases the proposed methods are not applicable for intrinsic evolution of circuits, however

there is still room for some of the techniques that emerged for extrinsic evolution to be

used in speeding up the intrinsic evolution of circuits.

Evolving electronic circuits gets exponentially more difficult as the number of inputs

and outputs of the circuit being evolved increases [Stomeo et al., 2005; Vassilev and

Miller, 2000b; Yao and Higuchi, 1999]. There are numerous approaches in extrinsic EHW

where automatic decomposition is used; there are examples where Automatically De-

fined Function (ADF) [Koza, 1994] and module acquisition [Walker and Miller, 2006]

are automatically achieved in Genetic Programming (GP). There are some examples of

Embedded Cartesian Genetic Programming (ECGP) where multiple chromosomes are

utilised to divide the given task with respect to its outputs; each chromosome thereby

represents an independent Cartesian Genetic Programming (CGP), which is required to

solve the task for only one of the outputs [Walker and Miller, 2006]. Approaches where

complex tasks are automatically partitioned by evolving modules that satisfy subsets of

the demanded functionality can be found in [Hong and Cho, 2003; Kalganova, 2000a;

Stomeo et al., 2006; Torresen, 2003]. In the case of [Kalganova, 2000a] the obtained mod-

ules are merged and optimised in terms of redundancy in a second stage (incremental

evolution) of the EA.

Decomposing the outputs of a circuit to form separate sub-circuits for quicker evolution

can also be achieved in hardware. This is easily achieved by using distinct circuitry for

each output of the target circuit, and applying all the inputs to all these sub-circuits. This

can be conveniently achieved on a RISA chip for up-to four partitions.

Ph.D. Thesis 74 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

(a) (b)

Figure 3.6: To partition the problem outputs, the four directional function units of each cluster
are constrained to direct the flow of the circuit, and then all inputs are applied from all four
directions using the ports A of the I/O blocks. The individual outputs are then retrieved from a
dedicated direction of the chip (using ports B of the I/O blocks). See Appendix B for a discussion
and schematics of the cluster and IO routing scheme in RISA.

Due to the four-fold architecture of the RISA chip, the four directional function units in

each cluster are used as independent logic blocks. In principle, the routing configuration

options allow the interconnection of four function units within each cluster. However

in this case the architecture is constrained in a way that the four function units are kept

separate and can only connect to the function units of the same kind of the neighbouring

clusters.

The aim is to use the four separate blocks of circuitry obtained in RISA to evolve a

multiple output circuit by partitioning it with respect to its outputs. Inputs are applied to

all four circuits obtained, and each circuit is expected to evolve one of the outputs, rather

than all of them, see Figure 3.6.

3.5.3.1 Experiments

Various experiments are carried out in order to determine how evolving circuits with

multiple outputs in hardware is related to the amount of resources allocated to evolution.

The problems examined in the experiments are, 4-bit even parity, 2-bit full adder, and 2-

bit multiplier. Results are shown in Table 3.7.

Ph.D. Thesis 75 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

Table 3.7: Results obtained from 20 independent runs for 4-bit parity, 2-bit full adder and 2-
bit multiplier. All experiments are carried out with two different setups, namely classic and
parallelised. Classic case is where a single circuit is evolved with all the required outputs.
Parallelised case is where the target circuit is partitioned into a number of circuits with each
circuit providing only one of the outputs. Different series of experiments are performed with an
increasing number of outputs in order to illustrate the increasing level of difficulty of the respective
task. For instance for the runs where the task is to evolve a multiplier with only one output, three
of its outputs were not considered in the fitness function.

Logic circuit Hardware setup Outputs Successes Avg. no. generations

4-bit parity classic 1 20 126±123

2-bit full adder

classic

1 19 1214±1709

2 8 5156±2086

3 3 3536±1534

parallel
2 20 4903±2816

3 20 6491.5±3115.3

2-bit multiplier

classic

1 20 140±86

2 19 2578±1595

3 16 3892±3133

4 10 5420±2999

parallel
2 20 1991±1895

3 20 2672±1756

4 19 3266±2126

In order to investigate the effects of multiple outputs on the performance of evolution

experiments are carried out where only a single output of a multiple output circuit is

evolved. Subsequently, the number of outputs is increased in a series of experiments

until all outputs of the desired circuit are included in the experiment. Not surprisingly,

the evolutionary performance degrades in the ”classic” case as the number of outputs

expected to be evolved are increased, see Table 3.7. Partitioning the RISA chip in order

to provide 4 different circuits to evolve, keeps the evolutionary performance stable when

the number of outputs is increased.

It is observed that the ”parallelised” configuration provided a major improvement and in

almost all cases yielded a success rate of 100%, see Table 3.7. By partitioning the outputs

of a target circuit and evolving a separate circuit for each of its outputs had dramatically

reduced the evolutionary load and increased the evolvability of the problem.

Ph.D. Thesis 76 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

3.5.4 Input Pattern Order Problem

It was shown in Section 3.4.2 that the design of the input pattern plays an important role

in intrinsic EHW. The results show that randomising the input pattern during the course

of evolution is mandatory in order to achieve valid circuits that work correctly under all

conditions.

Input pattern ordering can also be used to enhance the evolutionary performance when

evolving circuits with multiple outputs. Input pattern ordering can be designed intelli-

gently with consideration of the problem at hand in order to balance the distribution of

the output values of the target circuit. The aim is to equalise the emphasis on the type of

outputs that occur by using weighted input vectors.

One of the most important steps in evolutionary experiments is the evaluation process:

candidate solutions are tested and rated by a fitness value, which determines how suc-

cessful they are in solving a given task. It is the evaluation process that provides the

foundation for the selection process, and thereby greatly contributes to guiding evolu-

tionary search through the solution space in order to construct the desired circuits. It

was shown earlier that a fitness function, which is more suited for the particular prob-

lem and evolutionary platform at hand had a considerably more positive impact on the

performance of evolution in designing the desired circuit. The importance of different

selection schemes, being the second major driving force in EAs, have also been addressed

by various researchers before [Deb, 2001; Xie et al., 2006]. Although evolution is guided to

the same extent by both the fitness function and the selection process, the limiting factors

for these processes often emerge from the information available from the evaluation

stage: the inputs applied and the outputs measured during the testing process determine

the shape and size of the design space evolution can sample.

Therefore, it is important that the evaluation process extracts as much and as accurate

information as possible in order to provide precise and useful information to the selection

process. In the evolution of circuits in hardware, the main (and most of the time the only)

available inputs to the evolved systems are the inputs from the truth table that define

the problem at hand. The number of times and the pattern of the inputs applied can

therefore be used to shape the search space sampled by the EA. In fact the input pattern

Ph.D. Thesis 77 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

ordering can be used to tackle various important challenges in EHW: avoiding local

optima, achieving fully functional solutions and improving the performance of evolution.

3.5.5 Getting Stuck in Local Optima

The most likely reasons for getting stuck in local optima during the course of evolution-

ary search are:

1. Unsuitable fitness evaluation methods that are not capable of considering special

cases within certain problem domains, see Section 3.5.1.2.

2. Intermittent solutions that can mislead the search process and cause the EA to stall.

3. Rugged fitness landscapes that can mislead and impede the EA in finding the

optimal solution.

The shape of the fitness landscape is determined by the assessment of the output values

and the genetic representation as well as the problem. As the given problem itself cannot

be changed, the fitness evaluation method and the genetic representation remain to be

optimised.

As mentioned before, including randomness in the input pattern order and using suitable

fitness functions can alleviate the first two reasons for getting trapped in local optima. To

a certain extent, randomising the input can also indirectly help in the case of rugged

fitness landscapes (third reason). This is due to the fact that evolution is less likely to

converge onto local optima that are only stable when a certain input pattern order is

applied. This issue can further be tackled by using a well planned input pattern ordering

during evolution that can balance the emphasis on the possible output values of the target

circuit.

Unbalanced output value distribution of a problem description can create a rugged fit-

ness landscape for the evolutionary design. An example of such a problem is a 2-bit

multiplier, explained in Table 3.8. An example of a problem that inherently features

balanced output distribution is a parity circuit where there are even numbers of 1s and 0s

as outputs, see Table 3.8. Thus, the frequency at which the outputs occur is not in favour

of a particular value of output.

Ph.D. Thesis 78 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

Table 3.8: Truth table for a 2-bit multiplier and a 4-bit Parity. For the multiplier, the number
of input combinations that return an output of 0 are the most common, where the outputs 1,
4, 9 occur for only one input combination. When a 2 bit multiplier is evolved by testing the
circuits using all input combinations the same number of times in every evaluation step, more
emphasis is given in obtaining outputs that equal 0 than any other, and little emphasis is given in
obtaining the correct outputs for the cases where the outputs are 1, 4 and 9; even though achieving
the correct result for any input combination should be equally important for a fully functioning
circuit. Unlike the multiplier, the parity problem has even number of input combinations that
return the outputs 1 and 0. Thus there is equal emphasis in achieving either of the output values,
and the search process is not biased to satisfy some outputs earlier (more likely) than others.

A0 A1 B0 B1 Parity Multiplier
0 0 0 0 0 0000 = 0
0 0 0 1 1 0000 = 0
0 0 1 0 1 0000 = 0
0 0 1 1 0 0000 = 0
0 1 0 0 1 0000 = 0
0 1 0 1 0 0001 = 1
0 1 1 0 0 0010 = 2
0 1 1 1 1 0011 = 3
1 0 0 0 1 0000 = 0
1 0 0 1 0 0010 = 2
1 0 1 0 0 0100 = 4
1 0 1 1 1 0110 = 6
1 1 0 0 0 0000 = 0
1 1 0 1 1 0011 = 3
1 1 1 0 1 0110 = 6
1 1 1 1 0 1001 = 9

In the case of a problem with unbalanced outputs, evaluating the circuit using the input

pattern order unaltered from the truth table will create an uneven search space; with local

optima around the outputs with high number of occurrences. Especially when done

intrinsically in hardware, due to many limiting properties of hardware substrates like

routing and fixed I/O locations, evolution can easily get stuck at these local optima thus

failing to successfully evolve the desired circuit.

Balancing of the outputs can be achieved by assigning a weight to each output combi-

nation, which corresponds to the number of times it appears in the truth table; the more

often it appears the greater is the weight. Using these weights the input pattern applied

during the evaluation process can be shaped in a way that combinations of inputs that

produce less frequently occurring outputs (outputs with smaller weights) are repeated

Ph.D. Thesis 79 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

Figure 3.7: An example process determining the weights and repetition parameters for the inputs
and outputs for the 2-bit multiplier problem is demonstrated. Note that multiples of RTOT are
ideal input pattern sizes that need to be applied to achieve a perfectly balanced output pattern.
The greater the weight (W) of an output value, the more biased evolution will be towards that
output if output balancing input patterns are not used.

more often. Thus, balancing the number of occurrence of each output combination is

achieved.

An example of how the weights are determined in the case of the 2-bit multiplier is shown

in Figure 3.7. In order to obtain the desired input pattern that yields balanced outputs,

the weights can be used to obtain the number of repetitions for each input combination.

Note that the number of input samples is set to 128 for the experiments in this subsection.

Although for circuits like the full adder, a much larger number of input samples would

be required to obtain a perfectly balancing input pattern, 128 is used due to memory

limitations in the hardware system. This means that also for the multiplier example

where a sample size of multiples of only 88 are required to represent a perfectly balancing

input pattern, the number of samples used is set to 128 for simplicity purposes. As a

consequence, in the experiments presented where balancing input patterns are used, the

balancing of the outputs are actually not perfectly achieved. The corresponding number

of occurrences of each output in the unbalanced and the balanced case respectively are

shown in Figure 3.8.

Ph.D. Thesis 80 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

0 2 4 6 8 10 12 14 16
Input value

0

10

20

30

40

50

60

70

Fr
e
q
u
e
n
cy

 o
f

o
cc

u
rr

e
n
ce

Multiplier unbalanced

0 2 4 6 8 10 12 14 16
Output value

0

10

20

30

40

50

60

70

Fr
e
q
u
e
n
cy

 o
f

o
cc

u
rr

e
n
ce

0 2 4 6 8 10 12 14 16
Input value

0

10

20

30

40

50

60

70
Multiplier balanced

0 2 4 6 8 10 12 14 16
Output value

0

10

20

30

40

50

60

70

(a)

0 2 4 6 8 10 12 14 16
Input value

0

10

20

30

40

50

60

70

80

Fr
e
q
u
e
n
cy

 o
f

o
cc

u
rr

e
n
ce

Parity unbalanced

0 2 4 6 8 10 12 14 16
Output value

0

10

20

30

40

50

60

70

80

Fr
e
q
u
e
n
cy

 o
f

o
cc

u
rr

e
n
ce

0 2 4 6 8 10 12 14 16
Input value

0

10

20

30

40

50

60

70

80
Parity balanced

0 2 4 6 8 10 12 14 16
Output value

0

10

20

30

40

50

60

70

80

(b)

0 5 10 15 20 25 30
Input value

0

5

10

15

20

25

30

35

40

Fr
e
q
u
e
n
cy

 o
f

o
cc

u
rr

e
n
ce

Full Adder unbalanced

0 5 10 15 20 25 30
Output value

0

5

10

15

20

25

30

35

40

Fr
e
q
u
e
n
cy

 o
f

o
cc

u
rr

e
n
ce

0 5 10 15 20 25 30
Input value

0

5

10

15

20

25

30

35

40
Full Adder balanced

0 5 10 15 20 25 30
Output value

0

5

10

15

20

25

30

35

40

(c)

0 2 4 6 8 10 12 14 16
Input value

0

20

40

60

80

100

120

140

Fr
e
q
u
e
n
cy

 o
f

o
cc

u
rr

e
n
ce

AND unbalanced

0 2 4 6 8 10 12 14 16
Output value

0

20

40

60

80

100

120

140
Fr

e
q
u
e
n
cy

 o
f

o
cc

u
rr

e
n
ce

0 2 4 6 8 10 12 14 16
Input value

0

20

40

60

80

100

120

140
AND balanced

0 2 4 6 8 10 12 14 16
Output value

0

20

40

60

80

100

120

140

(d)

Figure 3.8: The corresponding output occurrences are shown for the balanced and unbalanced
output patterns used in the experiments presented in this section for all the circuits. In the case of
the multiplier and the AND, it should be obvious that with unbalanced outputs, the output value
0 is favoured more than any other output, which would encourage evolution to prefer circuits
that mainly produce 0s for their outputs: a highly undesirable bias for intrinsic evolution where
a stuck at 0 could achieve a higher fitness score. On the other hand, for the parity circuit the
non-balancing and the balancing input pattern orders are identical.

Using an input pattern that yields balanced outputs during evolution to evaluate the

candidate circuits provides a smoother design space for the EA, since there is no longer

a bias towards solutions that only satisfy a more frequently sampled subset of the output

value range. Hence, reducing the number of local optima.

3.5.6 Experiments

Evolution of 2-bit multiplier, 2-bit adder, 4-bit parity, and 4-bit AND circuits is done

intrinsically and evolution of 2-bit multiplier also done extrinsically to demonstrate the

Ph.D. Thesis 81 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

effects of balancing input patterns on both evolution platforms. For extrinsic evolution

of circuits CGP is used.

The number of maximum evolutionary generations is increased to 15000 for the exper-

iments presented in this subsection. A total of 20 randomly initialised evolution runs

have been carried out for all hardware experiments and a total of 100 independent runs

are performed in the case of evolution in software. A constrained version of RISA chip

was used for these experiments, and the genotype for each cluster is reduced from 472

to 128 configuration bits. All of the clusters were used for the experiments presented in

this subsection, resulting in a total genome size of 36× 128 = 4608 configuration bits to

configure the RISA FPGA.

The experiments that are undertaken to investigate the effectiveness of the balancing

input pattern order are presented in Table 3.9. A variety of problems are tackled in the

case of intrinsic evolution: 4-bit AND, 4-bit parity, 2-bit full adder and 2-bit multiplier. It

can be seen from Table 3.9 that solutions to 4-bit parity and 4-bit AND are found quickly

in the evolution runs. This is due to the fact that both problems are relatively simple

circuits with only one output. However, the results show that even though evolution

reliably finds solutions for simple problems like a 4-bit AND, a speed-up of factor two

can still be observed when output balancing input patterns are used. The 4-bit parity is

included as an example where the output value distribution is already balanced.

The intrinsic evolution of 2-bit full adders and 2-bit multipliers are unfortunately non-

trivial tasks. As can be seen from the graphs in Figure 3.8, these functions feature not

only multiple outputs but also a greatly unbalanced output value distribution. Thus,

it is not surprising that the success rate of evolution is low in the cases where output

balancing is not applied; for the 2-bit full adder only two and for the 2-bit multiplier only

three out of twenty runs are successful. However, it can be observed that the success rate

was increased by a factor of four for the 2-bit full adder, and a factor of three for the 2-bit

multiplier in the runs where the balanced outputs method is applied.

In order to investigate whether the benefit that comes with balancing the output value

distribution is restricted to intrinsic circuit evolution or it is also advantageous in the

extrinsic case, additional experiments are carried out for the 2-bit multiplier in CGP.

Since CGP is fairly quick in evolving 2-bit multipliers, compared to an embedded system,

Ph.D. Thesis 82 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

Table 3.9: Results with the unbalanced and balanced output patterns for 4-bit parity, 4-bit AND,
2-bit full adder, and 2-bit multiplier. The term Unbalanced output pattern refers to using each
entry of the truth table inputs once when evaluating the circuits during evolution. The last results
for the 2-bit multiplier presented in the table are the results obtained from software runs using
CGP with balanced and unbalanced output patterns. In the case of the intrinsic experiments, it
has been observed that using output balancing input patterns results in a real time speed up of
20-25%, in addition to the increase in the success rates.

Problem Input Successful Avg. Gens for Avg. Fit. for

Pattern Runs Successful Runs Unsuccessful Runs

4-bit parity N/A 20 162±123 N/A

4-bit AND unbalanced 20 23±23 N/A

4-bit AND balanced 20 12±8 N/A

2-bit adder unbalanced 2 N/A 13.33±7.77

2-bit adder balanced 8 N/A 9.50±5.02

2-bit multiplier unbalanced 3 N/A 29.35±33.66

2-bit multiplier balanced 10 N/A 7.50±6.26

2-bit mult.-CGP unbalanced 100 4792±7157 N/A

2-bit mult.-CGP balanced 100 3776±5257 N/A

it was feasible to perform 100 evolution runs. Although the benefit is not as significant

in software as it is in hardware, a speed-up in the region of 20% can also be observed for

extrinsic evolution experiments. The fact that extrinsic results are not as much affected

by the unbalanced output distributions, i.e. the hardware substrate is not as capable of

dealing with unbalanced outputs as CGP, suggests that the presented approach might be

particularly useful in cases where representations with fixed or predefined topologies are

imposed. Fixed topologies lack certain abilities of neutral search; altering the connections

of the designs being evolved freely, which is part of effective neutral search, is not possi-

ble in fixed topologies. Thus, balancing the output could be both a means for assessing a

hardware substrate’s evolvability and a tool to improve the neutral search capabilities of

a given substrate.

3.6 Circuits Evolved on RISA

Throughout this chapter various mechanisms have been introduced to aid the intrinsic

evolution of digital circuits, which were demonstrated with experiments on the RISA

Ph.D. Thesis 83 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

platform. RISA provides a configurable digital logic platform, which is specifically de-

signed for the intrinsic evolution of digital circuits. RISA allows unconstrained evolution

at bit-string level.

The successfully evolved circuits on the RISA platform are; 4-bit parity, 2-bit multiplier,

2-bit full adder, 4-bit AND, XOR, and tone discriminator circuits. Although these circuits

have only been evolved to demonstrate the use and power of the suggested mechanisms

for successful and reliable evolution of circuits, they were still challenging and time

consuming to evolve on RISA. Evolution of all these aforementioned combinational

circuits in simulation is quicker, and there is more room for scalability since the simu-

lation substrate is not constrained by the available routing or number IOs. On the other

hand, direct evolution of combinational circuits that are more complicated than a 3-bit

multiplier becomes a merely impossible task even in simulation. Hence the achievable

complexity of circuits in simulation (by using the similar techniques used here) when

compared to RISA is not much higher. On top of this, evolution of sequential circuits in

RISA is highly favoured and the results demonstrated with the tone discriminator and

sequential 4-bit parity circuits were promising. In Appendix A an example analysis of

two of the tone discriminator circuits evolved are shown, and the use of the underlying

substrate by evolution is discussed. In the result presented, an important observation

is made about the behaviour of evolution: evolution always explores every available

resource during its search for the target design.

Most of the time evolving the circuits shown in the previous sections of this chapter

had already been quite a challenge, and apart from the scalability issues of genotype–

phenotype mapping, there exist several other limiting factors for evolution of circuits

in RISA. The insufficient number and programmability of IOs, and limited routing re-

sources are the main bottlenecks of the RISA platform. For a brief description and analy-

sis of some these resources on RISA see Appendix B.

3.7 Summary

Evolving digital circuits in hardware is challenging. Evolution, as a stochastic algorithm,

accepts all the information that is supplied by the fitness function and the evolutionary

Ph.D. Thesis 84 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

environment in its entirety, and exploits every bit of available resource to meet the bare

minimum of the requirements. This can create problems both in software and hardware

evolution of circuits and systems, however, the unpredictable behaviour of evolutionary

design becomes more abundant when used in hardware. A configurable hardware sub-

strate like RISA contains components and factors (e.g. delays) that may be unaccounted

for, and these may create a complex environment for evolution. In such cases, it is not an

easy task to define fitness functions and selection mechanisms in order to guide evolution

flawlessly in the search of a design.

In this chapter, a series of methods have been introduced and shown to greatly improve

the success of evolution in designing valid digital circuits in hardware. In Section 3.4,

the importance of input pattern ordering along with accurate output sampling rate and

testing of circuits at different parts of a hardware substrate were emphasised in order to

evolve valid circuits in hardware. It was shown that randomising the input pattern order

is especially crucial to achieving valid circuits during evolutionary design.

In Section 3.5, ways of improving the performance of intrinsic hardware evolution were

discussed. Once more, the importance of input pattern ordering was emphasised for

intrinsic hardware evolution. It was shown that randomising the input pattern helps to

keep evolution away from local optima. It was also shown that the input pattern could

be shaped in order to balance the emphasis of every possible output value within the

fitness landscape, and this considerably increased the success rate and the performance of

evolutionary design of many circuits. The shortcomings of a simple bitwise comparison

as a fitness function is discussed and demonstrated by its failure to distinguish a range of

results, thus creating ambiguities. Bitwise comparison as a fitness function is especially

ineffective in a hardware platform where transient effects are present. A range of fitness

functions are introduced to address this issue, together with a discussion that highlighted

the importance of using fitness functions that emphasise the target problem (e.g. HIFF

fitness function for parity circuits). Using the correct fitness function is always important

when using evolution to design circuits and systems, and it becomes more important as

the evolution substrate becomes more intricate (i.e. moving from extrinsic to intrinsic

evolution). It is later on shown in Section 3.5.1.2 that the best performing fitness function

(HBS) can not perform well in the evolution of a tone discriminator. This demonstrates

that each problem requires a well defined fitness function, where expert knowledge and

Ph.D. Thesis 85 Tüze Kuyucu

Chapter 3 - Evolving Circuits in Hardware

attention will be rewarding. Unfortunately there is no magic fitness function that can

do all, and generic fitness functions like bitwise fitness can easily fail to guide evolution

appropriately as demonstrated in Section 3.5.

Furthermore, two ways of speeding up intrinsic evolutionary design were suggested

and demonstrated for their effectiveness: applying the inputs at more than one location

during evolution, and decomposing the outputs to be evolved as separate circuits. It

was shown that for sequential circuits (tone discriminator in the example provided),

applying the inputs at more than one location really improved the evolutionary success

in designing the correct circuit. This is due to the limited and inflexible routing present

in a reconfigurable hardware platform. Also, a simple way of decomposing the circuit

outputs for a quicker evolution of multiple output circuits was presented. It was demon-

strated by experiments that using this decomposition method the evolution of more

complex circuits was made possible, as well as achieving a speed up in the evolutionary

performance.

All the mechanisms that have been developed thus far helps evolution to achieve cir-

cuit designs on hardware that are comparable to circuit designs achievable via extrinsic

evolution, and this is done without imposing many constraints on the hardware archi-

tecture. Thus with the techniques presented in this chapter, the benefit of innovative

evolutionary design is still available, e.g. see Appendix A. Now that the evolutionary

properties of RISA are explored and an acceptable evolutionary performance for the

design of circuits on RISA is achieved by laying out the essential techniques; evolution

of higher complexity systems on the RISA platform can be the next step. As discussed

in Section 2.6, scalability and evolvability are serious setbacks in achieving complex

problems via evolutionary design. Therefore, it is necessary to study and develop a

technique that can provide a scalable approach to the evolution of systems.

Ph.D. Thesis 86 Tüze Kuyucu

Chapter 4

Development

“The development of multicellular organisms from a single cell–the fertilized egg–is a

brilliant triumph of evolution” notes Wolpert in his book, Principles of Development

[Wolpert et al., 2002]. The structure of a single cell may arguably be the most complex part

of any organism, but a unicellular organism is vastly limited in the tasks it can achieve

and is vulnerable to environmental threats. A multicellular organism is capable of multi-

tasking using division of labour amongst the cells, and it is able to protect itself from

environmental threats better than a unicellular organism would, since the loss of a cell

or few cells does not necessarily harm the organism. Although multicellularity could

have arisen through cell division failure or chance mutation in the evolutionary history

of organisms, multicellularity is a key approach harnessed by biology to create complex

and intelligent organisms capable of executing sophisticated behaviours and surviving

harsh and changing environmental conditions [Bonner, 1998]. Multicellular organisms

are a product of a process called development that builds these organisms from a single

cell. Wolpert defines development as “The process of gene activity that directs a sequence

of cellular events in an organism which brings about the profound changes that occur to

the organism” [Wolpert et al., 2002]. In other words, when simply put, development is

the step where all the genetic information gathered over the evolutionary history of an

organism is put to use to create an adult organism from a single cell. However, develop-

ment is also a mechanism that maintains the stability and functionality of an organism

throughout its lifetime, and not merely the genotype-phenotype encoding mechanism of

biology for creating complex multicellular organisms. Thanks to multicellular develop-

87

Chapter 4 - Development

ment an organism is capable of surviving damage and loss of its physical parts, which

otherwise would be lethal to the organism. This is illustrated in Figure 4.1.

The aim of this chapter is to present an introduction to the use of development in Evo-

lutionary Computation (EC). A simple and brief overview of biological development

with an emphasis on the inspirational and relevant aspects of development to EC is

provided in Section 4.1. This is followed by Section 4.2, which explains and highlights

the potential benefits of modelling biological development in EC. Section 4.3 provides

a brief introduction to the existing models of artificial development, and introduces a

new classification scheme to categorizing the artificial models of development. This new

classification scheme distinguishes the artificial models of development in two clear and

well defined categories. Finally, the chapter is summarized in the final section.

4.1 Biological Development

Development of a single cell into an adult organism is a marvellous but poorly under-

stood process. As mentioned earlier, biological development is more than just the trans-

formation of a single cell into an adult organism, but it is an ongoing process of build-

ing and maintaining a functional organism via the use of genetic information gathered

over the evolutionary history of the organism. In biology, an organism–a living system

capable of responding to outside stimuli, reproduction and homoeostasis–is formed of

single or multiple cells. Hence, a cell is the most basic unit of a biological organism. All

cells have some form of encapsulating structure, such as a cell wall or a cytoskeleton that

holds the cell together and protects it from outside threats. Inside a cell is the cytoplasm, a

medium where most of the cellular activities occur, and where the cell DeoxyriboNucleic

Acid (DNA)–the genetic information or the genome–is kept.

Organisms that are multicellular, with the exclusion of colonies of cells, all have nuclei

within the cytoplasm of their cells, which encapsulate the DNA of the cell. A nucleus

is the control center, the kernel, of a biological cell. The nucleus, in cells where it is

present, controls the activities of its cell via processing the DNA. The processing of the

DNA creates a regulatory network among the genes of the DNA, where the interactions

amongst these genes determine the development and faith of the cell.

Ph.D. Thesis 88 Tüze Kuyucu

Chapter 4 - Development

Zygote Cell Division Growth &
Cell Division

Cell Specialization &
Organ Formation

An Adult Organism
A Damaged

Adult Organism
Recovery &
Adaptation

Recovered & Adapted
Organism

Obstruction

Figure 4.1: A simplified depiction of development of a multicellular organism. A hypothetical
organism’s, shaped like a 4-pointed star, development is shown from a single celled stage; through
the cell division and specialisation and up to the growth and formation of the adult organism.
Then, an example of recovery and adaptation scenario for the organism is depicted via the last
3 frames. Although this figure simplifies the process of development, it depicts the high-level
behaviour of development and the key mechanisms of development that make it attractive to the
field of EC.

Multiple or single celled, every organism has a functional GRN that can respond to the

environment. In a multicellular organism all the cells have an identical genotype, but

various cells appear different; this is due to different genes being expressed in different

cell types. Genes interact with one another via proteins that control the activation of

genes, and proteins are produced by active genes. This creates a self regulatory network

of genes, which are also affected by proteins that may be produced due to a reaction to an

environmental change or proteins that come from other cells. Proteins can cause a range

of reactions in a cell that can directly or indirectly determine the cell behaviour. Figure 4.2

provides a simple diagram describing how a GRN works.

Figure 4.3 summarizes the process of protein synthesis, which is the process that takes

place when a gene is activated. Biological protein synthesis involves the process of a pro-

tein transcribing a gene (binding the promoter sequence to activate the gene), where the

Ph.D. Thesis 89 Tüze Kuyucu

Chapter 4 - Development

Output
Protein

DNADNA

Transcription

Target geneTarget gene

Cell
functions

External Inputs

Regulatory feedback

DNA sequence
regulatory elements
Binding Sites

Proteins from
 Neighbouring Cells

Figure 4.2: A gene is activated by the correct matching of proteins that favour the transcription
of the gene. The gene is transcribed when it becomes active producing a protein that may affect
various functions of the cell it is produced in. Furthermore, the produced protein has the ability
to bind genes within the cell to enhance or inhibit their activity or diffuse outside the cell to enter
another cell. The resulting interactions of genes and proteins form a network of genes (GRN)
creating a dynamical network. Hence, a gene’s transcription is affected by the preconditional
coding of the gene, activity of other genes, activity of genes in other cells, and environmental
changes that may cause the production of further proteins.

genetic information (postconditional region) is copied into a mRNA (messenger RNA1).

This is followed by the mRNA strand moving out of the nucleus of a cell to meet a

complimentary tRNA (transfer RNA). Each tRNA molecule compliments the opposing

bases on the mRNA strand perfectly. These in turn have the amino acid sequence to

successfully code for a particular amino acid which forms a protein. Hence the amino

acids (aka peptides) from the tRNA and mRNA combine to form a polypeptide chain

(proteins), and can be used in a variety of structures such as enzymes and hormones to

carry out cell functions. Although protein synthesis in biology covers a series of complex

processes, simply put it is the phase of building proteins. For an in depth description and

discussion about GRNs, see [Davidson, 2006].

The interactions of genes that determine the profound changes to and the actions of an

organism are the drive of biological development. Some cells have the ability to grow,

multiply, differentiate and spatially organize themselves in order to form a multicellular

organism. In a multicellular organism, various types of cells emerge, where similar types

work together to achieve specific tasks and different types carry out separate tasks. Once

1A nucleotide chain that is transcribed from and similar to DNA, but has small structural differences.

Ph.D. Thesis 90 Tüze Kuyucu

Chapter 4 - Development

A

A

C U

A

C
U

UUG
G

UG
G

tRNA

Transcription

Transport to cytoplasm
for translation

Translation

Protein

mRNA

DNA

mRNA

Nucleus

Cytoplasm

Figure 4.3: A simple overview of protein synthesis in biological cells. In a cell, the DNA within
the nucleus is transcribed into an RNA. The RNA may then move out of the nucleus into the
cytoplasm of the cell in order to be translated to a protein. The produced protein is then used for
controlling the cellular activities.

specialized, two different types of cells are functionally different. However, all the cells

(same or different type) still carry an identical genotype. Figure 4.4 illustrates the early

development of a human embryo from a single cell. In this process a single cell is able

to achieve a multicellular organism with distinct parts (organs) by cell division, growth,

differentiation and morphogenesis2.

Developing into multicellular organisms allows the emergence of robust creatures that

benefit from scalable designs, which can carry out larger number of higher complexity

tasks than a single celled organism, and tolerate larger number of environmental threats

since the death of a few cells does not necessarily mean the death of the multicellular

organism.

2Morphogenesis is the reorganization of cells in the development of a multicellular organism.

Ph.D. Thesis 91 Tüze Kuyucu

Chapter 4 - Development

Figure 4.4: The initial stages of human embryogenesis. This image is used with permission; it has
been published in http://en.wikipedia.org/wiki/Developmental biology, dated 31 May 2010.

Multicellular biological organisms have been a topic of interest in the computer science

and engineering fields as inspiration of models of intelligent systems. Their ability to be

robust, adaptive, and scalable while they develop, make them interesting in computa-

tional intelligence as these properties are difficult to design using traditional approaches

of computation or engineering. Biological organisms can grow from a single cell into

a multicellular organism using the same genotype for all cells. These cells can then

specialize to form different parts of an organism. Although the process of development

in biology is clearly defined, its definition in EC can be different depending on the au-

thor [Chavoya, 2009; Devert et al., 2007; Eggenberger, 1997; Flann et al., 2005; Harding

et al., 2007; Kumar and Bentley, 2003a; Miller, 2004; Stanley, 2007; Tufte, 2009]. While

some artificial algorithms try to closely model the biological development, others are

simply inspired by a mechanism of biological development. In the latter cases, artificial

development is defined by the source of its main inspiration and the task it is used

for. Roggen’s diffusion based developmental model [Roggen, 2005], the self modifying

Ph.D. Thesis 92 Tüze Kuyucu

Chapter 4 - Development

cartesian genetic programming by Harding et al. [Harding et al., 2007], and Stanley’s

pattern producing networks [Stanley, 2007] are examples of systems that use simple

inspirations from few biological developmental mechanisms. Although most commonly

referred to as artificial development, its name can also take many other forms; com-

putational embryology, artificial embryology, artificial embryogeny, artificial ontogeny,

computational development [Chavoya, 2009], and embryonics [Tempesti et al., 1999]. In

the remainder of this thesis artificial development will be used to refer to a digital system

that models the biological developmental process for the uses of understanding biology

and/or aiding EC. Going back to Wolpert’s definition of biological development [Wolpert

et al., 2002], development will be used to refer to the formation and maintenance of

multicellularity in an organism. After a review of the benefits of multicellularity in EC,

already existing models of artificial development will be discussed further.

4.2 Benefits of Multicellular Development to EC

A multicellular design approach in EC benefiting from the decentralized organizational

mechanism achieved in biological organisms could bring about scalability, fault tolerance

and adaptivity to systems. These three possible benefits are discussed in further detail in

this section.

4.2.1 Scalability

In Chapter 2, scalability and how it is lacking in EC, but is essential for evolving large

complex designs was discussed. Use of modularity in evolutionary design was shown

and suggested by many to speed up evolution and evolve higher complexity designs

[Banzhaf et al., 2006; Haddow and Tufte, 2001; Kalganova, 2000a; Koza, 1994; Murakawa

et al., 1996; Torresen, 1998; Vassilev and Miller, 2000b; Walker and Miller, 2004]. However,

an explicitly defined mechanism that incorporates modularity into evolution can still

not solve the scalability problem. A major limiting factor to achieving scalability is the

direct genotype–phenotype mapping. A direct genotype–phenotype encoding causes the

genotype to grow in proportion to the phenotype. This creates a large search space as the

target system gets more complex, constricting evolution to small designs. [Banzhaf et al.,

Ph.D. Thesis 93 Tüze Kuyucu

Chapter 4 - Development

2006; Bentley and Kumar, 1999; Gordon, 2005; Haddow et al., 2001; Miller and Thomson,

2003; Roggen, 2005; Vassilev and Miller, 2000b].

In nature, biological organisms achieve phenotypes specified by genes that are orders of

magnitude smaller. An example of this is the human genome, which comprises approx-

imately 30,000 genes, yet a human brain has roughly 1011 neurons [Braitenberg, 2001;

Claverie, 2001]. It is noteworthy that the number of distinct cell types in human body

is only 256, and this number is as low as 13–15 for the hydra, which is a predatory

animal with regenerative ability [Kauffman, 1996]. The extremely complex structural

and behavioural architecture of biological organisms is not through intelligent design,

but emerges from the heavy reuse of cells and genes. Biology achieves a highly scalable

mapping via multicellularity and gene reuse; each cell has the same copy of genotype,

and each gene in a given genotype may have different effects depending on when and

where they are expressed. Also, the same set of genes are used over and over again in

building phenotypic structures of similar characteristics, e.g. limbs in animals. Taking

inspiration from biology, the idea of multicellularity in achieving complex systems in EC

has been implemented by many researchers. Although the ability of artificial develop-

ment to be scalable has been demonstrated by simple experiments [Bentley and Kumar,

1999; Eggenberger, 1997; Gordon, 2005; Roggen, 2005], successful use of development

in the design of systems at desired complexities that tackle real world problems–the

solutions of which are competitive with already existing designs in engineering–is yet

to be achieved.

4.2.2 Fault Tolerance

Biological organisms are robust creatures that can achieve very high level of fault toler-

ance. The hydra is an excellent example to organisms that display regenerative proper-

ties: it has the ability to regenerate even when cut in half, producing two hydrae [Bode,

2003]. The regenerative ability of plants is also an excellent example of fault tolerance

and recovery in biological organisms. Plant cells are classified as totipotent3, hence

under the right conditions any plant cell would theoretically be able to grow into an

adult plant [Leyser and Day, 2003]. One of the main reasons for the type of repair

3The ability of a cell to grow and generate all the specialized parts of an organism

Ph.D. Thesis 94 Tüze Kuyucu

Chapter 4 - Development

and regeneration that happens in biological organisms is the lack of a central control

mechanism. The ability of multiple cells to coordinate and organize themselves using

various communication mechanisms provide an emergent adaptivity and fault tolerance

in the whole organism.

Fault tolerant systems in electronics and computer science are important for remote,

safety critical and hazardous applications. Almost all of the widely used techniques in

achieving fault tolerance in electronics require a central control mechanism or a “golden”

memory which is assumed to be failure-proof [Lala, 2001]. A de-centralized multicellular

architecture can provide the system designed with redundancy, allowing the destruction

of a number of cells before failure. In a multicellular design all cells are essentially iden-

tical to one another, hence a cell has the potential to change specialization and replace a

damaged cell in order to recover from faults. This inherent multiple redundant behaviour

in development can be used to create a system free of a single point of failure if each

cellular structure is represented by an independent piece of hardware; hence removing

the weakest link present in traditional redundancy designs.

In addition to cell redundancy, biological organisms also have functional redundancy in

their genetic code. In biology this functional redundancy arising from different genetic

codes is referred to as degeneracy. Edelman and Gally [Edelman and Gally, 2001] define

degeneracy as “the ability of elements that are structurally different to perform the same

function or yield the same output”, and they also note that degeneracy “is a well known

characteristic of the genetic code and immune systems.” Edelman and Gally emphasize

that degeneracy is a key mechanism for the robustness of complex mechanisms and

that it is almost directly related with complexity. In biological organisms degeneracy

is present at almost every functional level; from genes to high level behaviours like body

movements and social behaviours [Edelman and Gally, 2001].

A developmental model can provide degeneracy both at the genotypic and phenotypic

levels. Due to the indirect mapping of genes to the target phenotype, a developmental

system can have multiple genes that perform the same function. Depending on their

location in the organism each cell would have a different gene activity, but some of these

cells would still have the same phenotypic functionality. Thus, degeneracy in devel-

opmental systems is a powerful fault tolerance mechanism, as it provides robustness

Ph.D. Thesis 95 Tüze Kuyucu

Chapter 4 - Development

to genetic perturbations. An example of gene redundancy in biology is the control of

platelet activation by collagen [Pearce et al., 2004].

Artificial development has been shown to provide a smoother degradation to perturbed

genetic code [Bentley, 2005]; when the genetic code of an artificial organism is altered

before mapping the genome to the respective phenotype, the damaged genome will

provide a phenotype that shows a more “graceful” degradation for a developmental

system in comparison to direct mapping of the genome. In fact in some cases it was

shown that a small number of gene knock-outs did not affect the overall result of gene

expression [Reil, 1999]. It has also been demonstrated that a developmental system

may be able to recover from transient changes in the phenotype, despite sometimes

not being explicitly trained to do so [Federici, 2004; Liu et al., 2005; Miller, 2004; Reil,

1999; Roggen, 2005]. However in order to benefit from the fault recovery properties

of development, the developmental mechanism needs to be continuously running even

when a fully functional phenotype is reached. In other words, the developmental system

needs to have reached an attractor4 that represents the desired phenotype. The ability

of a developmental system to keep its phenotype unchanged after it has reached the

target phenotypic form (i.e. represent the target phenotype as an attractor) is termed

stability. To achieve a target phenotype at an attractor state of a developmental system

(i.e. finding a stable system) is a harder task than simply achieving the target phenotype.

Unfortunately, solutions that are not stable (i.e. occur as transient states) are of no use for

fault tolerance or adaptivity.

4.2.3 Adaptivity

The adaptive behaviour of biological organisms is another attractive quality that is aimed

to be captured in EC. Designing systems that change their structure to adapt to their

environments is a very challenging task, especially when a lot of the environmental

factors can vary unpredictably. Multicellular organisms achieve adaptivity smoothly,

and they change their structures or behaviours to fit the given environment for maximum

survival chances. An example of adaptivity in biology is the way the morphology of a

plant depends on sunlight: if a plant “discovers” that there is an obstruction in the way

4An attractor is a state to which a dynamical system settles to after a time.

Ph.D. Thesis 96 Tüze Kuyucu

Chapter 4 - Development

(a) A tree facing a wall that obstructs the
sun. Only a very small portion of the tree
from the right can see the sun.

(b) The tree leans and grows rightwards in
order to receive more sunlight.

Figure 4.5: The tree depicted in subfigure (a) uses the information from its leaves to maximize the
received sunlight by changing its growth pattern as shown in subfigure (b).

that blocks the sun, the plant will grow in a way to maximise sunlight exposure, see

Figure 4.5.

It is intended that by modelling multicellular development an adaptive system will be

achieved. However as mentioned in Section 4.2.2, in order to achieve an adaptive system

the developmental system needs to be at a stable state when it achieves a functional

phenotype. Once a stable state is achieved, the developmental process can run con-

tinuously in the background and adapt to environmental changes. A developmental

system can have several attractors [Tufte, 2009]; in an ideal case a dramatic change in the

environment making the current configuration ineffective will cause the developmental

system move to another attractor that would suit the current environmental conditions

better.

Again, degeneracy in a developmental system can also allow the system to be more

adaptive, because of the existence of multiple implementations of the same function. For

example a change in an environmental condition may affect the activation of some genes

in a developmental system, however the functionality of the organism would still be

protected due to the existence of other genes that serve the same purpose as the affected

genes. Systems with high degree of degeneracy have been observed to be very adaptable

in biology as well, and favoured by natural selection [Edelman and Gally, 2001].

Ph.D. Thesis 97 Tüze Kuyucu

Chapter 4 - Development

4.3 Models of Artificial Development

In recent literature, developmental systems have sometimes been classified into two cate-

gories as Grammatical and Cell Chemistry developmental models [Chavoya, 2009; Federici,

2004; Flann et al., 2005; Stanley and Miikkulainen, 2003]. The reason for classifying

developmental models into Grammatical and Cell Chemistry is because the grammatical

models of development follow a high level abstraction of biology, whereas the models

that involve cell chemistry follow a low-level abstraction of biological development, and

these two models of development cover most of the artificial developmental models

present in the literature. However, there are developmental models that do not fit either

of these two classifications, e.g. in [Haddow and Hoye, 2007] the developmental system

is designed in a way to function without the use of cell chemistry but the developmental

model is far from a grammatical implementation. In order to make a similar but slightly

clearer distinction amongst the present developmental models, the developmental sys-

tems are categorized into two different classes.

4.3.1 Macro-model Developmental Systems

A macro-model developmental system models the biological development at a high ab-

straction level, considering the overall behaviour of a biological organism or a devel-

opmental mechanism. A macro-model system’s implementation is largely different to

its biological inspiration, since the aim is to model the characteristic behaviour of the

target developmental system/mechanism. Simply put a macro-model developmental

system does not model individual cells in a multi-cellular organism, but provides a

developmental behaviour in the system by the inclusion of time and ability to self modify

over time. A widely known example of a macro-model developmental system is the

Lindenmayer Systems (L-Systems) [Lindenmayer, 1968]. L-Systems, a parallel rewriting

system, was introduced for modelling the growth processes of plant development using

a set of rules via a grammar implementation, thus aiming to imitate biological develop-

ment of plants using recursive functions. L-Systems have been applied to circuit design

problems [Haddow et al., 2001; Kitano, 1998], neural networks [Boers and Kuiper, 1992],

Ph.D. Thesis 98 Tüze Kuyucu

Chapter 4 - Development

and 3D morphology design [Hornby and Pollack, 2001; Sims, 1994]. Another example of

a grammatical developmental system is Cellular Encoding (CE) [Gruau, 1994]. CE was

designed to be used in the design of neural networks. Using CE, a neural net would learn

recurrence and solve large parity problems such as a 51-bit parity problem [Gruau, 1994].

An example of a non-grammatical macro-model developmental system is self-modifying

Cartesian Genetic Programming (CGP), which models a CGP system that could alter

its own structure over time after the evolution phase is complete [Harding et al., 2007].

A macro-model developmental system should be computationally more efficient when

compared to a micro-model developmental system in modelling developmental behaviour.

4.3.2 Micro-model Developmental Systems

A micro-model developmental system is a lower level implementation of the biological

development that uses a bottom-up approach to modelling development. This category

of developmental systems can also be seen as the more biologically plausible implemen-

tations, which imitate biological development at a cellular level. Hence a micro-model

developmental system involves the modelling of individual cells and their interactions,

which together make up a whole organism. Each cell in a micro-model developmental

system has the same genotype and inter-cellular communication allows cells to spe-

cialize. All these cells together would form an organism which is the end product of

development after each developmental step5.

Although more biologically inspired, a micro-model developmental system does not

necessarily model biological development perfectly. In fact there is much work in this

type of artificial development with diverse design constraints, those that model biol-

ogy closely [Eggenberger, 1997; Fleischer and Barr, 1993; Jakobi, 1995; Kitano, 1995; Ku-

mar and Bentley, 2003b], those that aim to model biological development in a simplistic

fashion [Roggen, 2005; Tempesti et al., 2003; Wolfram, 2002], and models that are “in-

between” [Devert et al., 2007; Gordon, 2005; Haddow and Hoye, 2007; Miller, 2003].

Mimicking biology closely should provide a developmental system with high evolvabil-

5The time it takes to carry out all the developmental processes–such as the processing of the genome and
cell signalling–once, is referred to as a developmental step.

Ph.D. Thesis 99 Tüze Kuyucu

Chapter 4 - Development

ity [Bentley and Kumar, 1999; Dawkins, 2003], whereas a simplistic model would re-

duce the number of complicated processes that exist in biological development, reducing

simulation times drastically. The first and one of the simplest examples to micro-model

developmental system is Cellular Automata (CA), first developed in the 40s by Ulam

and Neumann [N. and A., 1946; Neumann, 1966; Wolfram, 2002]. CAs model biologi-

cal systems with a grid of cells that determine their states using the local information

from their neighbours and a global rule; this way, CAs effectively model inter-cellular

communication and cell specialization.

The process of designing an effective developmental model for EC reduces to imple-

menting and sculpting the right biological mechanisms in an effective way. This aims

to achieve an evolvable developmental system while maintaining a system that is not

constrained or overwhelmed by undesirable biological processes. But how can we know

which processes are useful and which are not? Implementations of artificial development

in EC has been proposed since early 90’s; e.g. [Dellaert and Beer, 1994; Fleischer and Barr,

1993]. But most of the developmental models designed still rely on educated guesses, and

various assumptions on the suitability of the biological developmental processes for EC

applications.

Ph.D. Thesis 100 Tüze Kuyucu

Chapter 4 - Development

4.4 Summary

An introduction to the importance of multicellular development in biology and EC is

accompanied by a discussion of developmental models in EC. The types of artificial

developmental models that exist in literature are introduced and discussed in this chap-

ter. Although development promises to provide an adaptive, fault tolerant, scalable and

evolvable system for evolving computational models, the amount of information for the

design of an ideal developmental system is very limited. The purpose of this chapter was

to give the reader an idea of the potential benefits an Artificial Developmental System

(ADS) might provide to EC, and introduce some of the related work that has been under-

taken in the area. A new way of classifying the artificial implementations of biological

development has been suggested. The new classification method aims to provide a

clearer and more understandable distinction between different implementations of ADSs.

Chapter 5 will introduce a new artificial developmental system, and discuss the inspi-

ration and reasoning behind many of the design decisions made for the developmental

system. Chapter 5 will also discuss other artificial developmental models that exist in EC

literature.

Ph.D. Thesis 101 Tüze Kuyucu

Publications II

The developmental model explained in the next chapter (Chapter 5) have been has been

used in these published papers:

Kuyucu, T.; Trefzer, M.; Miller, J. F. & Tyrrell, A. M. On The Properties of Artificial De-

velopment and Its Use in Evolvable Hardware. IEEE Symposium Series on Computational

Intelligence - IEEE SSCI 2009, 2009, 108-115

Trefzer, M.; Kuyucu, T.; Miller, J. F. & Tyrrell, A. M. A Model for Intrinsic Articial Devel-

opment Featuring Structural Feedback and Emergent Growth. IEEE Congress on Evolu-

tionary Computation – IEEE CEC 2009, 2009

Kuyucu, T.; Trefzer, M.; Miller, J. F. & Tyrrell, A. M. A Scalable Solution to N-bit Parity

via Articial Development. 5th International Conference on Ph.D. Research in Microelectronics

& Electronics – PRIME 2009, 2009

Trefzer, M. A.; Kuyucu, T.; Miller, J. F. & Tyrrel, A. M. Image Compression of Natural

Images Using Artificial Gene Regulatory Networks. GECCO’10, 2010.

The next chapter does not share content with the above publications where Dr. Trefzer is

the first author.

102

Chapter 5

Modelling Multicellular Development

The development of an organism is an ongoing process throughout the whole lifetime of

the organism, even when a perfectly functional adult organism is present. The develop-

mental system in an organism is supported by various processes; these processes keep

the system stable in an ever changing and noisy environment. When modelling biological

development as an algorithm, there are various decisions that can drastically affect the

performance to achieve these desired properties of the model. An important step before

designing an artificial model of development is to decide whether a macro or a micro

model approach will be taken. As a more biologically plausible approach, a micro-model

Artificial Developmental System (ADS) should be more evolvable [Bentley and Kumar,

1999; Dawkins, 2003] and provide a more effective way of modelling multicellularity

than a macro-model, therefore the model presented in this thesis is chosen to be a micro-

model. A micro-model multicellular developmental system has various mechanisms,

such as the “cell controller”, cell signalling, and growth, which can be implemented in a

variety of ways. The design of these developmental mechanisms will also have a large

effect on the evolvability of the ADS achieved.

In Chapter 4, biological development was introduced and discussed as a source of in-

spiration for the evolution of “developmental organisms” in Evolutionary Computation

(EC). The different artificial implementations of biological development were discussed

and categorised under two classes as; Macro-model and Micro-model developmental sys-

tems. In this chapter, the design of a new ADS is described. Before describing the model

and the design approach for the model used in this thesis, micro-model developmental

systems are described in further detail in Section 5.1. A selective list of ADSs is compiled

in Table 5.1 detailing some of the design choices for each ADS.

103

Chapter 5 - Modelling Multicellular Development

5.1 Micro-model Developmental Systems

The core component of a biological developmental system is the Gene Regulatory Net-

work (GRN), Section 5.1.1. GRN provides the control of a single cell, and the single

cell is integrated into a multicellular environment via cell signalling, Section 5.1.2. The

emergence of multicellular organisms from a single cell is possible through the growth

and cell division processes, Section 5.1.3. These mechanisms, which are important part of

micro-model developmental systems, are described and their uses in existing ADSs are

discussed along with methods of genotype–phenotype mapping (Section 5.1.4) under this

section.

5.1.1 Gene Regulatory Network

As explained earlier in Section 4.1, a Gene Regulatory Network (GRN) is the heart of a

biological developmental system. Similar to the different artificial implementations of

biological development, artificial implementations of biological GRNs can have various

levels of detail with or without certain biological GRN mechanisms; GRNs have been

modelled using simple boolean rules [Dellaert and Beer, 1994; Kauffman, 1969], as well

as detailed simulations [Kumar and Bentley, 2003b; Reil, 1999].

When the aim of modelling a GRN is accurate simulation of a biological network, as

much detail as possible in the model needs to be included. Often differential equations

describing the dynamic system formed by the interactions of chemicals and genes are

used for the latter case. Some researchers have also looked at using differential equations

for modelling GRNs as part of an ADS in EC [Kitano, 1995; Steiner et al., 2007]. These

detailed and accurate models provide interesting insights into the benefits of continuous

models, but because such models are computationally expensive, simpler models may

be more successful in solving computational problems.

Simpler and more abstract models of GRNs are more appropriate for evolutionary opti-

misation and design where the intention is to acquire prevalent properties of GRNs rather

than model them in detail. Rule based GRN models are the most common implementa-

tions in EC; this is true for most of the models listed in Table 5.1. This is due to the highly

Ph.D. Thesis 104 Tüze Kuyucu

Chapter 5 - Modelling Multicellular Development

flexible implementation of the rule based GRN models that allow easy modification after

the initial design phase.

GRNs can be seen as the “controller” of the cell, hence in artificial development it is

possible to use any processing mechanism to replace the GRN core of a biological cell

in the simulated environment. There are different cell controllers in the developmental

systems present in literature ranging from combinational circuits to bio-inspired GRNs,

see Table 5.1. With current knowledge it is not possible to tell what type of cell controller

is best suited for an ADS designed for EC. The advantages of evolving a combinational

circuit controller is its ability to be implemented in hardware, and also the well estab-

lished successful training mechanisms for small combinational circuits such as [Miller

and Thomson, 2000; Stomeo et al., 2005; Walker et al., 2006]. Evolution of Artificial

Neutral Networks (ANN) has also been well developed, and there exist many tools and

mechanisms for the evolution of complex ANNs, such as [Arad and El-Amawy, 1994;

Stanley and Miikkulainen, 2002]. Although both combinational circuits and ANNs are

more widely used and established in EC, GRNs also have their advantages. GRNs (or

GRN inspired computational models) are a common way of modelling a cell control

mechanism within a developmental system. GRNs are highly dynamic computational

networks that provide complex dynamics. A system with complex dynamics may benefit

from the ability to change its state with the changing environmental conditions without

the need to retrain, which can create an adaptive mechanism within the system. The

highly dynamic nature of a GRN can provide multiple attractors for the same genotype

allowing adaptation, differentiation, and robustness against disturbances and loss of

functionality in genes [Reil, 1999]. Another advantage of a GRN based controller is that a

GRN can be highly evolvable; a biologically inspired computational model may be more

evolvable than a traditional computation model such as circuits. This is due to biological

processes being a product of evolution itself [Dawkins, 2003].

In summary, different implementations of cell controllers aim to achieve similar objec-

tives, and the choice of controller type is up to the researcher. In most of the mod-

els listed in Table 5.1, the cell controller is a model of the biological GRNs. Although

each of the GRN models use various implementation approaches, such as Differential

Equations (DE) or rule-based formalisms, they all aim to create a dynamic network of

auto-regulatory genes. A numerical implementation of GRNs has advantages such as

Ph.D. Thesis 105 Tüze Kuyucu

Chapter 5 - Modelling Multicellular Development

better precision in predictions (if modelled correctly). Whereas, a qualitative model

like rule-based GRNs can incorporate more detailed and varied biological knowledge

into the system. For a more detailed information on various ways of modelling GRNs

see [de Jong, 2002].

A developmental model that was not listed in Table 5.1, but has been shown to provide

successful results is the model designed by Roggen [Roggen, 2005]. The system designed

by Roggen lacks the use of any cell controller, and relies completely on the effects of

growth and cell signalling (diffusion). In this model it was assumed that the cell con-

troller is not needed for the developmental system designed. The system would always

start with a group of pre-placed diffusers in a cellular grid, and the chemical diffusing

from these diffusers would activate cells on contact. The state of each cell is determined

by the concentration of the chemical present in the cell. Hence, there is a lack of gene

processing unit in each cell, and the genotype may only represent the location of diffusers

in the cell grid and the contents of a chemical level to function block translation table.

5.1.2 Cell Signalling

Cell signalling is an important part of development in multicellular organisms. It controls

cellular activities and coordinates the cells in an organism. In biology, the cellular com-

munication is established via the use of chemicals, which carry information depending

on their type and intensity (concentration). In biology there are three main modes of

signalling:

1. Direct Contact:

This type of cell signalling only involves the cells in direct contact of each other.

The signalling chemical does not diffuse from the cell producing it, but travels to

the cell in direct contact of the host cell; hence no other cells would be affected by

the signals. Fagotto in [Fagotto and Gumbiner, 1996] refers to contact signalling in

cells as “emerging as a major mechanism of communication in developing tissues”.

Thus contact signalling is a crucial part of the initial stages of multicellular devel-

opment in biology.

Ph.D. Thesis 106 Tüze Kuyucu

Chapter 5 - Modelling Multicellular Development

2. Short Distance:

Short distance signalling involves the diffusion of chemicals from a cell to its neigh-

bours. The diffusing chemicals degrade quickly limiting their effective area to

a small neighbourhood of cells. Short distance signalling complements contact

signalling mechanism in embryonic patterning [Fagotto and Gumbiner, 1996].

3. Long Distance:

Long distance signalling can also be important for a multicellular organism in reg-

ulating the development and coordination of the overall organism. In animals,

the endocrine system is the mechanism that establishes a long distance chemical

signalling for cells. In plants auxins are thought to be inter-cellular messengers

for long distance signalling. Through auxin signalling, cellular patterning, and

meristem and vascular development are thought to be mediated [Berleth and Sachs,

2001].

Coordination of large number of cells via simple chemical diffusion is not possible,

and a more complex system like the endocrine or auxin is needed. It is noted

in [Fagotto and Gumbiner, 1996] that; “unrestricted diffusion is often undesirable

in embryos in which small ensembles of pluripotent cells are required to respond

only to local signals for proper patterning, even if they express a large number

of different surface receptors.” However long distance communication of cells is

a more complex mechanism than the short distance and direct contact signalling

mechanisms, and its role in development is less understood in biology.

Direct contact signalling is the more common signalling mechanism in ADSs that model

multicellular development: it can be observed in Table 5.1 that the listed models prefer

direct contact signalling more often than short distance (diffusion) signalling. Models

that use direct contact signalling only are: [Dellaert and Beer, 1994; Devert et al., 2007;

Gordon, 2005; Haddow and Hoye, 2007; Tufte and Haddow, 2003]. The majority of

these models, [Dellaert and Beer, 1994; Haddow and Hoye, 2007; Tufte and Haddow,

2003], that only use direct contact signalling are developmental models with similar

characteristics to cellular automata, which specifically model the developmental effects

of neighbourhood communication. Models that only implement direct contact signalling,

also do not need to model graded chemicals in their system. The lack of simulating

chemicals in an artificial model creates a simpler design.

Ph.D. Thesis 107 Tüze Kuyucu

Chapter 5 - Modelling Multicellular Development

An advantage of using boolean interactions instead of simulating graded chemicals in

a developmental system is the decrease in the processing time and complexity of the

developmental model [Gordon, 2005; Haddow and Hoye, 2007]. Other examples of ADSs

using boolean interactions include [Bentley and Kumar, 1999; Dellaert and Beer, 1994;

Tufte and Haddow, 2003]. In fact [Bentley and Kumar, 1999] and [Tufte and Haddow,

2003] only use the local phenotype state to model regulation rather than using explicit

communication strategies. On the other hand modelling chemicals in a developmental

system provides the ability to have more precise interactions amongst genes and cells. All

the other researchers listed in Table 5.1 made use of the graded chemicals in their systems.

In the earlier models, Kitano and Jakobi used a complex model of response strategies

that may have over-complicated the system [Jakobi, 1995; Kitano, 1995]. Eggenberger’s

work that followed Kitano and Jakobi succeeded in providing impressive results, and

this model had provided a much simpler response strategy [Eggenberger, 1997].

Modelling chemicals in an ADS allows the use of communication via chemical diffusion

in the system. Chemical diffusion has been used successfully as an organizing mecha-

nism on its own [Roggen, 2005], thus it is a mechanism worth implementing as part of

a developmental system. Most of the developmental models presented in Table 5.1 also

use graded chemicals as part of their system, and achieve promising results. Steiner et

al. [Steiner et al., 2007], Jakobi [Jakobi, 1995], and Zhan et al. [Zhan et al., 2008] only

use diffusion based communication mechanisms to achieve multicellular coordination

and differentiation in their models. Kitano, [Kitano, 1995], mentions that diffusion in

correct proportions is beneficial to achieving useful developmental behaviour. However,

developmental systems that do not use chemicals have also been shown to demonstrate

scalability and stability in EC [Gordon, 2005; Haddow and Hoye, 2007; Tufte and Had-

dow, 2003].

In the experiments provided by Flann [Flann et al., 2005] direct contact signalling was the

more effective signalling method when compared with diffusion in achieving various

patterns. All the pattern types; mosaic, patch, and border patterns were successfully

achieved using contact signalling only. Whereas diffusion signalling was only effective

for some patch patterns and the border patterns [Flann et al., 2005]. However, diffusion

may be useful for controlling the growth of an organism. A gradient of chemicals can

be created via diffusion amongst the cells that can provide the necessary information for

Ph.D. Thesis 108 Tüze Kuyucu

Chapter 5 - Modelling Multicellular Development

stopping growth of a developmental organism before the entire organism space is filled.

Miller had noted that without the presence of graded chemicals, it would be “unlikely, if

not impossible, to achieve solutions that grow and then stop growing that meet the target

objective” [Miller, 2004].

The need for graded chemicals have been partially investigated by Haddow and Hoye [Had-

dow and Hoye, 2007] after an earlier attempt by Miller [Miller, 2004]. Miller later realised

that his experiments used boolean regulation for chemicals rather than graded regulation,

i.e. the developmental model under test did not make use of the graded chemicals.

Haddow and Hoye [Haddow and Hoye, 2007] concluded that increasing the number of

chemicals in the developmental model inversely affected the performance of the system

in achieving target patterns.

The GRN model presented by Haddow and Hoye uses a unique approach to modelling

GRNs: only the cell state of the neighbouring cells are used for inter-cellular communi-

cation, and the chemicals that are produced inside a cell as a result of gene transcription

are only used within the cell for self-regulation of genes. Unlike most other GRN models

that use graded chemicals, Haddow and Hoye’s model does not represent proteins as

chemicals but as genetic actions, and there is no chemical diffusion or any other form

of communication involving chemicals. Hence graded chemicals are only used for rep-

resenting information within a cell. Due to the minimalistic role of chemicals, they

increase the complexity of the search space rather than providing finer tuned information

processing in the GRN and the developmental system [Haddow and Hoye, 2007].

5.1.3 Growth/Cell Division

Growth and cell division in biological development is a key process that enables a single

cell organism to transform into a multicellular organism. Cell division creates a copy of a

single cell with both the parent and daughter cells sharing the exact copy of the genome.

The number of cells in an organism grows due to cell division. Growth is the change in

the overall size of the organism due to multiplying numbers of cells as well as physical

growth in the size of individual cells. An organism may grow to a predefined size that is

mostly determined by the genotype e.g. animals, or its size may be highly dependent on

Ph.D. Thesis 109 Tüze Kuyucu

Ta
bl

e
5.

1:
Li

st
of

so
m

e
of

th
e

m
ic

ro
-m

od
el

ar
tifi

ci
al

de
ve

lo
pm

en
ta

ls
ys

te
m

s
sp

ec
ifi

ca
lly

de
si

gn
ed

fo
r

co
m

pu
ta

tio
na

lp
ro

bl
em

s
w

ith
a

lis
t

of
th

e
co

m
m

on
de

ve
lo

pm
en

ta
l

m
ec

ha
ni

sm
su

se
d

by
ea

ch
m

od
el

.E
vi

de
nt

ly
th

is
lis

ti
sn

ot
a

co
m

pr
eh

en
si

ve
co

ve
ro

fa
ll

th
em

aj
or

ar
tifi

ci
al

de
ve

lo
pm

en
ta

ls
ys

te
m

s.
Th

er
ew

er
es

ev
er

al
cr

ite
ri

a
in

de
te

rm
in

in
g

w
hi

ch
de

ve
lo

pm
en

ta
ls

ys
te

m
s

to
in

cl
ud

e:
ch

ro
no

lo
gi

ca
ls

pr
ea

d
of

th
e

de
si

gn
s

an
d

a
sp

re
ad

of
re

se
ar

ch
er

s
in

vo
lv

ed
in

th
e

de
si

gn
of

th
e

de
ve

lo
pm

en
ta

ls
ys

te
m

w
er

e
pa

rt
of

th
e

cr
ite

ri
a.

A
no

th
er

cr
ite

ri
on

w
as

to
in

cl
ud

e
sy

st
em

s
sp

ec
ifi

ca
lly

de
si

gn
ed

to
so

lv
e

co
m

pu
ta

tio
na

lp
ro

bl
em

s
us

in
g

m
ul

tic
el

lu
la

r
de

ve
lo

pm
en

t.
Sp

ac
e

w
as

al
so

a
lim

iti
ng

fa
ct

or
as

w
el

la
s

th
e

lis
te

d
cr

ite
ri

a.
Th

e
de

ve
lo

pm
en

ta
ls

ys
te

m
s

lis
te

d
on

th
is

ta
bl

e
w

ill
be

re
fe

re
nc

ed
th

ro
ug

ho
ut

th
e

re
st

of
th

e
pa

pe
r.

D
ev

el
op

m
en

ta
l

C
el

l
C

om
m

un
ic

at
io

n
G

ro
w

th
/

C
el

l
G

ra
de

d
Ta

rg
et

St
ab

le
R

ob
us

tn
es

s

M
od

el
C

on
tr

ol
le

r
M

ec
ha

ni
sm

s
D

iv
is

io
n

St
ru

ct
ur

e
C

he
m

ic
al

U
se

Ph
en

ot
yp

e

D
el

la
er

ta
nd

Be
er

R
BN

di
re

ct
Y

ES
em

er
ge

nt
no

ne
2D

pa
tt

er
ns

no
ne

no
ne

19
94

[D
el

la
er

ta
nd

Be
er

,1
99

4]
(c

on
tr

ol
)

Ja
ko

bi
G

R
N

di
ff

us
io

n
Y

ES
fu

nc
to

na
l

pr
es

en
t

A
N

N
no

ne
no

ne

19
95

[J
ak

ob
i,

19
95

]
pr

ot
ei

ns
(r

ob
ot

co
nt

ro
l)

K
it

an
o

G
R

N
di

ff
us

io
n

Y
ES

pr
ot

ei
n

pr
es

en
t

A
N

N
no

ne
no

ne

19
95

[K
it

an
o,

19
95

]
&

di
re

ct
co

nc
en

tr
at

io
n

Eg
ge

nb
er

ge
r

G
R

N
di

ff
us

io
n

Y
ES

fu
nc

to
na

l
pr

es
en

t
3D

pa
tt

er
ns

no
ne

no
ne

19
97

[E
gg

en
be

rg
er

,1
99

7]
&

di
re

ct
pr

ot
ei

ns

Be
nt

le
y

an
d

K
um

ar
ru

le
s

di
re

ct
Y

ES
em

er
ge

nt
no

ne
2D

pa
tt

er
ns

no
ne

no
ne

19
99

[B
en

tl
ey

an
d

K
um

ar
,1

99
9]

(C
A

)
&

ro
ut

ed

M
ill

er
C

G
P

di
ff

us
io

n
Y

ES
ci

rc
ui

to
ut

pu
t

pr
es

en
t

2D
pa

tt
er

ns
up

to
10

tr
an

si
en

tf
au

lt

20
03

[M
ill

er
,2

00
3]

(C
ir

cu
it

s)
&

di
re

ct
(e

m
er

ge
nt

)
st

ep
s

re
co

ve
ry

Tu
ft

e
an

d
H

ad
do

w
ru

le
s

di
re

ct
Y

ES
em

er
ge

nt
no

ne
2D

pa
tt

er
ns

no
ne

no
ne

20
03

[T
uf

te
an

d
H

ad
do

w
,2

00
3]

(C
A

)
on

ha
rd

w
ar

e

Fe
de

ri
ci

A
N

N
di

ff
us

io
n

Y
ES

N
N

ou
tp

ut
pr

es
en

t
2D

pa
tt

er
ns

up
to

2
tr

an
si

en
tf

au
lt

20
04

[F
ed

er
ic

i,
20

04
]

&
di

re
ct

(e
m

er
ge

nt
)

st
ep

s
re

co
ve

ry

G
or

do
n

G
R

N
di

re
ct

Y
ES

pr
ot

ei
n

no
ne

ci
rc

ui
ts

no
ne

no
ne

20
05

[G
or

do
n,

20
05

]
co

nc
en

tr
at

io
n

H
ad

do
w

an
d

H
oy

e
G

R
N

di
re

ct
Y

ES
fu

nc
ti

on
al

op
ti

on
al

3D
pa

tt
er

ns
up

to
10

no
ne

20
07

[H
ad

do
w

an
d

H
oy

e,
20

07
]

pr
ot

ei
ns

st
ep

s

D
ev

er
te

ta
l.

A
N

N
di

re
ct

N
O

N
N

ou
tp

ut
pr

es
en

t
2D

pa
tt

er
ns

st
ab

ili
ty

tr
an

si
en

tf
au

lt

20
07

[D
ev

er
te

ta
l.,

20
07

]
(e

m
er

ge
nt

)
ch

ec
ke

d
re

co
ve

ry

St
ei

ne
r

et
al

.[
St

ei
ne

r
et

al
.,

20
07

]
G

R
N

di
re

ct
ab

le
Y

ES
fu

nc
ti

on
al

pr
es

en
t

3D
pa

tt
er

n
st

ab
ili

ty
re

si
st

an
ce

to

20
07

[S
te

in
er

et
al

.,
20

08
]

di
ff

us
io

n
pr

ot
ei

ns
ch

ec
ke

d
un

w
an

te
d

m
ut

at
io

ns

Z
ha

n
et

al
.[

Z
ha

n
et

al
.,

20
08

]
G

R
N

co
nt

ro
lle

d
Y

ES
pr

ot
ei

n
pr

es
en

t
C

ir
cu

it
s

st
ab

le
tr

an
si

en
t

20
08

[Z
ha

n
et

al
.,

20
09

]
di

ff
us

io
n

co
nc

en
tr

at
io

ns
pr

ot
ei

n
le

ve
ls

re
co

ve
ry

Chapter 5 - Modelling Multicellular Development

the environmental conditions e.g. ivy. Hence depending on the nature of the organism

and the environment, the growth and cell division processes may never stop.

All the ADSs listed in Table 5.1 feature some form of growth and cell division except the

model designed by Devert et al [Devert et al., 2007]. Cell division and growth in ADSs

is a way of controlling the number of cells active in the organism, and it provides the

opportunity for a system to expand when extra resources are provided, hence adapting

to its new environment. However, growth and cell division processes add extra com-

plexity to the developmental system and they increase the simulation time and extend

the developmental steps required to reach a mature organism. If the number of cells

required for the target organism’s size is known and is equal to the maximum number

of cells available then eliminating the growth and cell division mechanisms from the

developmental system may be beneficial.

5.1.4 Genotype-Phenotype Mappings

There are various implementations of mapping the developmental interactions to phe-

notype in the literature. Some systems (especially ones that do not use GRNs), interface

the regulatory elements of the developmental system with the phenotype by using the

phenotypic information as a regulatory element. In these models information from the

phenotype is retrieved to be used as a regulatory input to the developmental system,

and an output of the developmental system is used as a feedback to alter the phenotype

directly. Dellaert and Beer use this approach in their Random Boolean Network (RBN)

based developmental model [Dellaert and Beer, 1994], as well as Bentley and Kumar,

Tufte and Haddow who use CAs in their developmental models [Bentley and Kumar,

1999; Tufte and Haddow, 2003]. Miller’s circuit based, and Federici’s ANN based devel-

opmental models also interface phenotypic information directly to cell regulation [Fed-

erici, 2004; Miller, 2003]. Haddow and Hoye also use this mechanism in their GRN based

model [Haddow and Hoye, 2007].

In the remaining of the developmental systems listed in Table 5.1, only artificial pro-

teins/chemicals are used to define developmental environment, and only this informa-

tion is used by the genes. Some of these systems use predefined proteins/chemicals as

Ph.D. Thesis 111 Tüze Kuyucu

Chapter 5 - Modelling Multicellular Development

Proteins from
neighbour cells

Phenotype Info
of other cells

Protein Info

Phenotype Info

Proteins from
neighbour cells Protein Info

Proteins from
neighbour cells

...................[gene n-1] [gene n] [gene n+1].................

Phenotype Change

e.g 507

e.g 3

e.g +1

 Phenotype
Old New

1

1

1

507

3

2

Case 1: Output is changed only once every developmental iteration.

Case 2: Output is changed only once after the processing of the GRN every developmental iteration.

Case 3: Output is changed multiple times during the processing of the GRN every developmental iteration.

Example use of the phenotype:
FPGA configuration bit string:

....0000000111111011...

FPGA

Control:
Value Action

0
1
2
3

Turn Left
Turn Right
Stop
Forward

Forward

Pattern Matching: Value Colour
0
1
2
3

Grey
White
Green
Red

2

3

507

Figure 5.1: Three common ways of obtaining an output from an artificial developmental cell, and
using the output to build/change the organism phenotype. The examples shown are for clarity and
do not directly correspond to a real system. The output from the first two cases are obtained at the
end of of developmental step, and the system in case 3 does not have an output, but directly alters
the organism phenotype during the processing of its genotype (when the structural proteins are
transcribed). An good example to a external inputs are sensors.

either structural or regulatory proteins, and others allow all proteins to perform both

structural and regulatory functions. The system of Devert et al. is an exception to this,

since it uses the chemicals from neighbours as inputs to an ANN in order to determine

the phenotype and output chemicals of a cell [Devert et al., 2007]. In the rest of the

approaches the structural proteins are interfaced to the phenotype in two different ways.

They are either used as functions that are part of the transcription process that make use

of the genetic information in a gene to alter the phenotype [Eggenberger, 1997; Jakobi,

1995; Steiner et al., 2007] or they are used as phenotypic outputs of the developmental

system and mapped directly (or after some post processing, e.g. via a look up table) to

the phenotype at the end of a developmental phase [Gordon, 2005; Kitano, 1995; Zhan

et al., 2008].

Figure 5.1, provides an illustration of the three methods of mapping the developmental

interactions of a cell to the organism phenotype.

Ph.D. Thesis 112 Tüze Kuyucu

Chapter 5 - Modelling Multicellular Development

5.2 The Artificial Developmental System

The ADS that is used in this thesis will be described in this section. As noted earlier, the

ADS used in this thesis is a micro-model that uses an artificial GRN as the cell controller.

The GRN is implemented as a rule based formalism. Each gene is treated as a rule with

a condition and a result (i.e. pre and post-conditions). A gene will be activated when the

precondition is met, and when a gene is active its postcondition will be processed. The

precondition of a gene specifies the proteins (and other chemicals) that need to be present

or absent in order to activate the gene. Thus a protein (further detailed in Section 5.2.2)

can inhibit, enhance or have no effect on the activation of a gene. The postconditional part

of a gene specifies which protein to produce, and the action to be taken by the produced

protein. In the model presented here some of the proteins have functional tasks, but

all of the proteins participate in regulating the activation of genes. Hence, there is no

difference in the regulatory or behavioural proteins as all proteins are regulatory. A short

pseudo-code description of the simulation process of the GRN is detailed in Algorithm 2.

The developmental system presented here features cell division and growth as these are

inspirational parts of biological development. The process of initiating cell division is

done as a cellular actions, which is further detailed in Section 5.2.3. The developmental

system provides time dependent development where each developmental step the GRN

of each cell is processed. Every time step the developmental system progresses a step

further, making it older. Therefore, a developmental organism is always assigned an age,

which is incremented every developmental step.

The model presented here makes use of graded chemical regulation of genes; all the

proteins are treated as chemicals. Only direct contact and short distance signalling are

used as cell signalling mechanisms in the ADS. Since there is still little understanding for

the capabilities of ADSs in solving engineering and computer science applications, the

described ADS is not expected to be capable of designing organisms complex enough to

benefit from long distance signalling. As stated in Section 5.1.2, long distance signalling

is the least understood cell signalling mechanism in biology, and the least modelled

communications in ADSs. Hence it is also convenient not to implement it as part of

the ADS, which will result in a simpler design.

Ph.D. Thesis 113 Tüze Kuyucu

Chapter 5 - Modelling Multicellular Development

The direct contact mechanism implemented in the model here was inspired by the Plas-

modesmata in plants. Plasmodesmata are microscopic channels that breach the cell walls

of plant cells forming a tunnel between two cells, hence enabling the passage of chemicals

between them [Leyser and Day, 2003]. There are two ways of creating plasmodesmata,

they are either formed during cell division or between two mature cells. As described

in Section 5.2.2 the direct contact signalling is implemented as a result of the synthesis

of a plasmodesma protein, which can create a tunnel connecting the two cells. When a

tunnel between two cells is established a free flow of chemicals between the two cells is

allowed, hence the two cells share the same concentration of chemicals. It is possible that

a cascading tunnels emerge in an organism connecting a large neighbourhood of cells

via these direct tunnels. In such a situation two cells that are physically far apart can be

considered connected indirectly via these cascade of tunnels. Therefore, the direct contact

mechanism implemented in the model here can turn into a distant signalling mechanism

as well.

The other signalling mechanism implemented is the short (or medium) distance sig-

nalling, which is modelled as diffusion. The diffusion process is carried out for all chem-

icals available in every cell; half of an available chemical diffuses out of a cell equally

to the four nearest neighbours, i.e. each neighbour obtains 1
8 of the cell’s chemicals.

This diffusion model used is unrestricted diffusion, and although this model has been

commonly used in developmental models before [Liu et al., 2005; Miller, 2003; Tyrrell and

Sun, 2006; Zhan et al., 2008], it may be undesirable in artificial development as well for

similar reasons to biology. As mentioned earlier, in biology it is noted that an unrestricted

constant diffusion is often undesirable [Fagotto and Gumbiner, 1996].

Change in chemical levels due to diffusion and direct contact signalling are adjusted at

the end of a developmental step for all cells. Thus, the GRN always works with the

chemical levels that are determined at the start of a developmental step; this aims to

reduce the bias in the course of development due to the order of cell updates.

5.2.1 Gene Representation and Processing

The genotype is represented as a chain of binary strings, and each binary string represents

an individual gene in the genome. A fixed length binary implementation of the genes

Ph.D. Thesis 114 Tüze Kuyucu

Chapter 5 - Modelling Multicellular Development

00 00 01 01 10 10 11 11 00 01011010110010 A B C D E F G H
 000 001 010 011 100 101 110 111

Precondition: Postcondition:

Inhibitory Don't care Activating
Generate protein A

The generated protein's action

Chemical:
ID:
Rule:

Figure 5.2: An example gene of 32 bits is shown. The first 16 bits are reserved for the
preconditional part, which specifies the rules to activate the gene. There are 8 chemicals defined
in this figure; the first 4 being reserved for proteins, while the last 4 are messenger molecules, see
Section 5.2.2. Each chemical’s required presence or absence is specified by a 2 bit number, which
provide two don’t care states. In the event of a don’t care state, the presence or absence of a chemical
has no effect on the activation of the particular gene. The second 16 bits of the gene is reserved for
the postconditional part, which provides the ID of the chemical produced as a 2 bit number (this
means that only the first four chemicals [proteins] can be produced, i.e. the messenger molecules
can not be produced via the activation of a gene), which is then followed by a 14 bit number. The
last 14 bits in the gene define the action of the chemical produced if it has one (further explained
in Subsection 5.2.2), if not the last 14 bits are treated as junk.

was chosen to make the application of the GRN model straightforward on an embedded

processor. Similar to the gene representation used by Gordon [Gordon, 2005], each gene

is modelled as a rule with two sections; pre and postconditional sections. The precon-

ditional part of a rule specifies whether the activation of the rule could be enhanced,

inhibited or unaffected by the presence of known chemicals. For a gene to be activated

all the activating chemicals must be present and all the inhibiting chemicals must be

absent. In other words a logic AND is used as the precondition function. Each chemical

has a concentration, and it is considered to be present if its concentration is at or above

a predetermined threshold level, otherwise it is considered absent. Chemical concentra-

tions are represented as 8-bit integer values, hence the possible values are between 0 and

255. All of the processing in the ADS is done using binary and integer operations. The

postcondition of a gene defines the chemical that is produced, and depending on the type

of chemical produced, the information for the action it is going to take is also included

within the postcondition. Encoding of an example gene is illustrated in Figure 5.2. More

detail on the types of chemicals is provided in Section 5.2.2.

The GRN is processed synchronously, from the start of the genotype to the end. The GRN

of each cell is also processed synchronously, starting from the top left cell and moving

from one cell to another (left to right and top to bottom). This means that the results of a

processed ADS are dependent on the order of genes in the genome as well as the order

Ph.D. Thesis 115 Tüze Kuyucu

Chapter 5 - Modelling Multicellular Development

of cells in the organism. Although this diverts from biology, the processing of the ADS

becomes straightforward. The GRN of each cell is processed every developmental time

step which synchronises the organism. The changes to the chemical concentrations due

to gene activations are done in real time, but the changes caused via cell signalling are

recorded in a temporary buffer and made at the end of each developmental step. Whether

a chemical will bind a gene is dependent on the concentration level of the chemical and

the consumption rate of the chemical. In a cell (i), the concentration level (Zigtc) of a

chemical (c) by the time it reaches a gene (g) depends on its initial concentration (Xitc) at

the start of the developmental step (t), the amount of the chemical used by the previous

genes in the genome (Bigtc), and the concentration of chemical produced by the previous

genes in the genome (Oigtc). At age 0 the concentration levels of all chemicals are 0, and

the consumption rate (Rgc) of a chemical is a constant (either hard-coded or evolved) that

specifies the amount of a chemical consumed if the chemical binds a gene.

Zigtc = Xitc +Oigtc−Bigtc, (5.1)

Whether a chemical will bind a gene is a boolean operation (Yigtc), and it depends on

available chemical concentration, and chemical consumption rate.

Yigtc =


true Zigtc

Rgc
> 1

f alse Zigtc
Rgc

< 1
. (5.2)

5.2.2 Protein Synthesis

Biological protein synthesis involves the process of a protein transcribing a gene (binding

the promoter sequence to activate the gene), where the genetic information (postcondi-

tional region) is copied into a mRNA (messenger RNA1). This is followed by the mRNA

strand moving out of the nucleus of a cell to meet a complimentary tRNA (transfer RNA).

Each tRNA molecule compliments the opposing bases on the mRNA strand perfectly.

These in turn have the amino acid sequence to successfully code for a particular amino

1Ribonucleic acid: a nucleotide chain that is transcribed from and similar to DNA, but has small structural
differences.

Ph.D. Thesis 116 Tüze Kuyucu

Chapter 5 - Modelling Multicellular Development

acid which forms a protein. Hence the amino acids (aka peptides) from the tRNA and

mRNA combine to form a polypeptide chain (proteins), and can be used in a variety of

structures such as enzymes and hormones to carry out a cell function. Although protein

synthesis in biology covers a series of complex processes, simply put it is the phase of

building proteins.

Algorithm 2 The pseudo-code for the simulation of Gene Regulatory Network for one
time step.

1: ORGANISM stores all the cells available for development up to MAXCELL;
2: CELL is an individual entity that models a biological cell
3: for each CELL cell in ORGANISM do
4: if cell is ALIVE then
5: for each GENE g in GENOME do
6: if (promoter chemicals for g) > PROMOTE-THRESHOLD then
7: promote← true
8: else
9: promote← false

10: end if
11: if (inhibitor chemicals for g) > INHIBITTHRESHOLD then
12: promote← false
13: end if
14: if promote then
15: comment: Process the postcondition of g
16: proteinProduced← protein type specified by postcondition of g
17: increase proteinProduced in cell by PROTEINPRODUCTIONRATE
18: comment: Check if proteinProduced has any functions to carry out
19: if proteinProduced = PLASMODESMA then
20: tunnelDirection←information from g on the direction of tunnel
21: tunnelOpen←information from g whether to block or form a tunnel
22: if cell’s neighbour in direction tunnelDirection is not ALIVE then
23: if tunnelOpen then
24: grow a new cell in direction tunnelDirection and
25: form a plasmodesmata between cell and the new cell
26: end if
27: end if
28: else if proteinProduced = STRUCTURING then
29: extract information from g to modify cell structure
30: else if proteinProduced = SENSOR then
31: extract information from g for monitoring the cell surroundings
32: end if
33: end if
34: end for
35: end if
36: end for

Ph.D. Thesis 117 Tüze Kuyucu

Chapter 5 - Modelling Multicellular Development

In the ADS described here, protein synthesis does not involve the simulation of RNA

molecules. Once a gene is activated with the correct binding of proteins the postcon-

ditional part of the gene is processed, i.e. the gene is transcribed. The first part of the

postconditional part of a gene specifies the ID of the protein to be produced. The protein

produced is supplied into the cell at a predetermined protein production rate. Once the

protein produced is added to the cell protein repository, the rest of the gene postcondition

is processed depending on the type of protein produced. The production (synthesis) of

a protein triggers a protein action in the cell. For this action, the protein produced uses

the remaining information provided by the gene it was produced by to coordinate its

actions. The chemical types (including proteins) and their actions are detailed within

Section 5.2.3.

5.2.3 Chemicals

The GRN system implementation used in the ADS described here makes use of various

chemicals that are used for gene regulation; affecting cellular functions, and communica-

tion. Chemicals are classified in two groups as proteins and molecules. The proteins build

the organism, create a regulatory network, and are used for multicellular communication.

The molecules are used as part of the regulatory system as well, and they help monitor

the environmental changes for regulatory adaptation.

5.2.3.1 Plasmodesma Protein

Plasmodesma proteins are inspired by the Plasmodesmata in plants (similar to the gap

junction in animals). When a plasmodesma protein is synthesised, it forms a tunnel in

one of the four cardinal directions (North, South, East, West), and if the neighbouring cell

also has formed a tunnel in the corresponding direction, the two tunnels join together

allowing the passage of proteins between the two cells (the joint tunnels are termed plas-

modesmata in this thesis). After the two cells are connected by plasmodesmata (tunnels),

they share the same protein distribution. If the neighbouring cell space (of the cell where

the plasmodesma is produced) is not occupied, a cell division is initiated. During the

cell division plasmodesmata is created connecting the two daughter cells (one of which

now fills the empty cell space). Although in plants the plasmodesmata size is known

Ph.D. Thesis 118 Tüze Kuyucu

Chapter 5 - Modelling Multicellular Development

to shrink as the cells mature (thus filtering larger proteins) [Leyser and Day, 2003], this

is omitted in our developmental system for simplicity. However, the callose deposition

is simulated. The callose deposition causes the blockage of the plasmodesmata, which

prevents the transport of all proteins through the plasmodesmata. In our system this is

initiated by a specifically encoded plasmodesma protein.

5.2.3.2 Structuring Protein

Structuring proteins are the type of proteins that build and change the physical structure

of the cell. When a structuring protein is produced, it uses the information provided

by the gene to alter the physical structure within the cell. The physical structure of a cell

refers to the cell’s role in the application domain, e.g. a component part of a digital circuit,

a control system or an image pixel. When a structuring protein is produced, the cell

phenotype is altered. For example, if the cell phenotype is represented as a 32-bit integer,

a transcribed structuring protein may make bitwise changes in the 32-bit number using

the postconditional information provided by the gene producing the structuring protein,

see Figure 5.2. This provides an emergent structure for the cells in the developmental

system, aiming to create an effective mapping of developmental dynamics to organism

structure.

There is still little understanding on how to map the dynamics of a developmental system

to engineering applications. Hence, it is not possible to distinguish between the different

methods of processing and mapping the developmental information to a phenotype.

Using specific proteins that can alter the phenotypic structure of the cell during the

ongoing developmental process has the potential to extract more information from the

dynamics of the ADS rather than using the protein concentration values at the end of a

developmental stage.

We reviewed various genotype-phenotype mappings used in micro-model developmen-

tal systems in Section 5.1.4. However, in such developmental approaches it is still not

known how best to map the dynamics of a developmental system to engineering applica-

tions. Hence, it is not possible to distinguish between the different methods of processing

and mapping the developmental information to a phenotype.

Ph.D. Thesis 119 Tüze Kuyucu

Chapter 5 - Modelling Multicellular Development

5.2.3.3 Sensor Protein

The sensor proteins are produced by the GRN to act as sensors around the cell by mon-

itoring the external environmental changes in the phenotype domain. The sensor pro-

teins produce different kinds of messenger molecules for different outside activity. This

enables environmental factors to affect the GRN activity, possibly creating a more inter-

active developmental system.

5.2.3.4 Regulatory Protein

Although every protein is a regulatory protein, there are proteins that only exist for

regulatory purposes. These proteins, just like every other protein, control the GRN

activity by their presence or absence, but they do not have any other purpose. Thus

when a regulatory protein is produced by a gene, the information provided by the post-

condition of the gene is discarded. The unused parts of the gene provide a neutral search

space, which can have positive effects on evolvability. It has been shown that neutrality

provides stability via preventing deleterious mutations, and helps evolution avoid local

optima, thus creating a smoother search space [Harvey and Thompson, 1997; Vassilev

and Miller, 2000a].

5.2.3.5 Messenger Molecule

Apart from the four proteins introduced, there is another type of chemical called a mes-

senger molecule; molecules have different regulatory properties compared to proteins.

The messenger molecules are produced by the sensor proteins that monitor the pheno-

type domain when present. The messenger molecules can not be produced directly as

a result of gene activity (protein synthesis) since their purpose is to regulate the gene

activity via the environmental response, but they can still bind to activate or deactivate

genes.

It is intended that these chemical types will give the cells the ability to form an interac-

tive multicellular organism that can achieve scalability, adaptivity, and fault tolerance.

Figure 5.3 portrays the role of each protein in a simple multicellular organism.

Ph.D. Thesis 120 Tüze Kuyucu

Chapter 5 - Modelling Multicellular Development

Pseudo code summarizing and describing the implementation of the ADS is presented

in Algorithm 3. This algorithm only details the functions that are executed during each

developmental step. It refers to the gene regulatory activity in each cell as a function

call to GRN(). The pseudo-code description of the gene regulatory network simulation

in the organism is detailed in Algorithm 2. Lines 8–13 of Algorithm 3 detail the cell

signalling procedures. When two cells are connected via tunnels (plasmodesmata) the

concentrations of their chemicals are combined and shared equally to the two cells. This

CELL 1
CELL 2

CELL 3

New Cell

Physical Cell
Structure

GRN Core

Cell In1

Cell In2

Cell In3

Cell Out

A complete
Plasmodesma

Plasmodesma
Proteins

Sensors

Structuring
Proteins

A
n incom

plete
P

lasm
odesm

a

Figure 5.3: In a multicellular environment using the 4 basic protein types a cell is able to:
interact with its environment, grow, structure itself, and form a multicellular organism. The basic
functions of the listed proteins are demonstrated in this figure. Only cell 1 is drawn completely,
certain components are omitted in other cells. In the actual implementation of the organism there
are no spaces between cells, they are only separated by their borders. In the example above, cells 1
and 2 both have active plasmodesma proteins, which cause the formation of a channel on both cells
towards the other, creating a plasmodesmata to allow free movement of proteins from one cell to
other. Cells 1 and 2 both also have active plasmodesma proteins on their southern sides. Cell 1’s
southern neighbour does not exist, so the active plasmodesma protein initiates a growth process in
that direction. However, cell 2’s southern neighbour is an alive cell with no active plasmodesma
protein, thus cell 2 forms an unconnected channel on its southern wall. The 4 sensors drawn
monitor the outside activity on 4 sides of each cell and produce sensor proteins with the changing
environment. The Structuring proteins are produced by the GRN to change the physical structure
of the cell, which is connected to the physical inputs and outputs of the cell.

Ph.D. Thesis 121 Tüze Kuyucu

Chapter 5 - Modelling Multicellular Development

process is carried out by individual cells, and each cell only controls the tunnels to its

east and south neighbours. Since the processing is done from top left most to the bottom

right most cell, there is no need for each cell to check all four directions for the contact

cell signalling process. Lines 15–18 detail the diffusion process where each chemical is

constantly diffused out to four nearest neighbours. During the ongoing diffusion process,

the changes to the chemical concentrations are not recorded on the actual values but

stored in temporary variables. These variables are then later used at line 23 to update the

actual chemical concentrations for each cell. This way the order of update of cells does

Algorithm 3 The pseudo-code for the simulation of artificial development for one time
step.

1: ORGANISM stores all the cells available for development up to MAXCELL
2: CELL is an individual entity that models a biological cell
3: call function GRN(); comment: see Algorithm 2
4: for each CELL cell in ORGANISM do
5: if cell is ALIVE then
6: comment: Direct Contact signalling.
7: comment: Only need to check EAST and SOUTH as the previous cells were to

the NORTH and WEST
8: if cell has a PLASMODESMATA to EAST then
9: share chemicals with the neighbouring cell on the EAST

10: end if
11: if cell has a PLASMODESMATA to SOUTH then
12: share chemicals with the neighbouring cell on the SOUTH
13: end if
14: comment: Diffusion
15: for each CHEMICAL c in CHEMICALS do
16: divide 1

2 of c to each neighbouring cell
17: store changes to chemicals in a buffer available for each cell
18: end for
19: end if
20: end for
21: for each CELL cell in ORGANISM do
22: comment: Update Cell States
23: update the actual chemical values from the buffers
24: reset the buffers to 0
25: adjust the chemical values to be within 0 to MAX CHEMICAL LEVEL
26: if cell was newly created then
27: set cell state to ALIVE
28: end if
29: comment: Build Target Structure - problem dependent
30: translate cell’s structure for the target system
31: end for

Ph.D. Thesis 122 Tüze Kuyucu

Chapter 5 - Modelling Multicellular Development

not bias the diffusion process. By the end of the Algorithm 3 at line 30 the cell structure,

which is a single or an array of integers, is translated for the target system. If the target

system is a reconfigurable hardware device, the integer values are converted to a binary

string to configure a part of the reconfigurable device. If the target system is an image,

and the cell represents a pixel, then the integer value2 is used to represent a pixel colour

for the cell.

5.3 Summary

Following on from Chapter 4, a review of literature on micro-model developmental sys-

tems designed for EC has been provided in the first section of this chapter. The literature

discussed forms part of the inspiration and the source of developmental information

used for the design of the ADS described in the following section (Section 5.2). Several

mechanisms involved with ADSs are discussed for their role in biology, EC, and their use

by several existing ADSs. An extensive table of relevant ADSs in literature is compiled

and used in the discussions. After the literature review, the ADS used in this thesis is

introduced with all its mechanisms. The main purpose of the model described is to

provide a mechanism for the evolution of stable, scalable, fault tolerant and adaptive

systems. The following chapter will demonstrate the evolvability of the ADS in fulfilling

a series of simple fitness functions, as well as briefly demonstrating the fault tolerant

properties of the ADS.

2The integer value representing the cell function needs to be kept within 0 to max number of possible
colours for the target image. A modulo operation is used to ensure this.

Ph.D. Thesis 123 Tüze Kuyucu

Chapter 6

Validating the Artificial Developmen-

tal System (ADS)

An initial set of experiments demonstrating the developmental and computational prop-

erties of the ADS are presented in this chapter. These include single cell experiments

that test the environmental responsiveness of the Gene Regulatory Network (GRN) and

its ability to maintain a stable but dynamic system. The single cell experiments should

provide insight into better understanding the evolvability of the GRNs.

Pattern formation experiments that test the multicellular coordination, cell differentia-

tion, ability to maintain cells with stable states, modularity in multicellular development,

and fault tolerance follow up on the single cell experiments. Although the cells in these

experiments use the same GRN model from the single cell experiments, it will be shown

that the evolvability of the ADS is highly dependent on the physical constraints imposed

on the ADS. The evolved developmental organisms will be tested with different types of

faults and shown that in many cases, the developmental organisms can partially or fully

tolerate various types of faults even when not evolved to do so.

At this point it is worth to state the extent of the meaning of the term “evolvability”

when used in this and the rest of the chapters of this thesis. In biology, the ability to

survive natural selection and produce meaningful evolutionary adaptation is termed

evolvability [Kirschner and Gerhart, 1998]. The evolvability of the presented ADS will be

measured by the degree of its ability to improve its fitness over evolutionary change.

124

Chapter 6 - Validating the ADS

6.1 Algorithm Configuration

The evolution of a multicellular developmental system can be layered as three algorithms

working together; the Evolutionary Algorithm (EA), the GRN and the multicellular de-

velopment.

6.1.1 The Evolutionary Algorithm

In the experiments involving the developmental system (i.e. rest of the whole thesis),

the resulting genotypes for the developmental organisms are always evolved using an

evolutionary algorithm. Evolution is used to find the genetic information (genome)

that can represent the desired system after being fully developed. The evolutionary

parameters were kept same (or with very minor changes) with the earlier experiments

presented in Chapter 3 for consistency.

A customised version of the Evolution Strategy (ES) (see Chapter 2) with a population

size of 7 and an elite size of 2 is used, i.e. ES(2+5). There is no crossover implemented but

an adaptable mutation rate (mutation strength) in the 0.5-10% range that changes with

respect to the rate of change in the fitness is used, as shown earlier in Algorithm 1. The mu-

tation rate is increased if the previous mutations result in individuals that have equal or

better fitness than their parents, but it is decreased otherwise. The effects of previous mu-

tations are tracked by the convergence variable used in Algorithm 1. The use of adaptive

mutation rate in ES has been previously shown to improve the algorithm performance in

Evolutionary Computation (EC), especially for combinational problems [Kramer, 2008].

More information and various investigations into self-adaptive evolutionary parameters

such as mutation and crossover can be found in [Kramer, 2008].

6.1.1.1 Selection

A refined fitness function is used for all the experiments discussed in this thesis; further

detailed in each experimental section. All fitness functions used in the experiments work

by penalising the bad solutions. Hence, the lower the penalty given to an individual the

better it is considered to be. Each generation is formed by carrying over the two best

Ph.D. Thesis 125 Tüze Kuyucu

Chapter 6 - Validating the ADS

Table 6.1

Parameter Value

Max. No. Genes 5–50 (dependent on the example)

No. Chemicals 4

Max. Chemical Concentration 255

Chemical to Gene Binding Threshold 127

Protein Production Rate 10

Chemical Consumption Rate 5

performing individuals, and creating 3 offspring from the best and 2 offspring from the

second best individuals. The best parent is chosen to contribute to the population via a

larger number of mutant offsprings because of its higher fitness, but at the same time the

second best parent is always ensured to supply its own offsprings in order to provide

diversity. An equally performing offspring is always favoured over a parent in the next

generation’s selection process.

6.1.2 The GRN Settings

The default settings for the GRN is given in Table 6.1. Most of these settings remain the

same for all experiments, but it is noted in the corresponding section when they differ

from the default values. Number of chemicals is set to 4, since in the experiments that

will be presented the messenger molecules will not be used. This is because the problems

tackled will be stable, such as patterns and simple digital circuits. The maximum chemi-

cal concentration is limited to 255 (8-bits); a decision that was made to allow convenient

processing of the GRN in an embedded processor. Chemical to gene binding threshold is

set to half of maximum chemical concentration. The chemical consumption and protein

production rates are kept low in order to provide the GRN the opportunity to benefit

from a wide range of protein concentrations. This is hoped to give the GRN a more

responsive and precise behaviour with smooth changes in protein concentrations.

Ph.D. Thesis 126 Tüze Kuyucu

Chapter 6 - Validating the ADS

6.1.3 The ADS Settings

The two main variable parameters for the ADS at the multicellular level are the organism

size and maximum organism age (see Section 5.2 for more detail on organism age). The

organism size is generally n×n, and n is dependent on the experiment being undertaken.

The maximum organism age is also dependent on the experimental problem, but it is

generally between 10–30. The maximum organism age specifies how the maximum

number of iterations the ADS will be allowed to run before the organism is considered

mature.

6.2 Single Cell Experiments

Before conducting experiments involving the whole of the developmental system and

evolving multicellular organisms that try to solve computation problems, single cell ex-

periments are carried out to demonstrate and understand the GRN model’s responsive-

ness to environmental stimuli and its ability to achieve stable solutions. An artificial GRN

system is a dynamical system; a mathematical system that describes a state with time

dependency. A dynamical system’s current state will always be one of the determinants

of the next state. In a dynamical system there exists at least one attractor which the system

settles into after a time. Attractors can be represented by single states or multiple states,

see Figure 6.1. An attractor in a dynamical system has a basin, which represents all the

points that will eventually converge to the attractor after a certain period of time. Hence,

in a dynamical system the final state of the system will always be one of the attractor

states. In order to have a stable GRN that maintains its desired state over time, the

desired state needs to be an attractor in the dynamical system represented by the GRN.

These states might be a single point in the state space representing a fixed behaviour or

a set of points representing a more complicated behaviour. When a dynamical system is

in an attractor state, it will always return to that same attractor state even when slightly

disturbed; hence protecting its functionality. On the other hand, a big enough disturbance

that can change the basin of attraction can produce differentiated behaviour [Strogatz,

1994].

Ph.D. Thesis 127 Tüze Kuyucu

Chapter 6 - Validating the ADS

Figure 6.1: A hypothetical state space represented by possible states and state transitions. Two
possible attractors are present in this example: a point attractor at state 2 and a cyclic attractor
with states 13-16 and 18-20. The two basins of attraction are divided via the grey line in between.
This example system will always end up either at state 2 or cycling states 13-16 and 18-20 in the
order shown in this figure. There are more different types of attractors which are not demonstrated
here, for a more comprehensive explanation of dynamical systems and attractors see [Strogatz,
1994]

The GRN system is tested to see whether its dynamics can create stable, changing, and

responsive conditions within a single cell. These simple tests demonstrate the evolv-

ability of the GRN and its ability to create simple functions that can be part of a larger

computational network. In the experiments the concentration levels of proteins are mon-

itored throughout the lifetime of a single cell. Protein concentrations of an artificial

GRN have already been used as outputs to investigate the evolvability and dynamics

of the model, as well as for validation the model by previous researchers in EC [Banzhaf,

2003; Knabe et al., 2006]. Knabe evolved a GRN to behave as an active control system

that could respond to periodic environmental stimuli with appropriate behaviours. A

similar approach to the latter will be taken in this section to investigate the evolutionary

properties of the proposed GRN model.

Ph.D. Thesis 128 Tüze Kuyucu

Chapter 6 - Validating the ADS

The experiments presented in this section use the EA and GRN settings described in

Section 6.1 with a maximum number of evolutionary generations set to 10 million gener-

ations. The number of genes used for each experiment is marked on the corresponding

plot of each experiment.

The first experiment tests the responsiveness of the GRN model to simple outside stim-

ulus. This is done by trying to evolve a single cell that will control the production of a

protein (maintaining a constant level) when another one is supplied as an input. Three

variations of this control model are evolved: ‘ON’ switch, ‘BOOSTER’ and ‘ON-OFF’

switch. For the case of an ‘ON’ switch, the production of the output protein will not start

and its concentration level will be kept at 0 until the input protein is supplied. Once the

input protein is supplied the output protein will be constantly produced reaching the

maximum concentration level. Once the production of the output protein is started the

cell does not need to consider any other conditions to meet the behaviour described by

an ‘ON’ switch, hence it provides a simple task to achieve. However, it is an important

behaviour nonetheless, since it is a simple demonstration of interactivity, and ability to

switch to a different attractor state when there is a drastic change in the system.

In the second case the input protein is expected to behave as a ‘BOOSTER’ and increase

the concentration value of the output protein every time it is supplied. When the input

protein is at concentration level 0, the output protein is expected to remain at its last con-

centration value without any change. This is a simple model of a time-dependent control

mechanism with memory, where the output protein reflects the time the cell is exposed

to the input protein. In addition to a responsive mechanism to an input protein, in this

example the cell is also expected to maintain the value of the protein concentration below

the maximum concentration level through gene interactions and before saturation. When

a chemical reaches the predefined maximum concentration level and is still produced, an

artificial mechanism always makes sure that the concentration value of the chemical is

always set back to the maximum value which is 255 in our case: this process is called

saturation. In the example of ‘ON’ switch, the output protein concentration level is kept

at the value 255 via saturation, therefore the dynamics of the GRN only creates a trigger

mechanism that indefinitely produces the output protein once a high concentration of

input protein is detected. In both the ‘BOOSTER’ and ‘ON-OFF’ switch experiments,

the GRN is evolved to have dynamics that keep the output protein concentration at or

Ph.D. Thesis 129 Tüze Kuyucu

Chapter 6 - Validating the ADS

Sheet3

Page 1

0 5 10 15 20 25 30 35

0

50

100

150

200

250

300

'ON' Switch
10 Genes

Developmental Steps

P
ro

te
in

 C
on

ce
nt

ra
tio

n

(a)

Sheet3

Page 1

0 5 10 15 20 25 30 35

0

50

100

150

200

250

300

BOOSTER
Limited at 250, 30 Genes

Developmental Steps

P
ro

te
in

 C
on

ce
nt

ra
tio

n

(b)

Output

Input

Figure 6.2: Desired GRN output protein to input stimulus is shown for the ‘ON’ switch and
‘BOOSTER’ cases. In (a) the output protein remains 0 until the input protein is supplied at
a high concentration which then triggers the production of the output protein. This is a simple
demonstration of a trigger mechanism implemented by the GRN. In (b) the output protein level
is initially set to zero, until the input protein is supplied at a high concentration level, but in
this example unlike (a), the concentration level of output protein stops increasing when the input
protein concentration level is dropped back to 0. The GRN in (b) is also trained to keep the
concentration level of the output protein at or below 250 even when the input protein is supplied
at maximum concentration.

below 250. Such a precise control of a signal can be highly desirable in some applications.

Controlling the level of a specific output is a function that exists both in biology and

engineering. In biology, an example of this is the control of hormone supply, which

is usually kept below a certain level otherwise high levels of hormone secretion can

cause disorders, e.g. acromegaly due to growth hormone excess [Giustina and Manelli,

2001]. Similarly in engineering, some outputs are expected to be kept below a certain

level in order to keep the system safe and reliable. The ‘ON’ switch and the ‘BOOSTER’

experiments are further detailed with evolved examples for each in Figure 6.2.

The third case models the input protein as an ‘ON-OFF’ switch, so when the input protein

is present (i.e. the input protein is≥ protein to gene binding concentration threshold) the

output protein’s concentration starts increasing, and when the input protein is absent,

the output protein’s concentration starts dropping. This creates an ‘ON - OFF’ behaviour

that is synchronized with an outside stimulus, see Figure 6.3. Two versions of this case

are defined in the experiments; one with a minimum output protein concentration level

at 70 and maximum output protein concentration level at 150, and the other with a mini-

mum output protein concentration level at 0 and maximum output protein concentration

level at 250. Evolving an ‘ON-OFF’ switch behaviour is more difficult than the first two

Ph.D. Thesis 130 Tüze Kuyucu

Chapter 6 - Validating the ADS

examples as it models a more complex correlation between the input and the output

proteins.

An example of similar behaviour to this in biology is the change in behaviour of or-

ganisms with respect to the change in day and night. The input protein can be seen

as an indication on the presence of the Sun, and the output protein is a response from

the organism (e.g. sleeping). The output protein could also be analogous to a short

term behaviour like the production of the chemical adrenalin, which is produced when

a threat to an organism is present nearby (signalled by the input protein), and when the

threat disappears the adrenalin levels drop. Evolving the example with chemical levels

bound within 70−150 required less number of genes than having chemical level bounds

within 0−250. In order to achieve the ‘OFF’ state at 0 when the input protein was at 0, the

protein binding thresholds had to be evolved for each gene in order to allow the output

protein use of the whole concentration range. This will be further discussed later on in

this section.

The plots of example runs shown in Figure 6.3 demonstrate that it is possible to change

the behaviour of the GRN drastically when there is a notable change in the environment,

as well as demonstrating that it is possible to set lower and upper limits for the protein

concentrations via gene interactions. As shown in Figure 6.3(a) the output protein is

maintained at concentration level; 70 when the input protein is at concentration level

0, and 150 when the input protein is at concentration level 255. This is an example

demonstration of setting upper and lower limits to the production of a protein via gene

interactions. In Figure 6.3(b) the output protein is maintained at concentration level 0

when the input protein is at concentration level 0, and although the GRN was evolved

to maintain the output protein at concentration level 250 when the input protein is at

concentration level 255, the GRN can not achieve this so well and the output protein

oscillates around 235. At the third peak of the plot in Figure 6.3(b), the maximum concen-

tration level of the output protein drops down to oscillate around 180 at developmental

step 330 and onwards. The ‘ON-OFF’ switching is still preserved, but maintaining an

absolute value for the ’ON’ state is shown to be a challenge. In Figure 6.3(c) the GRN is

evolved with the same conditions as Figure 6.3(b), but this time the result fits the fitness

constraints well. Increasing the number of genes to 30 for this problem made it possible

to create the dynamics to keep the ‘ON’ state constant at 250. This hints that evolving

Ph.D. Thesis 131 Tüze Kuyucu

Chapter 6 - Validating the ADS

������

����	

�
�� ��� ���
�� ��� ���

�

��

��

��

���

���

���

��������	������
�������	���
���	
�	�����

���� !"#���� 	���"�

�
$!

��
��

	%
!

�
�

�
�

�$
�

��
!

�

(a)

������

����	

�
�� ��� ���
�� ��� ���

�

��

��

��

���

���

���

��������	������
������������	�	��	�����

������ !�����	��� �

�
"�
��
��
	#
�
�
�
�
�
�"
�
��
�
�

(b)
������

����	

� ��
��
��
��
��

�

��

��

��

��

��

���

��������	������

���
���	������	��	�����

�������������	�����

�
 �

��
��

	!
�
�
�
�
�
�
�
��
�
�

Output

Input

(c)

Figure 6.3: Example runs from the ’ON-OFF’ switch case. For run (a) the protein to gene
binding threshold was set to 127, whereas for the other two runs the protein to gene binding
thresholds were evolved per gene.

the behaviour for the GRN was not a problem, but maintaining the boundaries at a fixed

value was the real challenge. At the end of the plot displayed in Figure 6.3(c), the input

concentration is raised to 250 for short periods of time. Expectedly, the GRN responds to

this by creating short peaks with the output protein concentrations.

For the ’ON-OFF’ switching experiments the fitness function had to be designed carefully

otherwise evolution would always find it easier to “memorize” (i.e. over-fit) the exact

tested conditions and create a GRN system that would only meet those conditions. This

could happen in the following example. Assuming the candidates were tested over

30 developmental steps every evolutionary generation, and the input protein was at

maximum concentration from developmental step 12-15 and 20-25 and at 0 concentration

for all the other developmental steps. The resulting GRN could either always produce

the output protein at steps 12-15 and 20-25, and consume it for the other steps without

considering the input protein, or only work for the case when the input protein is applied

at steps 12-15 and 20-25, producing the output protein erratically for all the other cases

Ph.D. Thesis 132 Tüze Kuyucu

Chapter 6 - Validating the ADS

of inputs. To overcome this a fitness function considering the input pattern ordering was

designed to tackle these “transient” effects, as discussed earlier in Chapter 3.

The fitness function defines the behaviour of an evolving system. Since the structure

of the evolving system can not be tested, the behaviour defined by the fitness function

alone shapes the fitness landscape for the EA. When applying the test inputs to an

evolving system, the ordering of the possible inputs may have an important role in

shaping the fitness landscape. This is especially true when evolving dynamic systems

that can create feedback loops within its computational network. Hence, it is necessary

to include randomness in the test inputs of the evolving system. The fitness function

used here uses a new randomly generated input sequence during the evaluation phase

of every evolutionary generation as described in Section 3.4.

Algorithm 4 details the application of the input protein to the evolving GRN for one

evaluation step. The GRN is tested for five times every evaluation step, and each time

the input protein is set high and low at pseudo-random time intervals (except the first

test, which is the same for each evaluation). Although the switching for the input protein

from 0 to 255 and 255 to 0 is done immediately, for the target output the switching is

spread over six developmental steps (see lines 21–36). This is done in order to encourage

a more analogue behaviour (smoother and more gradual changes) being reflected on the

output protein of the GRN.

One can argue that achieving an ‘ON-OFF’ switching behaviour should be a much sim-

pler task that can be fulfilled by a smaller number (∼ 5) of Genes and evolutionary gen-

erations. This is correct to a certain extent and can be done by adjusting some of the GRN

parameters such as protein production and consumption rates per gene, and altering the

fitness function to accept a digital behaviour (i.e. a big change from concentration 0 to

255 and vice a versa for the output protein when the input protein changes likewise).

However, these adjustments to the GRN would change the application domain, which

removes the meaning of these experiments that is the fine control of proteins (via complex

gene interactions) with respect to changing environmental conditions.

The second set of single cell experiments test the GRN’s ability to reach a state where a

protein (the output protein) is produced and consumed in cycles, i.e. forming a sinusoidal

wave altering a protein concentration. This experiment is done with and without the

Ph.D. Thesis 133 Tüze Kuyucu

Chapter 6 - Validating the ADS

Algorithm 4 The fitness function pseudo-code of the ‘ON-OFF’ switch experiment.

1: inputHighStartAge = 5
2: inputLowStartAge = 30
3: inputHighStartAge2 = 60
4: inputLowStartAge2 = 95
5: noTests = 5
6: MAXAGE = 150
7: for testCount in range 0 to noTests do
8: incrVal=255
9: target=0

10: reset and initialize GRN;
11: for age in range 0 to MAXAGE do
12: if age = inputHighStartAge or age = inputLowStartAge or age = inputHigh-

StartAge2 or age = inputLowStartAge2 then
13: inputValue = inputValue+ incrVal
14: if inputValue=255 then
15: incrVal =−255
16: else if inputValue=0 then
17: incrVal = 255
18: end if
19: end if
20: if age > 1 then
21: if inputValue=255 then
22: if target < 128 then
23: if target=0 then
24: target = target +10
25: else
26: target = target ∗2
27: end if
28: else
29: target = 250
30: end if
31: else
32: if target ≤ 10 then
33: target=0
34: else
35: target = target/2
36: end if
37: organismOutput = run the organism using inputValue as input
38: fitness = fitness+ |target−organismOut put|
39: end if
40: end if
41: end for
42: inputHighStartAge = rand(2 to 20);
43: inputLowStartAge = rand(15 to 35) + inputHighStartAge;
44: inputHighStartAge2 = rand(inputLowStartAge+30 to inputLowStartAge+45);
45: inputLowStartAge2 = rand(15 to 35) + inputHighStartAge2;
46: end for

Ph.D. Thesis 134 Tüze Kuyucu

Chapter 6 - Validating the ADS

presence of an environmental stimulus. The experiment investigates whether an internal

clock can be evolved with the GRN, which can respond to environmental stimuli via

starting or stopping the internal clock. Evolving an internal clock with a GRN was

successfully achieved by [Knabe et al., 2006]. The ability to create a clock enables the GRN

to create synchronous conditions, and implement behaviours that depend on cycles. Syn-

chronous behaviour is an important part of both biological (e.g. biochemical oscillations,

circadian rhythms) and electronic systems (e.g. sequential circuits). Figure 6.4 shows the

result of some example runs, and details the experiments further.

In Figure 6.4(a) the protein to gene binding threshold is a constant at 128, which means

that the output protein can not bind to the genes once it is below 128, hence the limited

range displayed on subfigure (a). The same problem was encountered with the ‘ON-

OFF’ switch experiments, and this problem can not be overcome by simply setting the

protein to gene binding threshold to a very low value. Evolving the protein to gene

binding threshold for each gene is the solution. The evolution of protein to gene binding

thresholds for each gene created one or more genes that would still consume the output

protein even when its concentration is near zero.

The GRN was able to create a system that can produce the required behaviour shown

in figures 6.2, 6.3, and 6.4. The results demonstrate that the GRN is able to respond

to the environmental stimuli in both a stable and dynamic way. In the experiments

discussed in figures 6.2 and 6.3, it was shown that the GRN is able to respond to a

change in the value of a protein (referred to as environmental stimulus) using a different

type of protein (the output protein), and regulate the concentration of the output protein

using the information learnt from the evolutionary constraints and the change in the

environmental stimulus. It was observed that evolving the GRN to achieve a behaviour

with minimal constraints required a smaller number of genes than evolving the same

behaviour with constraints that are tough to achieve. The ’ON-OFF’ switch experiments

showed that the concentration of the input protein could be mimicked by the output

protein, Figure 6.3(c). If a periodic input protein was applied the GRN would synchronize

and create an internal periodic signal. This demonstrates a cell synchronizing with its

environment, which is an important behaviour both in biology (e.g coordination in plant

development [Leyser and Day, 2003] and chemical interactions [Goldbeter, 1996]) and

computing.

Ph.D. Thesis 135 Tüze Kuyucu

Chapter 6 - Validating the ADS

Sheet3

Page 1

0 100 200 300 400 500 600

0

50

100

150

200

250

300

Sinusoid
no input, 10 Genes

Developmental Steps

P
ro

te
in

 C
on

ce
nt

ra
tio

n

(a) Constant cyclic production/consumption of output
protein when the protein to gene binding threshold is
set to 128.

Sheet3

Page 1

0 100 200 300 400 500 600

0

50

100

150

200

250

300

Sinusoid
no input, 10 Genes

Developmental Steps

P
ro

te
in

 C
on

ce
nt

ra
tio

n

(b) Constant cyclic production/consumption of output
protein.

Sheet3

Page 1

0 100 200 300 400 500 600

0

50

100

150

200

250

300

Sinusoid
Evolved binding Thresholds, 20 Genes

Developmental Steps

P
ro

te
in

 C
on

ce
nt

ra
tio

n

Output

Input

(c) Cyclic production/consumption of output protein when an environmental
signal is provided.

Sheet1

Page 1

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

Sinusoid
All Proteins Shown

Input
Output
Regulatory B
Regulatory C

Developmental Steps

P
ro

te
in

 C
on

ce
nt

ra
ito

n

(d) The concentration of all the proteins at the end of a develop-
mental step (including the input protein) of example (c).

Figure 6.4: For the examples above, cells with 4 proteins types are evolved. One of these proteins
is the input protein, another protein is the output, and the other two proteins are internal proteins
(not shown in the figures except subfigure (d). The graphs show the input protein as dashed lines
and the output protein as a solid line. The ideal ‘ON-OFF’ values are displayed under the title of
each graph along with the maximum number of genes the GRN was allowed to use to achieve the
displayed behaviour. In subfigures (a) and (b) the cells produce the displayed behaviour without
any input proteins. In (c) a clock-like behaviour is achieved that is directly influenced by an
outside stimulus. The actual output protein level oscillates between its maximum concentration
value and 0 when the input protein is at a high concentration level. When the input protein is
at concentration 0, the actual output protein concentration gradually drops down to 0 and stays
0 until the input protein concentration is increased. This matches the desired behaviour almost
perfectly. In (d) the concentration of all the proteins, including the internal proteins, are displayed
at the end of each developmental step for the example shown in (c).

Ph.D. Thesis 136 Tüze Kuyucu

Chapter 6 - Validating the ADS

In Figure 6.4, the oscillating production of a protein also demonstrates an ability to form

a dynamical network that can set a regular rhythm amongst the genes. The ability to

produce cyclic behaviours and respond to outside stimuli is important for a GRN, both

as a dynamical system and a biological model. The results suggest that the GRN model

is evolvable for synchronized signal processing as long as it is tuned correctly for its

application domain. Figure 6.4(d) graphs all the proteins involved in the GRN evolved

to produce an oscillating output when a constant high concentration of input protein is

supplied. The GRN achieves this by asynchronised oscillations of the internal regulatory

proteins when the input protein is high. When the input protein is low, the production

of all the proteins (except regulatory protein B) is suppressed by a high concentration

production of regulatory protein B (see Figure 6.4(d)).

6.3 Multi-Cellular Experiments

Patterns are an easy and convenient way of representing the cell states of a multicel-

lular organism. Patterns can be used to represent a solution to various computational

problems (including circuits), at its simplest form a pattern can be treated as a look up

table that provides the information for the type of component to be used in a given loca-

tion. More importantly, spatial patterns already exist in biology and are a fundamental

part of biological development. Developing patterns is very useful for examining and

comparing biologically inspired developmental approaches. In biology, various types of

patterns are observed and they are sometimes used as guidelines in determining what

to expect an ADS to achieve [Flann et al., 2005]. The patterns and shapes observed in

biology such as patches in the segmental divisions along the insect anterior-posterior

axis and borders forming boundaries between the anterior-posterior compartments of

the Drosophila wing [Lawrence, 1992] are a result of development. All these shapes

present an ordered pattern often with a symmetry. These patterns and shapes also show

a high degree of modularity via their repetitive structures. These qualities are what is

expected to appear in the systems built using artificial multicellular development. Thus,

it is expected that the multicellular developmental system presented here would be able

to achieve symmetrical patterns and display modularity1 in the final solutions.

1The ability to build modular structures. In other words structures that are made out of smaller segments,
which are repeatedly used over the whole of the structure.

Ph.D. Thesis 137 Tüze Kuyucu

Chapter 6 - Validating the ADS

Another important aspect of biological development is that it does not stop when the

organism has matured. When an organism is mature the developmental system adopts

a steady state and maintains a stable pattern throughout the rest of the life-span of the

organism. In the artificial multicellular developmental system presented here it is also

one of the major goals to achieve the solutions in such attractor states and be able to keep

the system stable while the developmental system continually runs.

In the multicellular experiments presented, the concentration of each protein is repre-

sented by an 8-bit unsigned number; thus the maximum concentration is 255. The protein

to gene binding threshold level is kept at a constant of half the maximum concentration

level (128) for all cells, genes, and chemicals. The organism is initialised with one live

cell placed in the middle of the virtual cell space. The structural part of the cells are

represented as 64-bit integer values, which are then treated as a colour value for a pixel

at the cell’s location. All the organisms are developed for a set number of developmental

steps and evaluated once when they are fully developed, unless stated otherwise.

6.3.1 Simple Motifs and Dynamics

The developmental system is evolved to match three different versions of a simple pat-

tern, which is a 6x6 image that has an even number of white pixels covering one half of

the image and black pixels covering the other half. Three versions of this motif are used

as the target patterns in the experiments: white pixels on the left half of the image (blank-

fill), white pixels on the right half of the image (fill-blank), and an oscillation between the

two. The patterns are illustrated in Figure 6.5.

The patterns shown in Figure 6.5 were evolved to test the organisational and differentia-

tion abilities of the developmental system, and understand how these functions work and

whether they have any biases. In addition, the oscillatory state was also included in the

experiments to see whether the developmental system would be able to achieve a stable

oscillatory state. In all cases, the developmental system was able to achieve both of the

static patterns in relatively few generations. However, there is a clear bias in achieving

the “Fill Blank” pattern as it was evolved more quickly in comparison to the “Blank Fill”

pattern every time.

Ph.D. Thesis 138 Tüze Kuyucu

Chapter 6 - Validating the ADS

Figure 6.5: Three target states for the first multicellular experiments. The first two being an
inversion of each other, the third state is an oscillation between the two.

This is due to the initialisation of the developmental system. The developmental system

was initialised with one live cell in the centre of the organism–fourth cell from the left,

and fourth cell from the top of the 6x6 organism–which should be a white pixel in the

“Fill Blank” case. The initialised cell always has a structural value of 0 by default, and

this seemed to create a notable bias on the evolvability of the developmental system to

achieve certain patterns. Figure 6.6 details the performance of the evolved experiments.

The oscillatory state was successfully found only 50% of the time, the other half of the

time a perfect switch between the two patterns was not achieved.

The original experiments (marked as ‘A’ and ‘E’) were evolved to mature after a set

number of developmental steps, in this case 30, and the organism was only evaluated

once at developmental step 30. The fitness function that was used to evaluate the matured

organism carries out pixel by pixel matching to the target pattern, and assigns a fitness

reflecting the number of pixels that failed to match the target pattern.

Two possible improvements to the evaluation stage during evolution were devised and

tested on the simple two colour pattern. The first possible improvement involved the

use of a non deterministic maturing for the candidate organisms. This means that the

organism would not always be expected to mature at developmental step 30, but it

would be allowed to mature at any developmental step between a minimum (3 in the

Ph.D. Thesis 139 Tüze Kuyucu

Chapter 6 - Validating the ADS

A B C D0

20

40

60

80

100

120

140

160
Av

er
ag

e
G

en
er

at
io

ns
 t

o
Ev

ol
ve

E F0
200
400
600
800

1000
1200
1400
1600
1800

Av
er

ag
e

G
en

er
at

io
ns

 t
o

Ev
ol

ve

Figure 6.6: The average number of evolutionary generations it takes to find the perfect solution
for the two patterns is shown in the figure above with other comparisons. Each experiment was
run 10 times and every run found the target pattern successfully. The “Blank Fill” examples (E-F)
are shown on different scales because of the large magnitude of difference in the average number
of generations in finding each of the example patterns. The aliases used in the x-axis are explained
in Table 6.2.

Table 6.2: The explanations of aliases for experiment results in Figure 6.6.

Reference in Plots Experiment

A Fill Blank pattern

B Fill Blank pattern with non deterministic maturing

C Oscillating pattern with non deterministic maturing

D All four permutations of a 2 patch pattern with deterministic maturing

E Blank Fill pattern

F Blank Fill pattern with non deterministic maturing

experiments presented in this section) and a maximum (30 in the experiments presented

in this section).

This was done by testing the organism against the target pattern every developmental

step between 3-30, and use the best evaluation age as the maturing age. This approach

was further developed to promote stable organisms (i.e. organisms that achieve the target

pattern and keep the target pattern even when they are developed for a longer time)

by stopping the development during evolution if the organism obtained a worse fitness

score than the previous developmental step. As well as promoting more stable results,

this also reduced the evolution time. The results of non deterministic maturing are shown

in Figure 6.6, which display improvement in number of evolutionary generations (and

Ph.D. Thesis 140 Tüze Kuyucu

Chapter 6 - Validating the ADS

time for the “Blank Fill” example). Using a non deterministic maturing also improved

the success rates for the oscillating pattern from 50% to 100%. Therefore only the results

of oscillating pattern with non deterministic maturing are shown in Figure 6.6 (labelled

as ‘C’). Non deterministic maturing has been suggested before by Devert et al. as an

implicitly adaptive method of evaluating a developmental organism [Devert et al., 2007].

Their results had reported robustness toward perturbations during the growth process

due to a global attractor being favoured by non deterministic maturing.

A second possible improvement to the evolutionary approach to find the target pattern

is to “relax” the constraints by not asking perfect matching of a pattern. As discussed

in Section 6.2, evolving the developmental system for a behaviour is much easier than

evolving it to exactly fit that behaviour to a constrained framework. Although this was

the case for a single cell, it may still apply for a multicellular developmental system. In

the case of two colour patterns two more experiments were tried out. In one of these

cases, the pattern matching constraints were relaxed by allowing the development of

an organism that matches either versions of the pattern shown in Figure 6.5 without

any preference to one or the other. In the second case these constraints were further

relaxed by allowing the developmental system to develop an organism that matches

either versions of the patterns described earlier plus their 90° tilted versions, creating

4 possible patterns to develop into. Although in essence all these patterns are the same,

relaxing the global location requirements for the cells during evolution has sped up the

evolution. The performance gain from relaxing the constraints for this example was

around 25-30% when compared with the best case of the perfect pattern matching (see

Figure 6.6), which is not a visible gain in this case but for more complicated problems this

performance gain might make a large difference. The improvement obtained by a more

fuzzy fitness function suggests that evolution of a developmental organisms would be

more successful in the design of systems that may benefit from such behaviour. This will

be further investigated in the rest of this chapter.

6.3.2 Higher Complexity Patterns

The developmental system is now evolved to match three different patterns of higher

complexity than the two colour patch patterns used in the previous experiments. The

Ph.D. Thesis 141 Tüze Kuyucu

Chapter 6 - Validating the ADS

0
0
0 0

0
0

0
0
0

1
1
1 1

1
1

1
1
1

2
2
2 2

2
2

2
2
2

3
3
3 3

3
3

3
3
3

Asymmetric Borders 3 Colour Patch
(French Flag)

4 Colour Patch

Figure 6.7: The developmental system is evolved to develop three patterns on different experi-
mental runs. The developmental organism has 6x6 cells with 4 possible colours to use as their
structural representation: grey, blue, white and red. For the first two patterns the developed
organism needs to be evolved not to use all the colours, whereas the four colour patch pattern
needs the developed organism to use all four colours.

aim is to investigate the organisation abilities of the developmental system in more detail,

and understand the abilities and limits of the system for solving computational problems.

The patterns evolved are listed in Figure 6.7. Each of these patterns have different charac-

teristics and complexities. The first pattern is a border pattern, which is formed by a block

of same type cells surrounded by a strip of different type of cells. In the case with the first

pattern the frame is asymmetrical and composed of two different types of cells in order

to make the task more challenging. The French flag pattern, the second experimental

pattern listed in Figure 6.7, is an example of segmentation of cells, and it is a symmetrical

structure. French flag has been described in developmental biology [Wolpert et al., 2002],

and artificial development, e.g. [Gordon, 2005; Miller, 2003], as a popular example for

demonstrating multicellular organisation. The third example is another patch pattern,

however this time there is no symmetry in the pattern.

Again the initial objective was to evolve an organism to achieve maturity after a given

number of developmental steps. In the experiments in this section the maturing age was

set to 20 developmental steps, and the organism was evaluated for 10 more developmen-

tal steps for stability. The maturing age of 20 was chosen to be a good value after an initial

set of experiments were done to manually determine this value. As long as this age is not

too low, the performance of the developmental system when being evolved didn’t seem

to change considerably. However, these can only be taken as the gut feelings as there is

no solid data to support this. The fitness function that was used to evaluate the matured

organism would do pixel by pixel matching to the target pattern, and assign a fitness

Ph.D. Thesis 142 Tüze Kuyucu

Chapter 6 - Validating the ADS

A B C D E F0

5

10

15

20

N
o.

 S
uc

ce
ss

fu
l R

un
s

Unstable Solutions
Stable Solutions

(a)

A B C D0

200000

400000

600000

800000

1000000

Av
er

ag
e

G
en

er
at

io
ns

 t
o

Ev
ol

ve

(b)

Figure 6.8: Subfigure (a) shows the number of successful runs for each experiment with the
number of stable runs shown as black bars. The aliases used in the x-axis are explained in Table 6.3.

Table 6.3: The explanations of aliases for experiment results in Figure 6.8.

Reference in Plots Experiment

A Asymmetric borders pattern

B Asymmetric borders pattern with non deterministic maturing

C French flag

D French flag with non deterministic maturing

E Four patches pattern

F Four patches pattern with non deterministic maturing

reflecting the number of pixels that failed to match the target pattern. Another set of

experiments were also done where the maturing age was non deterministic as described

in Section 6.3.1. In this case, the organism was evaluated for 10 developmental steps

for stability after it reaches maturity, not fixed at age 20 but maximum limit of 20. This

time each experiment was repeated 20 times and the maximum number of evolutionary

generations set to 1 million. The organisms were evolved to match the patterns illustrated

in Figure 6.7, and two aforementioned fitness functions were used. Table 6.3 lists all the

experiments undertaken.

The results for these experiments are shown in Figure 6.8. By allowing the organism

mature at a non pre-determined age, the number of stable solutions improve in the

asymmetrical borders pattern experiments. However, even though the overall number of

successful runs improve for the French flag, the number of stable solutions for the French

flag case drops from 2 to 1 when the non-deterministic maturing is used.

Ph.D. Thesis 143 Tüze Kuyucu

Chapter 6 - Validating the ADS

Even so, using a non-deterministic maturing improves the overall performance (dis-

played in Figure 6.8(b)) and success rate of the developmental system. Neither of the

experimental cases were able to find any perfect matches for the four patches pattern.

Once more the experiments suggest that having a non-deterministic maturing age im-

proves the overall performance of the developmental system. Unfortunately the devel-

opmental system fails to find any perfect matching solution to the four patches pattern;

the best solution found was a pattern with 1 mismatched pixel. The four patches pattern

presents a challenge for the developmental system because of its asymmetrical nature

and the existence of the strict pixel ordering. The failure to find a perfect match to the

four patches pattern suggests that the multicellular developmental system used needs

to be tuned or some of the mechanisms used need to be redesigned. Although using a

multicellular developmental system to perfectly match a pattern is not the most efficient

way of employing a developmental system, a 6x6 4 colour pattern should not be a major

challenge.

Evolving a developmental system to produce general behaviour is likely to be an easier

task than asking evolution to find a solution to a highly constrained problem. In fact,

if we look at biological organisms there is no equivalent of pixel by pixel matching; it is

acceptable to have certain amount of deformations in the target pattern’s appearance and

size, hence every individual of a species have visible differences in their appearance. A

similar fitness function to that described in Section 6.3.1, were devised. In this, different

permutations of a pattern are all accepted as the target.

A pattern of four patches can be permuted to form 4! = 24 acceptable variations. During

the evaluation stage the organism is tested to see if it matches any of these possible

patterns and awarded a fitness value for the best matching result. A lower fitness means

a better match. The code for evaluation stage is detailed in Algorithm 5. Even though the

evaluation stage becomes more computationally intensive by using Algorithm 5 rather

than matching with one target pattern, the increase in the overall evolution computa-

tion time is negligible. This is due to the comparably large computing time required

for processing the developmental system. Figure 6.9 provides a visual explanation for

Algorithm 5, which describe a generic fitness function for evaluating a patch pattern for

its organisational properties.

Ph.D. Thesis 144 Tüze Kuyucu

Chapter 6 - Validating the ADS

Algorithm 5 The pseudo-code for fitness function of patch patterns.
1: comment: define the window size
2: define countXlimit
3: define countY limit
4: define pixelsPerColour
5: initialize groupingScore[NOo fCOLOURS]
6: for x in range 0 to SIZEORGANISMX do
7: for y in range 0 to SIZEORGANISMY do
8: pixelValue← phenotype[x][y]
9: for countX in range 0 to countXlimit do

10: areaStartX ← x− countX
11: areaEndX ← areaStartX + countXlimit−1
12: if areaStartX < 0 or areaEndX ≥ SIZEORGANISMX then
13: break
14: end if
15: for countY in range 0 to countY limit do
16: areaStartY ← y− countY
17: areaEndY ← areaStartY + countY limit−1
18: if areaStartY < 0 or areaEndX ≥ SIZEORGANISMY then
19: break
20: end if
21: groupingScore[pixelValue]← 0
22: for i in range areaStartX to areaEndX do
23: for j in range areaStartY to areaEndY do
24: if phenotype[i][j] = pixelValue then
25: groupingScore[pixelValue]← groupingScore[pixelValue]+1
26: end if
27: end for
28: end for
29: if groupingScore[pixelValue] > bestGroupingScore[pixelValue] then
30: bestGroupingScore[pixelValue]← groupingScore[pixelValue]
31: end if
32: end for
33: end for
34: end for
35: end for
36: f itness← 0
37: for colourCount in range 0 to NOo fCOLOURS do
38: f itness← f itness+ pixelsPerColour−bestGroupingScore[colourCount]
39: end for
40: return f itness

The results of the experiments evolving three and four patches patterns with the con-

sideration of all possible variations is displayed in Figure 6.10. Evolving the four patch

pattern for all the possible combinations increased the number of successful runs from 0

to 5, and evolving the French flag pattern for all the possible combinations increased the

Ph.D. Thesis 145 Tüze Kuyucu

Chapter 6 - Validating the ADS

number of successful runs from 6 to 10. Hence in both cases, evolving the developmental

system to match one of the all possible versions of a pattern rather than a single version

improved the performance and the chances of success.

6.4 Fault Tolerance and Recovery

Two of the most stable solutions from the evolution of asymmetric borders and French

flag patterns presented in the Section 6.3 are used to investigate their fault tolerance and

recovery properties. The development of these patterns are illustrated in figures 6.11

x
x x
x x
x x
x x
x x

x x
x x
x x
x x
x x
x x

x x
x x
x x
x x
x x
x x

x
x x
x x
x x
x x
x x

x x
x x
x x
x x
x x
x x

x x
x x
x x
x x
x x
x x

x
x x
x x
x x
x x
x x

x x
x x
x x
x x
x x
x x

x x
x x
x x
x x
x x
x x

x x
x x
x x
x x
x x
x x

x x
x x

x
x x
x x
x x

x x
x x
x x
x x
x x
x x

x x
x x
x x
x x
x x
x x

x x
x x

x
x x
x x
x x

x x
x x
x x
x x
x x
x x

x x
x x
x x
x x
x x
x x

x x
x x

x
x x
x x
x x

x x
x x
x x
x x
x x
x x

x x
x x
x x
x x
x x
x x

x x
x x

x
x x
x x
x x

x x
x x
x x
x x
x x
x x

x x
x x
x x
x x
x x
x x

x x
x x

x
x x
x x
x x

x x
x x
x x
x x
x x
x x

x x
x x
x x
x x
x x
x x

x x
x x

x
x x
x x
x x

x x
x x
x x
x x
x x
x x

x x
x x
x x
x x
x x
x x

x x
x x
x x
x x
x x
x x

x x
x x
x x
x x
x x
x

Patch window

x Pixel in the evolved pattern

Reference pixel

Figure 6.9: The method of evaluating a patch pattern only for its organisational properties is
shown. The specific example shown here is for a four patch pattern. A window is created depending
on the type of patch pattern (in this case it is 3x3). The surrounding area of a pivot pixel (all pixels
are taken as a pivot one by one) is scanned using the window, and depending on the colour of pixel,
a fitness value is assigned for each scan. The best fitness value for each colour is recorded and the
rest of the calculations are discarded. This encourages all the same colour pixels to group together.
Since there are four colours present in a four patch pattern, the compromise for all the colours is
to pick a corner and group together in that corner. Thus for a four patch pattern the best fitness is
obtained by achieving a four patch pattern similar to the one displayed in Figure 6.7, but this time
the corner occupied by each colour is not part of the fitness function.

Ph.D. Thesis 146 Tüze Kuyucu

Chapter 6 - Validating the ADS

A B C D0

2

4

6

8

10

N
o.

 S
uc

ce
ss

fu
l R

un
s

Unstable Solutions
Stable Solutions

Figure 6.10: Number of successful runs out of 20 for each experiment. A clear improvement in
the number of successful runs for all runs can be observed when the pattern matching constraints
are eased. The aliases used in the x-axis are explained in Table 6.4.

Table 6.4: The explanations of aliases for experiment results in Figure 6.10.

Reference in Plots Experiment

A Four patches pattern evolved with fixed patch locations

B Four patches pattern evolved with all possible combinations

C Three patches pattern matching French Flag

D Three patches pattern evolved with all possible combinations

and 6.12. These figures show snapshots of the developmental organism as it matures to

organise itself to the desired pattern. Note that not every developmental step is shown

in these figures.

None of the experiments presented in Section 6.3 were evolved with fault tolerance as an

objective function, hence this section explores the emergent fault tolerance and recovery

properties of the developmental organisms. Furthermore, by investigating the effects of

introducing various faults into the system, it is expected to improve the understanding

of multicellular ordering properties of the developmental system.

In the experiments presented in this section, two types of faults are used: permanent and

transient faults.

Ph.D. Thesis 147 Tüze Kuyucu

Chapter 6 - Validating the ADS

Age 3 Age 4 Age 5 Age 6 Age 7 Age 8

Age 11 Age 23 Age 25 Age 26 Age 27 Age 28

Figure 6.11: Development of French flag pattern. Once the perfect French flag is achieved the
organism stays stable at that pattern for 465 developmental steps.

6.4.1 Permanent Faults

One way of introducing permanent faults is to simulate a complete failure of a cell.

Hence, when a permanent fault is introduced to an organism, one or more of the cells

are killed, and the cell is unable to carry out any of the developmental functions (such as

growth and signalling).

Figures 6.13 and 6.14, illustrate the change in the course of development when cells fail

in the developmental organisms displayed in figures 6.11 and 6.12. In these figures the

images where a fault is first introduced are marked with “F”, and when these organisms

reach stable states after the introduction of faults the respective images are marked with

“S”.

Age 3 Age 5 Age 6 Age 7 Age 8 Age 14

Age 15 Age 16 Age 18 Age 19 Age 31 Age 32

Figure 6.12: Development of asymmetric borders pattern. The organism stays stable for 15
developmental steps at the target pattern, and every 15 developmental steps it oscillates once
between the last two images displayed in this figure.

Ph.D. Thesis 148 Tüze Kuyucu

Chapter 6 - Validating the ADS

In Figure 6.13(a), an already matured organism that formed a French flag incurs complete

cell failures at different stages. The effect of the cell failures to the overall organisation of

the organism seems rather small; after two cell deaths the organism manages to keep the

French flag pattern with only one perturbed pixel (except the dead cells–grey), and after

three cell deaths the number of perturbed pixels (again other than the dead cells) goes

up to four. The effect of a cell failure in a premature organism, shown in Figure 6.13(b),

seems to be larger; three perturbed pixels after one cell failure. However, the overall

shape of the French flag pattern is still achieved by the matured organism. The fact that

a small number of cell failures do not have a large effect on the overall organisational

abilities of the organism suggests that the organism may be highly benefiting from the

use of diffusion in the formation of the French flag pattern. Even though certain key cells

are killed in a neighbourhood, the state of the majority of the neighbourhood cells are

protected. This would not be the case if the organism was purely reliant on direct contact

signalling, since the death of a cell means a large change in the information received by

its neighbouring cells (a loss of 1
4 of information).

Similar tests are carried out for the asymmetric borders pattern, and the results are illus-

trated in Figure 6.13. Interestingly, failure of a cell both before and after the organism

matured had large effects on the formation of the target pattern. When a cell failure

occurred, the pattern formed by the organism diverged from the target pattern. This

suggests that the organism evolved for the development of an asymmetric border pattern

relied heavily on direct contact signalling; it can also be seen from figures 6.14(a) and

6.14(b) that when a cell is killed all four of its neighbours always change their cell states.

Another method of introducing permanent faults is to knock out genes. The genome of

a developmental system is the code required to build and maintain the target organism.

Losing part or all of the genetic information would be a permanent fault, and it is ex-

pected that such a fault would mean the complete failure of the system. However, it was

demonstrated by earlier work that developmental systems can sometimes be unaffected

by or provide a “graceful degradation” when genetic perturbations occur rather than a

complete failure [Bentley, 2005; Reil, 1999].

Figures 6.15 and 6.16 show some example patterns obtained when some of the genes

are replaced with zeroes before the organism is developed. Results obtained in these

figures confirm the observations made by [Bentley, 2005] and [Reil, 1999]. Figure 6.15(a)

Ph.D. Thesis 149 Tüze Kuyucu

Chapter 6 - Validating the ADS

Age 29 Age 30 Age 32 Age 140 Age 142 Age 144

Age 240 Age 242 Age 243 Age 245 Age 261

(a) Cell failures after the organism has fully developed.

Age 11 Age 14 Age 16 Age 24 Age 26 Age 45

(b) Cell failure at the early developmental stages of the organism.

Figure 6.13: The changes that occur in the French flag pattern formed by the developmental
organism after permanent faults occur. The snapshots where a new fault occur are marked with
“F”, and snapshots that display the pattern where the developmental organism stabilizes to are
marked with “S”.

Age 31 Age 32 Age 33 Age 39 Age 61 Age 63

(a) Cell failures after the organism has fully developed.

Age 16 Age 17 Age 18 Age 21 Age 24 Age 25

(b) Cell failure at the early developmental stages of the organism.

Figure 6.14: The changes that occur in the asymmetric borders pattern formed by the develop-
mental organism after permanent faults occur. The snapshots where a new fault occur are marked
with “F”, and snapshots that display the pattern where the developmental organism stabilises to
are marked with “S”.

Ph.D. Thesis 150 Tüze Kuyucu

Chapter 6 - Validating the ADS

(a) Gene 16. (b) Gene 6. (c) Gene 0. (d) Gene 26.

Figure 6.15: Patterns achieved with knocked out genes.

(a) Gene 1. (b) Gene 30. (c) Gene 29.

Figure 6.16: Patterns achieved with knocked out genes for the asymmetric borders pattern
organism.

shows a very small amount of degradation in the quality of pattern obtained (with 5

pixel mismatches) when Gene 16 is knocked out from the organism that was evolved

to form a French flag pattern. The pattern shown in Figure 6.16(a) matches the target

pattern perfectly even though Gene 1 is knocked out from the organism that was evolved

to form an asymmetric borders pattern. These results show that degeneracy is inherently

present in development and it can provide fault tolerance even in artificial systems.

Interestingly, some of the resulting patterns shown in Figures 6.15 and 6.16 show that

some genes may have drastic effects on the formation of a target pattern; with roles

such as growth (figures 6.15(d) and 6.16(c)), specialisation (figures 6.15(b) and 6.16(b)),

or specific structuring (Figure 6.15(c)).

6.4.2 Transient Faults

Transient faults are simulated as temporary loss in information in the neighbourhood of a

cell(s). It has been demonstrated that a developmental system can recover from transient

changes in the phenotype, despite not being evolved to do so [Federici, 2004; Liu et al.,

2005; Miller, 2004; Reil, 1999; Roggen, 2005].

In the experiments presented here, the transient faults are simulated by changing the

chemical information present in the system. When a cell is selected to have a transient

Ph.D. Thesis 151 Tüze Kuyucu

Chapter 6 - Validating the ADS

fault, the cell itself and its Moore neighbourhood2 are cleared of all the chemicals that

they possess. This way, there are no permanent faults present in the system, but the

information gathered over the developmental history of the selected cells are lost.

Figures 6.17 and 6.18 display the changes in the developing pattern when transient faults

are introduced to the organisms before and after the organisms have matured. Unlike

the permanent faults caused by the killed cells, the organism that forms an asymmetric

borders pattern exhibit much better recovery properties from transient faults than the

organism that forms a French flag pattern when developed without any faults. In fact, the

organism that is evolved to develop an asymmetric borders pattern demonstrate perfect

recovery from three different instances of transient faults. When all 36 of the cells in

the organism that is evolved to achieve an asymmetric borders pattern are subjected

to transient fault all at the same time, the organism still manages to retrieve the target

pattern. Whereas the organism evolved to achieve a French flag pattern can not fully

recover from even a single transient fault (in case of a single transient fault 2 cells obtain

incorrect states). The organism that is evolved to develop a French flag pattern suffers

more from transient faults than permanent cell deaths, this may again be due to the heavy

reliance of this particular organism on the diffusion mechanism for the organisation of its

cells. One can argue that if the organisation of cells is mainly achieved via the diffusion

2A Moore neighbourhood of a cell covers the eight cells that surround the central cell.

Age 16 Age 17 Age 27 Age 29 Age 31 Age 87

Age 216 Age 217 Age 226 Age 229 Age 230 Age 232

Figure 6.17: The changes that occur in the French flag pattern formed by the developmental
organism after permanent faults occur. The snapshots where a new fault occur are marked with
“F”, and snapshots that display the pattern where the developmental organism stabilises to are
marked with “S”. Two sets of transient faults introduced in the same cells of the organism: first
one being in the early stages of the development of the organism, and the second fault is after the
organism stabilises at a pattern after the first fault.

Ph.D. Thesis 152 Tüze Kuyucu

Chapter 6 - Validating the ADS

Age 15 Age 16 Age 17 Age 19 Age 24 Age 26

Age 106 Age 108 Age 117 Age 167 Age 169 Age 176

Figure 6.18: The changes that occur in the asymmetric borders pattern formed by the developmen-
tal organism after transient faults occur. The snapshots where a new fault occur are marked with
“F”, and snapshots that display the pattern where the developmental organism stabilizes to are
marked with “S”. Three sets of transient faults are introduced in different parts of the organism:
first one being in the early stages of the development of the organism, and the other two after the
organism stabilizes at a pattern after the previous fault.

mechanism, then when the chemical information obtained is wiped out in a group of cells

the retrieval of the previous states of the cells via diffusion is not possible due to the large

change in the chemical gradient. Whereas, if the organisation of cells is mainly achieved

via the cell contact signalling, then retrieving the previous states of cells in case of the loss

of the chemical information in these cells is possible as long as these cells are surrounded

via fully functional cells.

More work in the effects of these signalling mechanisms on the fault tolerant properties of

developmental systems is required to support or negate these arguments. Nonetheless, it

is interesting to see that one organism that is better at coping with permanent cell failures

is not as good as coping with transient faults as another organism. In either of these cases,

both patterns demonstrate inherent fault tolerance and recovery, which is an encouraging

result on the success of the developmental system presented in this thesis. It is a positive

indication that robustness is an inherent property of developmental systems.

6.5 Summary

An initial set of evolutionary experiments are undertaken with the ADS described in

Chapter 5. The experiments involved the evolution of the ADS in single cell and multi-

cellular environments.

Ph.D. Thesis 153 Tüze Kuyucu

Chapter 6 - Validating the ADS

The single cell experiments demonstrated that the GRN model used is capable of creating

internal dynamics in a cell to synchronise itself with the environment. The single cell

experiments also showed that the GRN could reach oscillating states purely by it internal

dynamics.

The multicellular experiments involved organisation and differentiation of cells to form

patterns. These experiments demonstrated that the developmental system is capable

of achieving multicellular differentiation and organisation. The states achievable were

shown to be both stable patterns and oscillating patterns.

All experiments reveal that the ADS has some biases, and when certain constraints that

do not favour these biases are applied during evolution, the process of evolution becomes

more time consuming than it should be. It was also shown in the pattern experiments that

it is possible to improve the evolutionary performance via various improvements to the

ADS and the fitness function. These improvements prompt the question of whether there

is more to learn about the ADS in order to improve the ADS and evolutionary fitness

function further in order to achieve a more evolvable system.

One of the observations made from both the single cell experiments and the pattern

experiments is that the system is more evolvable when the evolutionary constraints are

relaxed. For the single cell experiments, achieving the ‘ON-OFF’ behaviour required 3×

more genes in order to keep the ‘ON’ state always at 0 and OFF state always at ‘250’,

instead of a solution with a smaller gap between these two states (‘ON’ - 150, ‘OFF’ -

70). In the pattern experiments, it was shown that evolving a pattern by defining the

relative locations of colours in the fitness function rather than exact locations improved

the evolutionary performance greatly. The improvement in the evolvability of the ADS in

these cases is not surprising, since these cases enlarge the number of acceptable solutions

within a given search space. This may also suggest that evolution of ADSs is more

suitable for problems that does not require precision but complex behaviour. Such a

conclusion is not supportive for the use of the evolution of ADSs to build digital circuits,

but this will be investigated by simple benchmark problems in Chapter 7.

Finally, two of the selected organisms (the most stable solutions from the evolution of

asymmetric borders and French flag patterns) from the multicellular experiments were

tested for their fault tolerance properties. It was observed that the two organisms handled

Ph.D. Thesis 154 Tüze Kuyucu

Chapter 6 - Validating the Artificial Developmental System (ADS)

different faults better than the other, but both were shown to exhibit inherent fault toler-

ant properties. The organisms were shown to be capable of reorganising to the evolved

pattern in the event of transient faults that cause loss of developmental data; it was

suggested that direct contact signalling may play an important role in this behaviour. The

organisms were also shown to be able to keep the evolved pattern in the event of a cell

failure; it was suggested that chemical diffusion may be the key to this behaviour. It was

also shown that a developmental organism may provide a more graceful degradation

in the event of loss of genetic information or even be immune to some loss of genetic

information.

The brief demonstrations of organisms’–which were evolved without fault tolerance as

an objective function–ability to recover from various faults highlight the large scope of

fault tolerant properties that ADSs can bring to evolutionary computation. The develop-

mental model described in this thesis is certainly one of these ADSs.

An interesting observation that was made in all the experiments presented in this chapter

was that even though a variable mutation rate was used, the mutation rate was seldom

varied by evolution, and the lowest mutation rate was used most of the time for each evo-

lutionary generation. Jin and Trommler note that evolvability increases during evolution

more when the mutation step-size is smaller[Jin and Trommler, 2010].

Ph.D. Thesis 155 Tüze Kuyucu

Publications III

The work presented in the next chapter (Chapter 7) has been presented in these published

papers:

Kuyucu, T.; Trefzer, M.; Miller, J. F. & Tyrrell, A. M. On The Properties of Artificial De-

velopment and Its Use in Evolvable Hardware. IEEE Symposium Series on Computational

Intelligence - IEEE SSCI 2009, 2009, 108-115

Kuyucu, T.; Trefzer, M.; Miller, J. F. & Tyrrell, A. M. A Scalable Solution to N-bit Parity

via Articial Development. 5th International Conference on Ph.D. Research in Microelectronics

& Electronics – PRIME 2009, 2009

156

Chapter 7

Developing Digital Circuits

It was demonstrated in Chapter 6 that the Gene Regulatory Network (GRN) modelled in

the ADS is capable of producing responsive, stable and dynamic states using chemicals

for gene interaction within a cell. When the GRN was used as part of a larger network

of cells, it was shown that the ADS could be evolved to form various organizational

patterns. It was shown that the ADS’s evolvability could drastically change with the

fitness and physical constraints. The evolution of the ADS to achieve a target state was

shown to be highly dependent on successful fitness description and correct developmen-

tal parameters. In this chapter the ADS is evolved for the design of digital circuits. A

minimally constrained approach will be taken in the hope of discovering the full potential

of using ADS for the evolution of circuits, as well as finding out about the weaknesses of

evolution of a GRN based ADS in circuit design.

7.1 Mapping the Developmental Organisms to Cir-

cuits

The multicellular organism developed in the experiments use a similar structural repre-

sentation as described in Section 6.1. In the case of circuits, an n-bit (n being a predefined

value; a multiple of 64) size binary string that represents the cell function is divided

into multiple 16-bit chunks (each 16-bit representing an integer). Four 16-bit integers are

then used to create a Cartesian Genetic Programming (CGP) node. A CGP node has 3

157

Chapter 7 - Developing Digital Circuits

I
1

I
2

I
3

I
4

I5

I6

I7

I8

I9

I10

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

Dead Cells

Alive Cells

O

Figure 7.1: An example 4× 4 organism with 10 inputs is shown. The available structural
connections for cells 0,0 and 1,3 are drawn to illustrate how the cells can connect to form a CGP
circuit. The cells in the organism are organised into rows and columns. Each available cell is given
a coordinate value in the organism as X ,Y ; X being the row the cell is at, whereas Y represents the
column of the cell.

inputs (from the external inputs or previously defined nodes) and a function (a digital

multiplexer in this case). Each cell can have one or more CGP nodes as its cell function.

A feed-forward CGP representation is used for building combinational circuits, thus each

node within a cell can connect to the other nodes within the cell as well as the outputs

of other cells. The maximum organism size is predefined, and the cells are ordered in

columns to form an organism of size n× n. Each cell has 3 external connections, and

they are allowed to connect to the circuit inputs and cells from previous columns as well

as cells from the same column but previous rows, as shown in Figure 7.1. For the first

time, the design of a digital circuit via a GRN based ADS includes the connectivity of

the circuit components. If the ADS can handle designing the routing as well as the logic

configuration, it should remove the need to provide a pre-wired circuit topology, and

allow evolution and development to work more freely in the design of digital circuits.

However, developing the routing may make the developmental task more complex and

remove the scaling benefits that a developmental system may bring about.

In a mature organism, not every cell needs to be alive, and even though the dead cells

occupy space in the organism, a live cell’s circuitry can not create connections to a dead

Ph.D. Thesis 158 Tüze Kuyucu

Chapter 7 - Developing Digital Circuits

Table 7.1: The multiplexers used for the experiments presented. A, B and C are the inputs to the
multiplexer.

Multiplexer Type The Circuit

MUX1 (A & C)‖(B & C)

MUX2 (A & C)‖(B & C)

MUX3 (A & C)‖(B & C)

MUX4 (A & C)‖(B & C)

cell. Initially every organism starts with a single live cell, in the middle of the reserved

organism area, and can grow to cover as much of the area as required. The output of the

circuit built can be taken from any of the cells, but for most of the experiments this will

be fixed to the “last” live cell in the organism. In the example shown in Figure 7.1, this is

cell 1,3. The components used for building the structural part of the cells are 4 different

types of MUXes, shown in Table 7.1. Mapping the cell function to CGP nodes is shown

in Figure 7.2. A single CGP node is represented by a 64-bit binary string, and each CGP

node is formed of three input values and a component type value. For more information

on CGP mapping and the processing of a CGP network see [Miller and Thomson, 2000].

1011000110110110101001001110100110111001100001010010000100110010

I0

I
1

Cell 1:

4221745494 47493 8498
mod 2 = 1mod 2 = 0 mod 2 = 1 mod 4 = 2

1000010001001000101111011011111100110001111101100010000000010011Cell 2:

33864 1279048575 8211
mod 3 = 0 mod 3 = 1mod 3 = 2 mod 4 = 3

Mux 3

0 0

1
1

1
2

Mux 2 OI2

Cell 1 Cell 2

Figure 7.2: An example decoding process is shown for 2 cells, each with a single CGP node (i.e.
64-bit long cell function).

Ph.D. Thesis 159 Tüze Kuyucu

Chapter 7 - Developing Digital Circuits

7.2 Circuits Developed

In these experiments, the ADS is evolved to develop several different circuits. These

circuits are classic examples used in Evolvable HardWare (EHW), namely; parity and

multiplier circuits.

The number of chemicals in an organism allowed in these experiments are composed

of four proteins; three of them being “structuring” proteins, while the fourth is a “plas-

modesma” protein, as detailed in Section 5.2.2. The organism is allowed to age for 10

developmental steps and then evaluated once at age 10. Hierarchical Bit-string Sampling

(HBS) fitness function, described in Section 3.5.1, is used to check if the developed circuit

functions correctly. Therefore, the developmental system goes off-line once it reaches

maturity in these experiments. The Evolutionary Algorithm (EA) used is as described in

Section 6.1. The maximum number of evolutionary generations is 2 million.

7.2.1 Development of Even n-bit Parity Circuits

Parity problem is easy to implement and popular amongst EHW researchers. It has been

used previously to test/demonstrate the scalability of a proposed system [Gordon, 2005;

Koza, 1994]. Thus, it is regarded as a suitable initial test problem for the ADS. The ADS

is evolved that solve 5, 7, 9, 10, 11, 12 - bit even parity circuits.

1111111111
1234434111
2666786441
4775788632
1444444221

Figure 7.3: The cells alive at the end of the fully developed organism of a 3-bit even parity circuit
are categorized via enumeration from 1-8. The type (category) of each cell is determined by the
genes active in the cell.

Ph.D. Thesis 160 Tüze Kuyucu

Chapter 7 - Developing Digital Circuits

In the even n-bit parity experiments, the organism is limited to 100 cells (10× 10 cells)

with each cell having 3 inputs, 1 output and a 2 component structure, and the number

of genes per genome is defined as 50, and each gene is represented by a 64 bit number.

Thus, the evolved genome is 3200 bits long (64[bitspergene]∗50[genes]).

The circuits evolved display a large amount of reuse in genes; Figure 7.4 shows a snap-

shot of the gene activity in two cells with different structures. A large number of the

active genes in the two cells overlap, and the differentiation of the cells emerge from

the activation of few different genes. In the cells shown in Figure 7.4, more than half of

the genes are inactive in a single cell, which was the case for all other cells in the same

organism. For the same organism approximately 1
3 of the total number of available genes

were never used. Even though there is a good deal of gene reuse, when considered in

detail, the solution for the 3-bit parity appears to be formed by a highly differentiated

organization of cells. Figure 7.3 shows the organisation of differentiated cells in the

organism that solves a 3-bit parity circuit using MUXes. Although there is a large amount

of reuse for cell type 1, the number of cell types is surprisingly large (8 different types)

for a symmetric circuit such as 3-bit parity.

Table 7.2: Results of the even parity experiments. Each experiment is carried out 30 times; the
number of successfully evolved circuits, and total number of generations per average successful
run are listed.

Circuit Evolutionary Results

Evolved Mechanism Solution Average

Found Generations

5-bit Parity Direct Evo. 30 1060

5-bit Parity Development 30 2072

7-bit Parity Direct Evo. 29 4430

7-bit Parity Development 30 7216

9-bit Parity Direct Evo. 30 12744

9-bit Parity Development 30 22024

10-bit Parity Direct Evo. 30 79160

10-bit Parity Development 29 88222

11-bit Parity Direct Evo. 30 150456

11-bit Parity Development 30 161858

12-bit Parity Direct Evo. 30 395582

12-bit Parity Development 30 288481

Ph.D. Thesis 161 Tüze Kuyucu

A
ct

iv
at

io
n

In
hi

bi
tio

n

C
el

l 1
C

el
l 1

2

S
tru

ct
ur

in
g

P
ro

te
in

P
la

sm
od

es
m

a
P

ro
te

in
R

eg
ul

at
or

y
P

ro
te

in
 1

R
eg

ul
at

or
y

P
ro

te
in

 2

Fi
gu

re
7.

4:
Th

e
G

R
N

in
te

ra
ct

io
n

gr
ap

h
of

tw
o

fu
lly

de
ve

lo
pe

d
ce

lls
in

a
3-

bi
t

pa
ri

ty
ci

rc
ui

t
is

ill
us

tr
at

ed
as

ex
am

pl
es

.
Ea

ch
ci

rc
le

re
fe

rs
to

a
ge

ne
in

th
e

D
N

A
;t

he
ge

ne
s

th
at

ar
e

us
ed

(a
ct

iv
e)

in
a

ce
ll

ar
e

th
e

on
es

th
at

ar
e

co
nn

ec
te

d
to

ot
he

r
ac

tiv
e

ge
ne

s
vi

a
ac

tiv
at

io
n/

in
hi

bi
tio

n
ar

ro
w

s.
A

n
ar

ro
w

he
ad

po
in

tin
g

to
a

ge
ne

m
ea

ns
th

at
th

e
ge

ne
ca

n
be

ac
tiv

at
ed

by
th

e
ac

tiv
at

io
n

of
th

e
ge

ne
th

e
ar

ro
w

he
ad

is
po

in
tin

g
fr

om
,a

nd
a

fla
th

ea
d

po
in

tin
g

to
a

ge
ne

m
ea

ns
th

at
th

e
ge

ne
ca

n
be

in
hi

bi
te

d
by

th
e

ac
tiv

ity
of

th
e

ge
ne

th
e

fla
th

ea
d

is
po

in
tin

g
fr

om
.E

ac
h

ge
ne

is
co

lo
ur

ed
by

th
e

ty
pe

of
pr

ot
ei

n
th

ey
pr

od
uc

e,
i.e

if
a

ge
ne

pr
od

uc
es

a
st

ru
ct

ur
in

g
pr

ot
ei

n
it’

s
co

lo
ur

ed
re

d,
if

it
pr

od
uc

es
a

pl
as

m
od

es
m

a
pr

ot
ei

n
it’

s
co

lo
ur

ed
bl

ac
k

an
d

vi
ce

ve
rs

a.

Chapter 7 - Developing Digital Circuits

On almost all of the runs presented in Table 7.2 development has a perfect success rate

in building parity circuits. It is a good achievement for development that it is able to

directly produce functional circuit structures in a reasonably small amount of time. When

compared with direct evolution, the average number of evolutionary generations for

development to reach a successful run is most of the time higher than direct evolution.

However, the gap between the number of evolutionary generations required for each

method decreases as the size of the parity circuit is increased, and for the largest parity

evolved (12-bit) the evolution of the developmental system requires less generations than

the direct evolution of the 12-bit parity circuit. The trend seen in Table 7.2 suggests that

using development for larger size parity circuits would be more efficient. The common

way of developing circuits in literature has been to use pattern mapping – that removes

the need to deal with routing while developing the circuit – when a circuit was evolved

using a developmental system. The developmental system can then develop a pattern

rather than a complete description of a circuit [Gordon, 2005; Liu, 2007; Tufte, 2008a].

The figures presented in Table 7.2 show that the ADS’s performance (in terms of number

of average evolutionary generations required to find the target circuit) decreases as the

circuit size gets bigger. This is an undesirable trend as it suggests that development is

not exploiting the scalable nature of the parity problem. This is also shown in the earlier

example of the 3-bit parity circuit. In Figure 7.3, it’s shown that there are 8 different types

of cells in order to implement 3-bit parity circuit, and the pattern shows no particular

order or symmetry to it. There are a number of factors that could be the reason for

this, but it’s hard to point where to start. The immediate and most obvious constants

that may have adversely affected the ADS performance in developing parity circuits

are; the organism size, number of components used in a single cell, and the organism

maturing age. Larger circuits may require a larger number of cells available in order to

implement a scalable solution. Using two MUXes per cell may create a larger challenge

for development to come up with a general solution to parity. Whereas it is possible to

create an XOR gate using a single MUX, which is the basic building block for a parity

circuit. Using ten developmental steps to mature the developmental organism may be

too low for the larger parity circuits to emerge.

Ph.D. Thesis 163 Tüze Kuyucu

Chapter 7 - Developing Digital Circuits

Table 7.3: Results of 9-bit parity experiments with different developmental steps. 30 evolutionary
runs were done for each experiment listed.

Circuit Evolved Cell Solutions Average Total Developmental

Age Found Generations Computations

9-bit Parity 7 30 29321 1,436,729

9-bit Parity 10 30 22024 1,541,680

9-bit Parity 15 30 17038 1,788,990

9-bit Parity 25 30 17153 3,001,775

9-bit Parity 35 30 14361 3,518,445

9-bit Parity 42 30 13837 4,068,078

9-bit Parity 50 30 13601 4,760,350

9-bit Parity 75 30 10780 5,659,500

9-bit Parity upto 30 30 37321 ∼ 3,918,705

A simple set of experiments are undertaken to investigate the effects of using larger

maturing ages for the developmental organism in building 9-bit parity circuits. Table 7.3

gives the results to these tests.

Looking at Table 7.3, it is interesting to see that the number of evolutionary generations

required for the developmental system in developing a fully functional circuit decreases

as the number of developmental steps (cell age) required before the organism is consid-

ered mature is increased. This indicates that the developmental system might become

more evolvable if it is developed for longer. However, every time the maturing age is

increased, the total number of developmental computations increase. Developmental

computation is the total number of steps an organism is developed before the evolu-

tionary run ends. This is the total number of evolutionary generations multiplied by

the number of developmental steps the organism is run every generation multiplied by

the population size (7 in this case). Using a non-deterministic maturing, as suggested

in Section 6.3, with a maximum developmental age of up to 30 did not improve the

evolvability of the ADS either.

It should be noted that development is able to determine the number of cells it needs to

use for the problem evolved rather than using every single available cell location, thus

the maximum number of cells available for the organism should not determine the size

of the final organism.

Ph.D. Thesis 164 Tüze Kuyucu

Chapter 7 - Developing Digital Circuits

Table 7.4: Results of the development of larger parity experiments (10–12 bit) with bigger
organism sizes. 30 evolutionary runs were done for each experiment listed.

Circuit Evolved Organism Sol Avg Std

Size Found Gens Dev

10-bit Parity 10x10 29 88222 112452

10-bit Parity 11x11 30 93594 168272

11-bit Parity 10x10 30 161858 166388

11-bit Parity 12x12 30 110454 123963

12-bit Parity 10x10 30 288481 378401

12-bit Parity 13x13 28 257757 349526

12-bit Parity 15x15 27 242716 176216

The developmental system was provided with a fixed maximum organism size regard-

less of the size of the tackled problem in order to determine whether it would be capable

of determining the amount of resources it needs to use. In the experiments carried out,

development is able to determine the number of cells it needs to solve the problem,

rather than using every single available cell location. Thus, the maximum number of cells

provided is not always required for the final organism, and the developmental system is

capable of controlling the growth of the organism (even without the use of programmed

cell death). For example, for all the 12-bit parity circuits all the cells were alive for the

fully developed organism, whereas for the 5-bit parity circuit most of the time only 30-

50 cells (out of 100) would be alive for the fully developed organism. This example is

illustrated in Figure 7.5, where the number of cells alive/dead of actual organisms for

fully developed 5-bit and 12-bit parity circuits are shown.

To investigate the effects of using a bigger organism on the performance of the devel-

opmental system in finding valid circuits, the experiments for developing 10, 11, and 12

bit parity problems are carried out with more resources. Increasing the organism size

did lower the number of generations in most cases as it can be seen from Table 7.4. In

one case (namely the 12 bit parity), the success rate slightly dropped with the increase

of organism size. However, the figures shown in Table 7.4 are not significant enough to

suggest any change in the evolvability of the ADS with change in organism size.

Ph.D. Thesis 165 Tüze Kuyucu

Chapter 7 - Developing Digital Circuits

XXXXOOOOOO
XXXXOOOOOO
XXXXOOOOOO
XXXXOOOOOO
XXXXOOOOOO
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX
XXXXXXXXXX

OOOOOOOOOO
OOOOOOOOOO
OOOOOOOOOO
OOOOOOOOOO
OOOOOOOOOO
OOOOOOOOOO
OOOOOOOOOO
OOOOOOOOOO
OOOOOOOOOO
OOOOOOOOOO

5 bit parity 12 bit parity X – Dead Cell
O – Live Cell

Figure 7.5: The final cellular states of the two fully developed organisms are shown: for 5-bit
parity only 30 of the cells are alive, whereas for 12-bit parity all 100 of the cells are alive.

Table 7.5: Results of the 2-bit multiplier experiments are given. 30 evolutionary runs were done
for the experiment listed.

Circuit Evolved Sol Avg Std

Found Gens Dev

2-bit Multiplier - Development 20 821668 482611

7.2.2 Development of a 2-bit Multiplier

As a second demonstrator application, a 2-bit multiplier is evolved to see if the proposed

developmental system is able to tackle problems that have multiple outputs, and see

how it manages solving problems that are not as symmetric and repetitive as even parity.

For the multiplier experiments the organism is limited to 100 cells with each cell having

single component structure (using the MUXes in Table 7.1). The number of genes per

genome is defined as 100. The number of proteins used are four; three of them being

structuring, while the fourth is a plasmodesma protein. The organism is allowed to age

for 15 developmental steps and then evaluated. The maximum number of generations is

2 million and the EA parameters are as described in Section 6.1.

The developmental system is successfully evolved to develop a 2-bit multiplier 20 out

of 30 times, which shows that the ADS is capable of developing multiple output circuits.

The number of successful runs in developing multiplier circuits is lower than the number

of successful runs in parity circuit experiments, which is not surprising since the 2-bit

multiplier does not have as symmetric and repetitive structure.

Ph.D. Thesis 166 Tüze Kuyucu

Chapter 7 - Developing Digital Circuits

From the experiments presented here it is observed that development is capable of devel-

oping digital circuits. However, the amount of scalability that is expected from an ideal

developmental system is not demonstrated. Due to the unordered structure of a 2-bit

multiplier, it is expected that evolving a 2-bit multiplier is not suited for a developmental

system, and being able to do so presents a positive result to show that the developmental

system is capable of growing highly differentiated cells.

It was stated at the start of this section that HBS fitness function is used for the evolution

of developmental organisms that grow to be digital circuits. It was demonstrated in

Chapter 3 that HBS is effective in taking care of transient effects as well as defining a

positive bias for the parity circuit. Although HBS is a valuable fitness function for the

evolution of circuits in hardware, it lacks useful information and provides unnecessary

information for the evolution of scalable developmental circuits in simulation. This is

because the ability of HBS to detect intermittent circuits due to transient effects in the

evolved circuits is not useful for extrinsic evolution, where transient effects do not exist.

On the other hand, HBS fails to define a scalable description of a parity circuit. By using

HBS or bitwise fitness functions to evaluate the circuit developed, the fitness function

is not asking evolution to search for scalable solutions, and without any guidance the

evolutionary search is easily trapped in a local optima.

It is also possible to guide evolution in achieving scalable solutions via the evolutionary

environment, i.e. by constraints. An example of this is provided by Gordon’s exam-

ple of n-bit adder problem; he provides the correct routing for a scalable adder circuit

and evolves a developmental organism that provides the contents of the look up tables

that make up the circuit. Without the fixed routing that favours an n-bit adder circuit,

evolving a scalable adder organism would not be as feasible. Therefore, allowing the

developmental organisms to manage the connectivity of their phenotype was possibly

another reason for not achieving scalable solutions to the parity circuits.

7.2.3 Developing a Parity Solving Organism

In order to develop a scalable parity circuit, the fitness function for evaluating the devel-

opmental organism is changed. An organism is initially evaluated to behave as a 2-bit

parity, i.e. an XOR gate. The evaluation is done when the organism reaches develop-

Ph.D. Thesis 167 Tüze Kuyucu

Chapter 7 - Developing Digital Circuits

Gene 0 Gene 3

Gene 1 Gene 2

Gene 4

Gene 0: 10 10 00 10 10011100 01 ...
Gene 1: 11 00 11 11 00100010 11 ...
Gene 2: 10 00 01 11 01010111 00 ...
Gene 3: 10 01 00 10 00101111 00 ...
Gene 4: 01 01 11 11 11010101 11 ...

Activation Rules: P1 P2 P3 P4 Unused P
produced

Protein ID: 00 – Plasmodesma
 01 – Structuring
 10 & 11 – Regulatory

Development: Step 1 Step 2 Step 3 Step 4 ...

inhibits
activates

Figure 7.6: An organism that was evolved to act as a growing parity circuit is shown, with the
list of its evolved genes and the GRN graph for the alive cells.

mental step 3, and the maximum size of the organism is limited to 2× 2. Once the 2-bit

parity is achieved, the organism is then developed further with larger organism size and

expected to provide a larger parity solving circuit each developmental step.

To achieve this behaviour, a few other changes were made to the developmental model.

The number of external inputs were allowed to be variable rather than a constant, and as

well as allowing the cells to pick their inputs, they were also allowed to specify a more

generic connectivity such as “next set of unconnected inputs”. This last change provided

a convenient way for the developmental model to manage the connections of a growing

circuit.

The number of genes were reduced to five, and four proteins were used again, this

time only one as the structuring protein, one plasmodesma protein, and two regulatory

proteins. An organism is successfully evolved that is a growing n-bit parity solver. As

shown in Figure 7.6, the GRN of the evolved organism keeps replicating an XOR gate for

each row of cells.

Ph.D. Thesis 168 Tüze Kuyucu

Chapter 7 - Developing Digital Circuits

The growth of the parity solving organism in more detail is shown in Figure 7.6. The

example shown demonstrates the proposed developmental system’s ability to achieve

modularity and scalability. At developmental step 1 only one cell is alive in the organism.

Looking at the GRN rules it is seen that Gene 0 and 3 do not need any promoting proteins

in order to activate and the inhibiting protein (P3 for both genes in this case) initially

does not exist (initially no proteins exist in the system). Only Gene 0 and 3 would be

active at the first stages of the GRN as the other genes require the presence of promoting

proteins in order to be active. Gene 3 produces plasmodesma protein that triggers a

growth process to the south of the parent cell (encoded in the postconditional bit-string,

which is not shown in the figure). On developmental step 2 the second cell grows and

shares its proteins with the parent cell, creating an identical structure and connecting its

inputs to the next available input and the previous cell (i.e. the “next set of unconnected

inputs”). By step 3 the organism has two identical cells, each implementing an XOR

with a MUX. The developed organism in this example demonstrates a modular and

redundant behaviour by replicating the same physical structure in both of the cells, which

are desirable features for a scalable system. More importantly, when the organism was

allowed to develop further (beyond step 3), the daughter cell from step 2 triggers a

growth process into its southern neighbour in step 3, which would then become a chain

of growth events, resulting in a growing parity solving organism. Hence achieving n-bit

parity circuit in n developmental steps.

By defining the fitness function carefully and altering the genotype–phenotype mapping

to allow scalable circuit design, a scalable n-bit parity is shown to be possible to evolve

using a small number of genes.

7.3 Summary

It was demonstrated in this chapter that the ADS is capable of designing digital circuits.

Both the logic and routing configurations were presented to the ADS as part of the circuit

design problem, and the ADS was able to provide valid solutions.

The results demonstrated a large amount of cell differentiation as well as design redun-

dancy. In fact, the amount of cell differentiation observed was surprisingly high; for a

Ph.D. Thesis 169 Tüze Kuyucu

Chapter 7 - Developing Digital Circuits

3-bit parity circuit there were 8 different types of cells used. The fact that the develop-

mental system required so many specialized cells to produce a simple repetitive circuit

like 3-bit parity suggests that the evolutionary conditions were preventing a simpler

scalable solution. Two of the major reasons for this were shown to be the unsuitable

fitness function and environmental constraints. Allowing the ADS to design the circuit

connectivity caused the circuit problem to be organisationally a tough problem. By

adjusting the fitness function and providing better phenotype mapping, it was shown

that the evolution of a scalable n-bit parity becomes a simple task for the ADS. One other

reason that may have reduced the evolvability of the developmental system in the earlier

parity and multiplier examples can be the large number of genes used that created a

search space of 3200 bits. It was mentioned in Chapter 2 that the search space size of an

evolutionary algorithm may be limited to 1000 bits [Sekanina, 2006]. However, when the

number of genes were reduced in these experiments, there was no visible increase in the

evolutionary performance.

It was shown that a suitable fitness function is important for the evolution of scalable

systems. It was argued in Section 7.2.2 that, HBS as a fitness function for the evolution

of a developmental system lacked some necessary information. If the aim is to achieve

scalable systems, a favourable fitness function for the evolution of a developmental sys-

tem, whatever the task may be, should be encouraging scalable behaviour. One way

of achieving this is to divide the evaluation of the organism phenotype into multiple

stages [Federici, 2004].

Although the evolution of an ADS building more complex digital circuits could be seen

as the next natural step, the observations made thus far from chapters 6 and 7 sug-

gest that the information known on the evolution of ADS for the design of scalable

computational systems and circuits is insufficient. The increasing computational effort

for evolving ADSs that build larger sizes of parity circuits via the use of multiplexers

was not expected, and there remains a largely unknown number of parameters and

mechanisms that can be altered to influence the behaviour of development. The influence

on evolvability of a large list of developmental mechanisms and parameters are currently

unknown; such as diffusion, contact signalling, protein production rate, chemical con-

sumption rate, chemical thresholds for protein to gene binding, the method of mapping

the developmental organism to the desired phenotype, and the list goes on. All these

Ph.D. Thesis 170 Tüze Kuyucu

Chapter 7 - Developing Digital Circuits

mechanisms and parameters can have a substantial effect on the evolvability of the de-

velopmental system, however, not much investigative work exist in the literature on the

effects of these mechanisms. Therefore, it seems more natural to investigate further the

effects of some of the mechanisms and parameters in order to obtain a better understand-

ing of multicellular development. With a better understanding of ADS, the ADS and its

working environment could be tuned better for real applications. Chapter 8 undertakes

a detailed investigation of the importance of many developmental mechanisms and pa-

rameters on the behaviour of the developmental system. The work presented should

lead to an improved understanding of artificial multicellular development, which will

assist in its utilization in the application of evolutionary computation. The experiments

undertaken in Chapter 8 may also provide a better understanding of mechanisms of

biological development.

Ph.D. Thesis 171 Tüze Kuyucu

Chapter 8

Developmental Mechanisms and Pa-

rameters

Gene Regulatory Network (GRN)s are complex dynamic systems, and there is little un-

derstanding about how they work and what their best domain of application in com-

puting would be. There is existing work that undertakes detailed experiments in order

to demonstrate and investigate the evolution and behaviour of artificial GRNs; such as

Banzhaf’s work on investigating the dynamics of artificial GRNs [Banzhaf, 2003], and

Knabe’s work on investigating the evolvability of artificial GRNs [Knabe et al., 2008,

2006].

Although multicellular Artificial Developmental System (ADS)s have been demonstrated

to provide scalability, fault tolerance, and adaptivity in Evolutionary Computation (EC),

they are also poorly understood. Hence, tuning the parameters and mechanisms of a

GRN based ADS is a real challenge. Implementations of artificial development in EC has

been proposed since early 90’s; e.g. [Dellaert and Beer, 1994; Fleischer and Barr, 1993]. But

most of the developmental models designed still rely on educated guesses, and various

assumptions on the suitability of the biological developmental processes for EC. The

need to investigate the behaviour and effective ways of implementing artificial develop-

ment is already acknowledged by various researchers [Devert et al., 2007; Haddow and

Hoye, 2009, 2007; Stanley and Miikkulainen, 2003; Steiner et al., 2008]. The physics of

the digital medium where the artificial development is modelled is different from the

biological counterpart. A biological cell has many advantages and disadvantages when

172

Chapter 8 - Developmental Mechanisms and Parameters

compared with a digital cell, e.g. the ability to copy the genotype perfectly from one cell

to another is a given in digital systems whereas small errors are inevitable in biological

organisms. On the other hand, the cell growth in biology is naturally allowed by the

physics of the organism whereas this has to be engineered in digital systems. Hence

when implemented artificially, the usefulness of a mechanism can not always be directly

correlated to biology.

It was demonstrated in chapters 6 and 7 that the GRN based ADS can be evolved suc-

cessfully to achieve stable pattern organisation and scalable circuit design. However,

many parameters and mechanisms of ADS and the GRN are not well understood, and it

is unknown whether the results achieved in chapters 6 and 7 reflect the best results that

can be achieved by the GRN based ADS used in this thesis.

It was shown in Section 6.3 that it is possible to improve the evolvability of the ADS by

using non-deterministic maturing during the evolution of patterns. This hints that the

ADS has the potential to be further improved. Undertaking experiments to understand

several of the mechanisms and parameters of an ADS will enable the improvement of

the ADS, and provide an idea on how much more the ADS can be improved by further

investigations.

In the experiments presented so far, the tuning of the developmental system and the

inclusion/design of multicellular developmental mechanisms (e.g. cell signalling) was

mostly done by making educated guesses about the behaviour and effects of these mech-

anisms and parameters. Although there are various implementations and uses of devel-

opmental systems in the literature, there is little exhaustive work on the investigation

of the effects of developmental parameters and mechanisms on artificial multicellular

development. Without thorough investigation the tuning of a complex dynamical system

like an ADS is not feasible, and before using an ADS to solve complex problems, it is

important to understand the effects of mechanisms and parameters that might have a

drastic impact on an ADS’s performance.

Ph.D. Thesis 173 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

8.1 Experiments on Mechanisms and Parameters

In this chapter we investigate the importance of various mechanisms and parameters on

the ability of the ADS to successfully achieve the intended behaviour. These mechanisms

and parameters are:

• Diffusion

• Direct contact signalling

• Protein production and chemical consumption rates

• Chemical thresholds for gene binding

• Various chemical/protein types

• Various ways of constructing the phenotype of a multicellular developmental system

• Preconditional and postconditional decision methods

• Artificial simulation of food reliance

The problem of explaining how genetic mechanisms can produce the many differenti-

ated patterns of cells found in multicellular biological organisms remains a fundamental

research challenge in molecular and developmental biology [Wolpert et al., 2002]. In-

spired by this a series of benchmarks based on pattern formation are devised. Although

developing spatial patterns does not appear directly useful in engineering applications,

it proves to be very useful for examining and comparing micro-model developmental

approaches and ascertaining the importance of mechanisms and parameters. Three types

of patterns are used, which were also examined in [Flann et al., 2005], namely:

• Mosaic patterns

• Border patterns

• Patch patterns

Ph.D. Thesis 174 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

Three main pattern types were selected in order to test the ADS on building ordered

structures of different types. ADSs have been well established in successfully matching

ordered patterns, and ordered patterns are a common part of biological development as

well. Hence, using ordered patterns of different regularities is a convenient and intuitive

way of providing initial benchmarking experiments to ADS.

These three types of patterns demonstrate different ordering characteristics and com-

plexities in patterns for the experiments testing the characteristics of the ADS. A mosaic

pattern is a periodic pattern that repeats a smaller motif over the whole pattern area. A

border pattern is a group of cells (pixels) isolated by a thin layer of different type of cells.

Finally, a patch pattern is the division of different groups of cells into an aperiodic parti-

tioning of groups of cells of the same type. These three types of patterns are also common

in natural development, and they can be seen in various parts of different developmental

organisms [Flann et al., 2005]. Out of these three categories six patterns are chosen as test

patterns for all the experimental scenarios. These patterns are illustrated in further detail

in Figure 8.1. Each pixel of a pattern is represented by a cell, which specifies the colour

of the pixel as the cell type. For all the patterns except the 8 patches pattern in Figure 8.1,

the maximum number of colour types is set to 4 (i.e. colours range from 0→ 3). For 8

patches pattern the maximum number of colour types is increased to 8.

The experiments described in this chapter are composed of 50 evolutionary runs for each

case, each evolutionary run being limited to 1 million evolutionary generations. The

evolutionary algorithm is the one described in Section 6.1. Non-deterministic maturing

(first explained in Section 6.3.1) is used for all the runs, and the maximum maturing age

is limited to 30. The value 30 is chosen to allow the developmental organism plenty

of time to develop a mature organism. This value was chosen as a result of general

knowledge obtained from previous experiments, and it does not rely on any exhaustive

data about its effect on the evolvability of the developmental system. Each run that

achieves the perfect representation of the target pattern is evolved further (until the

generation limit is reached) until a stable solution is found. To test the stability of a

run, the organism is developed for ten extra developmental steps (e.g. 19→ 28) and for

each step matched to the target pattern. If an organism can form a fixed pattern for ten

consecutive developmental steps, it is marked as a stable solution. Of course in reality not

all the solutions marked as stable are infact stable. Testing a candidate solution for 100%

Ph.D. Thesis 175 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

Figure 8.1: The patterns used for investigating the influence on evolvability of developmental
mechanisms and parameters. A border pattern with asymmetric borders of size 6x6 is the first
pattern. The next three patterns (size 8x8) are of mosaic nature with different complexities. The
simple 2 colour (simplest of the three) and 4 colour mosaic patterns have a 2x2 size for the periodic
pattern, whereas the 2 colour mosaic pattern (most complex of the three) has a 4x2 size for its
periodic pattern. The next two patterns (size 8x8) can be classified as patch patterns, one being
the popular French flag pattern and the other one a patch pattern of 8 colours. A border around
the French flag pattern is added making it a hybrid – bordered patch pattern.

stability is too time consuming to be incorporated into the evolutionary phase. The test

used here filters most of the transient solutions, and encourages (but not force) evolution

to find stable solutions.

8.2 Direct Contact Signalling

Contact signalling is the most popular cell signalling model in ADSs, see Table 5.1. It

is simple to implement, and biological evidence strongly suggests that direct contact

signalling is an essential part of development [Fagotto and Gumbiner, 1996]. Experi-

ments in this section will investigate the usefulness of direct contact signalling. Three

versions of the developmental model with different contact signalling mechanisms are

investigated in the experiments. In the ADS used here, contact signalling is established

Ph.D. Thesis 176 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

by the mutual transcription of plasmodesma proteins (described in Section 5.2.3), which

form connections between two neighbouring cells. These connections are formed as

plasmodesmata, a tunnel, between the two cells.

• Simple tunnels: The initially designed version of plasmodesmata between two

cells involved a “simple tunnel”; no filtering of chemicals was done, and all the

chemicals available in both cells were entirely shared amongst the two cells.

• Controlled tunnels: A more complex version of the original design. When a plas-

modesmata is formed, the chemicals are not freely shared between the two cells. A

chemical may pass through the tunnel only as a result of further gene regulation.

A chemical is transferred through an existing tunnel when a plasmodesma protein

coded with the concentration and identity of the chemical to transfer through the

tunnel is expressed by a gene. This approach of contact cell signalling is more com-

plex than the original design, but it provides individual cells the chance to protect

their specialisation in case of an emerging plasmodesmata with their neighbour. In

the original design, the cells that are connected together were forced to share all

their chemicals creating two identical cells at the cost of loss of the identity of both

cells, causing loss of information. Simple tunnels may have had adverse effects on

the ADS performance by making cell specialisation a tougher task.

• No contact signalling: In this case direct contact signalling is disabled, i.e. no plas-

modesmata (tunnels), leaving diffusion as the only cell signalling process within

the organism.

All three contact signalling mechanisms described above are accompanied with a sec-

ond signalling mechanism, which is the diffusion cell signalling mechnisms described in

Section 5.2.

The success rates of the experiments are presented in Figure 8.2. All of the experiments

suggest that a contact signalling mechanism is essential for effective multicellular devel-

opment. The developmental system had a poor performance for all the patterns when

it lacked contact signalling (labelled as No Tunnelling); for some patterns the success rate

was 0/50. This strongly suggests that a simple diffusion mechanism on its own is unable

to organise a multicellular system effectively.

Ph.D. Thesis 177 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

A B C0

10

20

30

40

50

N
o.

 S
uc

ce
ss

fu
l R

un
s

(a) Asymmetric Borders

A B C0

5

10

15

20

25

N
o.

 S
uc

ce
ss

fu
l R

un
s

(b) Simple 2 Colour Mosaic

A B C0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
o.

 S
uc

ce
ss

fu
l R

un
s

(c) 2 Colour Mosaic

A B C0.0

0.5

1.0

1.5

2.0

N
o.

 S
uc

ce
ss

fu
l R

un
s

(d) 4 Colour Mosaic

A B C0

5

10

15

20

25

30

35

40

N
o.

 S
uc

ce
ss

fu
l R

un
s

(e) French Flag

Stable Solutions

Unstable Solutions

Figure 8.2: Bar charts displaying the number of successful runs out of fifty runs for five of
the six experimental patterns tried by developmental models using different contact signalling
mechanisms. For the 8 patches pattern none of the models returned a successful run. Grey Bars
show the total number of successful runs and black bars show the successful runs that are also
stable. The aliases used in the x-axis are explained in Table 8.1.

Table 8.1: The direct contact signalling cases used in the experiments.

Reference in Plots Mechanism

A Controlled Tunnels

B Simple Tunnels

C No Tunneling (i.e. only diffusion)

The newly introduced direct contact signalling model (marked as controlledTunnels) im-

proved the success rate as well as the number of stable solutions in all patterns (except 8

patches pattern). In most cases the simple tunnels model is unable to provide an effective

signalling mechanism. This suggests that even though the controlled tunnels model is a

more complex signalling model than the simple tunnels, the developmental system greatly

benefits from the larger control over the shared chemicals between individual cells.

Since none of the versions of the ADS were able to find a perfect match for the 8 patches

pattern, a box and whisker plot (referred to as box plot) for the fitness achieved over

the 50 runs for each experiment is displayed in Figure 8.3. Box and whisker plots are

explained with an example in Appendix C.

Ph.D. Thesis 178 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

A B C5

10

15

20

25

30

35

40

Fi
tn

es
s

Figure 8.3: A fitness box and whisker plot of the different contact signalling models for 8 patches
pattern. The box plot shows the best (minimum) fitness achieved as well as the fitness distribution
via quartiles.

The best fitness is achieved by the controlled tunnels contact signalling mechanism was

9; meaning there were 9 mismatched pixels from the target image. The controlled tun-

nels also achieves the best fitness distribution among the three signalling models, simple

tunnels having the second best distribution. The box plots indicate that controlled tunnels

mechanism provides a significantly different data sample from the other two mecha-

nisms, which has the lowest median value at 20. The simple tunnels and controlled tunnels

were analysed for statistical and scientific significance with rank-sum (p-value) and Vargha-

Delaney A statistic tests as well [Vargha and Delaney, 2000].

White and Poulding provide a consice definition for scientific and statistical significance

[White and Poulding, 2009], where they define these two terms to be:

1. Statistical Significance: “A statistical analysis of the difference in observed algo-

rithm performance must provide evidence that the observed difference is unlikely

to be a chance result.”

2. Scientific Significance: “The difference in observed algorithm performance–the

effect size–must be sufficiently large in comparison to the stochastic noise (arising

from the choice of random seeds) to be scientifically important.”

A 5% significance level is used for all the rank-sum tests presented in this section, hence

a p-value of < 5% indicates a significant difference in the results of the two ADS versions

being compared. To analyse scientific significance, the Vargha-Delaney A statistic is

calculated, which is a measure of effect size compared to stochastic noise [Vargha and

Ph.D. Thesis 179 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

Delaney, 2000]. This statistic is independent of the sample size and has a range of 0-1: a

value of 0.5 indicates identical performance between the two samples. Values smaller or

larger than 0.5 suggests increasingly large effect sizes; a value larger than 0.5 indicating a

better performance for the first of the two samples. An A statistic value greater than 0.64,

or less than 0.36, indicates a medium or large effect size [Vargha and Delaney, 2000]. Any

comparison demonstrating medium or large effect sizes is considered to be scientifically

significant.

Vargha-Delaney A statistic and rank-sum tests are non-parametric statistical tests, which

do not include specific assumptions about the distribution of the measured data sets, un-

like parametric tests such as a t-test. When using parametric tests, small deviations from

the required assumptions can invalidate the results [Leech and Onwuegbuzie, 2002].

Therefore it is essential to use non-parametric statistical tests in the experiments pre-

sented here, since the data from evolutionary experiments generally feature skewed dis-

tributions.

The comparison of simple tunnels with controlled tunnels yield a p-value of < 10−6 and an

A statistic of 0.104, which suggests a statistically and scientifically significant difference

between the performance provided by the two methods, controlled tunnels being signifi-

cantly better.

Observing the data provided by figures 8.2 and 8.3, we can conclude that uncontrolled

diffusion is not a sufficient signalling mechanism on its own, and contact signalling

provides a complementatry signalling method for multicellular organisation. However

a careful design of contact signalling is required in order to fully benefit from its use

in multicellular organisation. Since the controlled tunnels version of the contact cell sig-

nalling mechanism used in the experiments here proved to be the most effective, the rest

of the experiments presented in this section use an ADS with controlled tunnels contact

signalling mechanism.

8.3 Diffusion

Table 5.1 lists various developmental models. More than half of these models implement

some form of diffusion mechanism as a distant cell signalling mechanism. The only

Ph.D. Thesis 180 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

exception of a distant cell signalling mechanism that does not involve diffusion is the

routed signalling implemented by Bentley and Kumar [Bentley and Kumar, 1999]. In this

mechanism, two cells form direct connections with each other regardless of the distance

between them. Not limiting the direct connections to the nearest neighbours, a symmetry

breaking behaviour via a distant signalling mechanism is achieved. Such a connection

scheme may be too complex for ADSs with a large number of cells. Since diffusion is

a more popular and biologically inspired form of short-medium distance signalling, a

simple diffusion mechanism is also modelled in the developmental system used here

(the same mechanism used in [Miller, 2003]). The mechanism involves constant diffusion

of chemicals from each cell to their four cardinal neighbours.

The diffusion mechanisms implemented in the developmental systems displayed in Ta-

ble 5.1 vary in their implementation, possibly providing different effects on the multicel-

lular developmental system in each case. Zhan et al. [Zhan et al., 2008] extends the model

used by Miller [Miller, 2003] by the addition of a cell membrane and a chemical pathway.

The cell membrane prevents the diffusion of chemicals below a certain threshold level,

and the pathway provides a conversion table to convert the type of the chemicals to be

diffused out to another chemical type. The cell membrane in [Zhan et al., 2008] could

be a good improvement since it provides a more controlled diffusion mechanism, and

as discussed earlier; unrestricted diffusion in biological embryos is undesirable [Fagotto

and Gumbiner, 1996], which may also apply to ADSs. Steiner et al. [Steiner et al., 2007]

use a diffusion layer for the diffusing chemicals, the chemicals are diffused into the layer

constantly but it is accompanied by cell adhesion and sorting which indirectly controls

the direction of diffusion by moving cells within the organism.

Whether a more complex and bio-inspired diffusion mechanism is required for a more

evolvable developmental system or a simple diffusion mechanism is sufficient is not clear

without empirical data. Biological analogy could be used to suggest that uncontrolled

diffusion is undesirable, but biological data can not always be relied on for models de-

signed for EC. On the other hand most of the applications could be tackled by cell

contact signalling [Flann et al., 2005], hence a diffusion mechanism may increase the ADS

complexity and might not be beneficial at all.

Six different diffusion models are investigated in this section for their effects on the

developmental system’s ability to achieve the patterns shown in Figure 8.1.

Ph.D. Thesis 181 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

• Unrestricted constant diffusion: The diffusion mechanism that was included in

the initial design. The diffusion process is carried out for all chemicals available in

every cell each developmental step; half of all the available chemicals diffuse out

of a cell equally to the four nearest neighbours, i.e. each neighbour obtains 1
8 of the

cell’s chemicals each developmental step.

• Generic diffusion proteins: In this case the diffusion process only takes place when

a diffusion protein is produced by a gene. When the dedicated diffusion protein

is produced by a gene, the diffusion protein uses the information provided by the

postconditional part of the gene to determine the amount of chemical concentration

(same for each chemical type) to diffuse out. Therefore the diffusion of chemicals

is controlled by gene regulation within a cell, but same amount of all the chemicals

diffuse out to neighbouring cells every developmental step.

• Chemical Specific diffusion proteins (Diffusion Protein (DP)): In this case when

the dedicated diffusion protein is produced by a gene, the diffusion protein uses

the further information provided by the postconditional part of the gene to deter-

mine how much of which chemical to diffuse out. Therefore the diffusion of each

chemical is controlled individually by the gene regulation within a cell, so that not

all the chemicals might diffuse out to the neighbouring cells every developmental

step.

• Diffusion layer: An extra layer for the diffusing chemicals is included to simulate

a more realistic diffusion of chemicals throughout the organism. Hence, a diffusing

chemical does not travel directly between two neighbouring cells. Also in this case,

a chemical only diffuses from a direction of high concentration to low concentration

and not vice versa. The amount of chemical that diffuses is described by Equa-

tion 8.1: the flow of chemical a from position p to position q is calculated as their

difference in their concentrations Y . DC is the diffusion constant.

• Diffusers: These are chemical sources placed around the organism diffusing out

chemicals at a constant rate. These diffusers are used as well as an unrestricted

constant diffusion of chemicals from the cells themselves. The idea of diffusers was

used in Roggen’s morphogenesis model [Roggen, 2005].

Ph.D. Thesis 182 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

• No diffusion: Diffusion mechanism is completely removed from the system, only

leaving cell to cell contact signalling.

∆Ypat =


(Ypat −Yqat)/DC Ypat > Yqat

0 Ypat ≤ Yqat

. (8.1)

Figure 8.4 contains bar charts displaying the number of runs the developmental system

was successfully evolved to match the patterns shown in Figure 8.1 for different diffusion

mechanisms. Unlike the contact signalling experiments there is no single diffusion mech-

anism that outperforms the other mechanisms in achieving all the experimental patterns.

However just like contact signalling, diffusion had a big impact on the ADS performance.

Most of the problems suffered from uncontrolled presence (except the bordered French

flag pattern) or total absence (except asymmetric borders pattern) of diffusion.

Unrestricted constant diffusion was only favoured by the popular French flag pattern,

and had negative effects on the formation of all other patterns. Although lack of diffusion

reduced the performance of the developmental system in general, its effects were not as

big as having constant diffusion. Once more, introducing a more controlled method of

communication seemed to improve the ADS performance in general. Figure 8.4 shows

that 8 patches and 4 colour mosaic patterns benefited from the presence of an extra

diffusion layer in the system whereas 2 colour mosaic, simple 2 colour mosaic, and 8

patches patterns benefited from the use of diffusion proteins. Use of diffusion proteins

that control the diffusion of single chemicals rather than the diffusion of all chemicals at

once slightly improved the performance in 4 colour mosaic, 8 patches, and asymmetric

borders patterns due to the higher precision control in the ADS; whereas the performance

deteriorated in other cases due to the increase in the required number of genes in the

control of chemical diffusion. The use of diffusers did not have any notable benefits, in

fact in most of the cases the performance of the ADS deteriorated when diffusers were

included in the system.

For some of the experiments with a diffusion layer, the diffusion constant was evolved

instead of being pre-set. For most of the experiments this provided an improvement in

evolutionary performance, although not a significant improvement.

Ph.D. Thesis 183 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

A B C D E F G H I N0

1

2

3

4

5

6
No

. S
uc

ce
ss

fu
l R

un
s

(a) 2 Colour Mosaic

A B C D E F G H I N0

10

20

30

40

50

No
. S

uc
ce

ss
fu

l R
un

s

(b) Simple 2 Colour Mosaic

A B C D E F G H I J K L M N
0

5

10

15

20

25

30

35

40

No
. S

uc
ce

ss
fu

l R
un

s

(c) French Flag

A B C D E F G H I N0

2

4

6

8

10

12

14

16

18

No
. S

uc
ce

ss
fu

l R
un

s

(d) 4 Colour Mosaic

A B C D E F G H I N0.0

0.2

0.4

0.6

0.8

1.0

No
. S

uc
ce

ss
fu

l R
un

s

(e) 8 Patches

A B C D E F G H I N0

10

20

30

40

50

No
. S

uc
ce

ss
fu

l R
un

s

(f) Asymmetric Borders

Stable Solutions

Unstable Solutions

Figure 8.4: Bar charts displaying the number of successful runs out of fifty runs for different
diffusion mechanisms in achieving all six patterns. The aliases used in the x-axis are explained in
Table 8.2.

Deciding whether the use of a diffusion layer, diffusion protein, or both for controlling

the diffusion process to achieve the overall best diffusion mechanism for the ADS is not

very clear from the bar charts shown in Figure 8.4. To provide more information on the

performance, Figure 8.5 provides box plots on the fitness distribution on all the runs

of each experiment. Since almost all the experiments on asymmetric borders pattern

Ph.D. Thesis 184 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

Table 8.2: The diffusion mechanisms used in the experiments.

Reference in Plots Mechanism

A Constant diffusion

B No diffusion

C Generic diffusion proteins

D Chemical specific diffusion proteins (DP)

E Diffusion layer with evolved Diffusion Constant (DC)

F Diffusion layer with fixed DC

G Diffusion layer that uses DP

H Diffusion layer with evolved DC that uses DP

I Diffusion layer with evolved DC that uses generic DP

J Diffusers in all cells - 127

K Diffusers in all cells with no don’t care genes - 127

L Single diffuser - 127

M Single diffuser with no don’t care genes - 127

N Single diffuser - 255

had high success rates (i.e. fitness 0), the box plots on the distribution of the number of

generations to achieve stable solutions is shown instead of the fitness distribution.

Looking closely at the results of all the options for diffusion mechanisms in Figure 8.5, us-

ing a diffusion protein as the diffusion control mechanism seems to give the best results.

But in every pattern except the French flag, the confidence interval of the best diffusion

protein runs overlap with the confidence interval of the best diffusion layer runs. Hence

it is worth taking a closer look at the best cases in a side by side significance comparison

for a better conclusion. Table 8.3 compares chemical specific diffusion protein with six

different versions of the diffusion mechanisms using Vargha Delaney A statistic and

Mann-Whitney-Wilcoxon p-value. As described earlier a p-value of < 5% is considered to

represent a statistically significant difference between the two data sets being compared,

as well as an A value above 0.64 or below 0.36 representing a scientifically significant

difference.

Addition of a diffusion layer or a diffusion protein in the ADS improves the overall ADS

performance compared to constant or no diffusion. However, the use of diffusion protein

on its own seems to be sufficient, and the addition of a diffusion layer –a more complex

mechanism– does not seem to make a significant difference.

Ph.D. Thesis 185 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

A B C D E F G H I N0

2

4

6

8

10

12

14

16

18
Fi

tn
es

s

(a) 2 Colour Mosaic

A B C D E F G H I N0

5

10

15

20

Fi
tn

es
s

(b) Simple 2 Colour Mosaic

A B C D E F G H I J K L M N
0

5

10

15

20

25

Fi
tn

es
s

(c) French Flag

A B C D E F G H I N0

5

10

15

20

25

30

35
Fi

tn
es

s

(d) 4 Colour Mosaic

A B C D E F G H I N0

5

10

15

20

25

30

35

40

Fi
tn

es
s

(e) 8 Patches

A B C D E F G H I N0

200000

400000

600000

800000

1000000

G
en

er
at

io
ns

(f) Asymmetric Borders

Figure 8.5: Box plots of fitness distribution in fifty runs for the different diffusion mechanisms
in achieving all the patterns except the asymmetric borders pattern; box plots of the number of
evolutionary generations in finding stable solutions are shown for the asymmetric borders pattern.
The aliases used in the x-axis are explained in Table 8.2.

Hence the optimal diffusion mechanism is a diffusion protein in which the GRN controls

the chemical diffusion. Chemical specific diffusion protein introduces extra complexity

Ph.D. Thesis 186 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

Table 8.3: Statistical comparison of diffusion mechanism using chemical specific diffusion protein
(labelled as “diffusion protein”) with six other diffusion mechanisms. Scientifically better cases for
the chemical specific diffusion protein are marked with tick marks, and worse cases are marked with
crosses; explained further below the table. For the statistical significance the actual p-values are
shown, and the statistically significant difference in the effects of the two mechanisms are recorded
in bold white text. For all examples except asymmetric borders, the final fitness distribution for
each experiment is used. For the asymmetric borders, number of evolutionary generations required
to achieve stable solutions is used to calculate the A statistic and the p-value.

Diffusion
Protein

 vs
Statistic

2 Colour
Mosaic

4 Colour
Mosaic

Simple
2 Colour
Mosaic

8 Patches
Bordered

French Flag
Asym.

Borders

Generic
Diffusion
Protein

A Statistic XX X = XXX X X

p-value 0.024 0.062 0.062 0.001 0.048 0.277

Diffusion Layer-
EvoDC

A Statistic XX X X X XXX X

p-value 0.037 0.326 0.035 0.105 5.1x10-5 0.101

Diffusion Layer-
DP-EvoDC

A Statistic X X XX X XXX X

p-value 0.243 0.343 0.014 0.264 0.006 0.239

Constant
Diffusion

A Statistic X XXX XXX XXX XXX XX

p-value 0.271 0.001 3.7x10-6 6.3x10-5 0.0003 0.015

No Diffusion A Statistic X X XX X XXX X

p-value 0.488 0.100 0.0212 0.174 0.0003 0.483

Diffusion Layer-
Generic DP-
EvoDC

A Statistic X XX XX X XXX X

p-value 0.191 0.015 0.006 0.229 0.001 0.177

A Statistic Legend Meaning

0.5 = Same Performance

0.4 - 0.5 X Slightly Worse

0.36 - 0.5 XX Worse

<0.36 XXX Significantly Worse

A Statistic Legend Meaning

0.5-0.6 X Slightly Better

0.6-0.64 XX Better

>0.64 XXX Significantly Better

to the system, reducing the ADS performance when compared to the generic diffusion
protein in some of the experimental patterns, but in the experiments provided in this

section the effects of this complexity is mostly negligible. When a larger number of

chemicals are used, these effects may become more significant. It is noteworthy that

in the most complex of all the patterns tried in this section, the 8 patch pattern, the

use of chemical specific diffusion protein made a significant improvement in the fitness

distribution. The performance difference between the two different implementations of

the diffusion protein are almost marginal, but there was one case (the 8 patch pattern)

where the chemical specific diffusion protein provided better results with a scientific

significance. The performance differences between the two implementations of the dif-

fusion protein in all other experimental problems were below the A statistic significance

threshold.

Ph.D. Thesis 187 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

8.4 Mapping The Phenotype

The phenotypic function of the cell (referred to as the cell phenotype from now on), which

is part of the target function for the ADS (e.g. a pixel value in the case of patterns) can

be built in a number of ways. The common method of obtaining the cell phenotype is to

use a mechanism within the developmental processes of the cell to provide a structural

output as an emergent result of the developmental processes. The most popular way

of building the cell phenotype in systems that use GRNs is to use specialised proteins

that change the cell phenotype when they are being expressed during the developmental

process. Other developmental systems that do not use GRNs tend to use the evolved

developmental cell program both for regulatory purposes and building the cell pheno-

type. Therefore the cell phenotype is determined by one or more of the outputs of the cell

program. The behaviour of the cell phenotype in these cases is directly affected by the

developmental processes. There are few other methods of building the cell phenotype,

and most of these methods are an emergent result of the developmental progress of the

organism. This is the case for all except three of the developmental models listed in

Table 5.1; Gordon [Gordon, 2005], Kitano [Kitano, 1995] and Zhan et al. [Zhan et al., 2008]

do not use integrated mechanisms within development that build the cell phenotype as

an emergent result of the respective developmental system. Instead they use the chemical

concentrations at the end of a developmental step or phase to map the cell phenotype (in

the application domain).

In this section some experiments were carried out to investigate whether there is an

advantage of using an extra mechanism within the GRN based developmental system

to build the cell phenotype, or whether it is as good to make use of the chemical concen-

trations within each cell at the end of a developmental step to build a cell phenotype for

every cell. Using the chemical concentrations at the end of a developmental step to create

a cell phenotype is not biologically plausible, however it simplifies the cell structuring

process. Hence once more this imposes a question on the evolvability of bio-inspired

versus simplistic mechanisms.

The experiments in this section only use the French flag, simple 2 colour mosaic, 2 colour

mosaic and the 8 patches patterns as test patterns. There are three versions of cell struc-

turing methods tested.

Ph.D. Thesis 188 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

Table 8.4: Statistical comparison of developmental system using the concentration of a single
protein for cell structuring to the developmental system using structuring protein.

Statistical Comparison French Flag Simple 2 Colour M. 2 Colour M. 8 Patches

Vargha Delaney A Statistic 0.160 0.012 0.035 0.527

p-value < 10−6 < 10−6 < 10−6 0.387

• The structuring protein: This uses a dedicated protein to change the cell phenotype

when it is produced during the gene processing. This is part of the initial design of

the developmental system described in Section 5.2.2.

• Concentration of a dedicated protein: In this case, the structuring protein has no

action when it is produced during the gene processing stages. At the end of a

developmental step, the concentration of one of the proteins is used as an output.

In the examples presented here the concentration value is divided by the maximum

chemical concentration level, multiplied by the number of possible cell phenotypes

and rounded down to an integer value in order to obtain the cell phenotype.

• Concentration of all chemicals: In this case all the chemicals in the system are

used for determining the cell phenotype. The chemical with highest concentration

is used to set the cell phenotype, and each chemical corresponds to a specific cell

phenotype.

For all the experiments the ADS used contact signalling with “controlled tunnels” as

discussed in Section 8.2, and a constant diffusion mechanism as described in sections 5.1.2

and 8.3.

In all test cases the runs where multiple and single protein concentrations were used to

define cell phenotypes showed poor success rates. Therefore, rather than using success

rate bar charts, the final best fitness values are used to create box plots (Figure 8.6). In

almost every case using a structuring protein to build the cell phenotype resulted in better

performance. Further statistical analysis of structuring protein mechanism versus the

other two methods of mapping the cell phenotype are shown in Tables 8.4 and 8.6.

In all cases except one using the structuring protein proved to be significantly better. The

exceptional case is the 8 Patches problem where the use of single protein concentration

gives slightly better results. However, in this case the use of single protein concentration

Ph.D. Thesis 189 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

A B C0

5

10

15

20

25
Fi

tn
es

s

(a) Simple 2 Colour Mosaic

A B C0

5

10

15

20

Fi
tn

es
s

(b) 2 Colour Mosaic

A B C0

2

4

6

8

10

12

14

16

18

Fi
tn

es
s

(c) French Flag

A B C5

10

15

20

25

30

35

Fi
tn

es
s

(d) 8 Patches

Figure 8.6: Box and whisker plots on the fitness distribution of the different methods of
constructing cell phenotype. The aliases used in the x-axis are explained in Table 8.5.

does not provide a scientifically significant improvement (A statistic of 0.527 against

structuring protein), and the distribution difference from the case with structuring pro-

tein is not statistically significant (p-value of 0.387).

Using an emergent mechanism employing structuring proteins to build the cell pheno-

type proved to be more successful than using the final protein concentrations at the end

of a developmental phase. From the observations made, using protein concentrations

to build the cell phenotype made the developmental system’s ability to create special-

Table 8.5: The labels for each structuring mechanism used in the experiments.

Reference in Plots Mechanism

A Structuring proteins

B Concentration of all proteins

C Concentration of a dedicated protein

Ph.D. Thesis 190 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

Table 8.6: Statistical test results for the developmental system that uses the concentration
of multiple proteins to map the cell phenotype compared with the developmental system with
structuring protein.

Statistical Comparison French Flag Simple 2 Colour M. 2 Colour M. 8 Patches

Vargha Delaney A Statistic 0.036 0.121 0.018 0.018

p-value < 10−6 < 10−6 < 10−6 < 10−6

ized cells harder. It was observed that the cell specializations arise from the different

developmental path taken by each cell rather than their final developmental state. For

example every cell in an ADS might always end up having similar concentration levels

of chemicals at the end of each developmental step, but the changes to the chemical

concentration levels during the processing of the GRN would be different for each cell.

Thus using information relating to changes in the chemical levels during the processing

of the GRN rather than the chemical levels at the end of a developmental step provides a

more precise way of differentiating a cell.

8.5 Parameters for Transcription Factors

In a GRN system the interactions between chemicals and genes are the direct determi-

nants of the computational pathway the GRN system undergoes, and the final states it

stabilises to. As seen earlier (in Figure 4.2), the presence of chemicals determine whether

a gene will be activated, and the activation of a gene increases the amount of a protein

(which is a chemical) available in the system, which also regulates the activation of genes.

The amount of chemical needed to activate a gene and the amount of protein produced

after the activation of a gene affects the number of genes that will be active at one time

as well as the number of genes that will never be active within the GRN. The amount

of chemical needed to activate a gene is referred to as “Gene Activation Threshold”;

the minimum concentration of a chemical required to bind a gene. The amount of pro-

tein produced after the activation of a gene is referred to as “Protein Production Rate”.

When a chemical binds to a gene, a certain amount of that chemical is “used up” by the

gene, this is referred to as “Chemical Consumption Rate”. These three values directly

or indirectly control the gene activation that can be evolved during the evolution of the

developmental system or they can be set to a constant value before the evolution phase.

Ph.D. Thesis 191 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

Although each target organism might have a different optimal set of values for the gene

activation threshold, protein production and chemical consumption rates, evolving these

values might not be beneficial as it increases the dimensionality of the genotype.

In order to find out the most evolvable approach to determining the developmental

parameters of gene activation thresholds, protein production and consumption rates

for a developmental system, a series of experiments involving all six patterns shown

in Figure 8.1 were performed.

8.5.1 Protein Production and Chemical Consumption Rates

Three different experiments involving setting the protein production and chemical con-

sumption rates are investigated.

• Preset values: A protein production rate that is the same for all genes in the GRN,

and a chemical consumption rate that is also the same for all genes and chemicals

are initialized at the start of an experiment. Various combinations of different

values for both are used for all the experiments.

• Evolved values: A protein production rate that is the same for all genes in the

GRN is evolved, as well as a chemical consumption rate that is also the same for all

genes and chemicals. Therefore only two extra values need to be evolved for each

developmental system.

• Evolved values per gene: A protein production rate and a chemical consumption

rate are evolved for each gene. This provides a finer tuning of the protein produc-

tion and chemical consumption rates but increases the evolutionary search space

further by the increasing number of genes.

The experiments provided in this section use “controlled tunnels” as the contact sig-

nalling mechanism, and a constant diffusion mechanism. Table 8.7 provides the details

for the labels used in the plots for the protein production and chemical consumption

rates experiments. These rates are detailed in the table as; “Production:X” for protein

production rate of X , “Consumption: Y ” for chemical consumption rate of Y , and “Plas-

modesma prod: Z” for the production rate of plasmodesma protein: for experiments that

Ph.D. Thesis 192 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

used a different production rate for plasmosdema protein (the contact cell signalling and

growth protein). One of the experimental cases in the plots presented in this section

is detailed as “Original setting”; this represents a protein production rate of 255
96 for the

plasmodesma protein and 255
24 for the rest of the proteins, and a chemical consumption

rate of 255
48 for all chemicals (255 is the maximum chemical concentration). The “Original

setting” is used for the experiments in the other sections of this chapter. The “Original

setting” was obtained during the initial design as a result of manual tuning of the system.

Figure 8.7 shows the results of the experiments. Various combinations of protein produc-

tion rate at the activation of a gene and chemical consumption rate at the binding of a

chemical to a gene are tested. The aim is to see whether there exist a single best com-

bination for these developmental parameters or whether they need to be tuned for each

application. If the latter, then evolving the protein production and chemical consumption

rates will create a more adaptive system by allowing evolution to tune the ADS. If all the

applications can be easily developed with a single set of these parameters then using a

fixed set of optimised values would be more beneficial as it would reduce the load on the

evolutionary algorithm.

The protein production and chemical consumption rates are evolved using two different

approaches. The first approach evolves a protein production and a chemical consump-

tion rate for the whole organism. So, every cell and every gene use the same pair of

values for protein production and chemical consumption rates. The second approach

evolves the protein production and chemical consumption rates for each gene. Hence,

the genome length is extended in the second approach to accommodate these rates for

each gene. Evolving these rates per gene will provide evolution the ability to tune these

parameters at a finer level, but if the effect of these parameters is not large then the

evolutionary performance will deteriorate due to the increase in evolutionary search

space.

The results in Figure 8.7 show that different patterns have different optimal protein pro-

duction and chemical consumption rate values. A compromise setting between the patch

and border patterns would be a protein production rate at 255
48 and chemical consumption

rate at 255
96 , which provides not the best but close to best performance for all three pat-

terns. But for the mosaic patterns, this combination of protein production and chemical

consumption rates is far from ideal.

Ph.D. Thesis 193 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

A B C I L M N O P0

2

4

6

8

10
N

o.
 S

uc
ce

ss
fu

l R
un

s

(a) 2 Colour Mosaic

A B C I L M N O P0

5

10

15

20

25

30

35

40

45

N
o.

 S
uc

ce
ss

fu
l R

un
s

(b) Simple 2 Colour Mosaic

A B C D E F G H I J K L M N
0

10

20

30

40

50

N
o.

 S
uc

ce
ss

fu
l R

un
s

(c) French Flag

A B C E F H I K L M N O P0

1

2

3

4

5

6

N
o.

 S
uc

ce
ss

fu
l R

un
s

(d) 4 Colour Mosaic

A B C I L M N O P0.0

0.5

1.0

1.5

2.0

N
o.

 S
uc

ce
ss

fu
l R

un
s

(e) 8 Patches

A B C E F H I K L M N O P0

10

20

30

40

50

N
o.

 S
uc

ce
ss

fu
l R

un
s

(f) Asymmetric Borders

Stable Solutions

Unstable Solutions

Figure 8.7: Success rates of experiments with different protein production and chemical
consumption rates are displayed. The aliases used in the x-axis are explained in Table 8.7.

Ph.D. Thesis 194 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

Table 8.7: The labels for each protein production and chemical consumption values used in the
experiments.

Reference Mechanism
A Original setting - Prod: 255

96 ,Cons: 255
48 , Plas prod: 255

24

B A single evolved value
C A value evolved per gene
D Production: 255

12 , Consumption: 255
6

E Production: 255
24 , Consumption: 255

12

F Production: 255
48 , Consumption: 255

24

G Production: 255
12 , Consumption: 255

12

H Production: 255
24 , Consumption: 255

24

I Production: 255
48 , Consumption: 255

48

J Production: 255
12 , Consumption: 255

24

K Production: 255
24 , Consumption: 255

48

L Production: 255
48 , Consumption: 255

96

M Production: 255
48 , Consumption: 255

96 , Plasmodesma prod: 255
192

N Production: 255
64 , Consumption: 255

128

O Production: 255
64 , Consumption: 255

96

P Production: 255
64 , Consumption: 255

128 , Plasmodesma prod: 255
255

Evolving these parameters is the best compromise amongst all six patterns, and evolving

a set of these rates per gene rather than a single set for the whole organism seems to

make a significant difference. For a better understanding of the performance difference

obtained via the evolution of these rates, fitness box plots of the results are provided in

Figure 8.8, with the exception of asymmetric borders pattern. For the asymmetric borders

pattern the number evolutionary generations to achieve stable solutions is used rather

than final fitness values.

Although evolving the protein production and chemical consumption parameters for the

ADS during the evolution phase made a large performance improvement for the mosaic

patterns, this is not true for the patch and border patterns, see Figure 8.8. However, even

though the patch and border patterns suffer from the use of evolved protein production

and chemical consumption parameters, overall, it is worth evolving these parameters for

each gene. By evolving the protein production and chemical consumption parameters

for each gene:

Ph.D. Thesis 195 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

A B C I L M N O P0

2

4

6

8

10

12

14

16

18
Fi

tn
es

s

(a) 2 Colour Mosaic

A B C I L M N O P0

5

10

15

20

Fi
tn

es
s

(b) Simple 2 Colour Mosaic

A B C D E F G H I J K L M N
0

2

4

6

8

10

12

14

16

18

Fi
tn

es
s

(c) French Flag

A B C E F H I K L M N O P0

5

10

15

20

25

30

35

Fi
tn

es
s

(d) 4 Colour Mosaic

A B C I L M N O P0

5

10

15

20

25

30

35

Fi
tn

es
s

(e) 8 Patches

A B C E F H I K L M N O P0

200000

400000

600000

800000

1000000

G
en

er
at

io
ns

(f) Asymmetric Borders

Figure 8.8: Box plot of fitness values (the number of evolutionary generations required to achieve
stable solutions for the asymmetric borders pattern) reached at the end of each run out of fifty
runs of each experiment with different protein production and chemical consumption rates are
displayed. The aliases used in the x-axis are explained in Table 8.7.

Ph.D. Thesis 196 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

1. The performance loss in the worst case problems (e.g. evolving asymmetric borders

pattern) is balanced by the time it would take to determine the optimal combination

of these parameters before running experiments for each problem.

2. There is more control for evolution to fine tune the ADS.

3. Due the the drastic effects these rates might have on the evolvability of the ADS,

evolving these rates per gene resulted in better results when compared with the

evolution of these rates as global values for all genes.

8.5.2 Gene Binding Threshold

Three different approaches of setting the chemical concentration threshold for gene bind-

ing were investigated.

• Pre-set thresholds: The minimum concentration required for a chemical to bind a

gene is pre-set to a constant value before evolving the developmental system. All

the genes and chemicals use the same threshold value.

• Evolved thresholds per gene: The minimum concentration required for a chemical

to bind a gene is evolved for each gene during the evolution phase.

• Soft Thresholds: The idea of relaxed threshold limits are implemented in a simplis-

tic way. The “Original setting” is used for this case but when a protein concentra-

tion drops or increases to the chemical threshold level, the switching from present

to absent or absent to present is not done immediately but a further X amount

of chemical concentration increase (if switching to present state) or decrease (if

switching to absent state) is allowed. Concentration X is determined via a random

number generator that returns a value between 0 and 15.

The experiments provided in this section use “controlled tunnels” as the contact sig-

nalling mechanism, and a constant diffusion mechanism. Table 8.8 provides the details

for the labels used in the plots for the chemical to gene binding thresholds. These rates are

detailed in the table as; “Gene inhibition thresh: X” X being the minimum concentration

required of a chemical to bind an inhibitory site of a gene, and “Activation thresh: Y ”

Ph.D. Thesis 197 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

A B E0

5

10

15

20

25

30

35

40

N
o.

 S
uc

ce
ss

fu
l R

un
s

(a) Simple 2 Colour Mosaic

A B E0

1

2

3

4

5

N
o.

 S
uc

ce
ss

fu
l R

un
s

(b) 2 Colour Mosaic

A B D E F0.0

0.5

1.0

1.5

2.0

N
o.

 S
uc

ce
ss

fu
l R

un
s

(c) 4 Colour Mosaic

A B D E F0

10

20

30

40

50

N
o.

 S
uc

ce
ss

fu
l R

un
s

(d) Asymmetric Borders

A B C D E F0

5

10

15

20

25

30

35

40

N
o.

 S
uc

ce
ss

fu
l R

un
s

(e) French Flag

Stable Solutions

Unstable Solutions

Figure 8.9: Success rates of experiments with different chemical to gene binding thresholds. Only
the most successful settings are shown for some of the test patterns e.g. 2 colour mosaic. 8 patches
pattern is omitted because none of the runs in this section returned a success. The aliases used in
the x-axis are explained in Table 8.8.

Y being the minimum concentration required of a chemical to bind an excitatory site of

a gene. One of the experimental cases in the plots presented in this section is labelled

as “Original setting”; this represents a chemical to gene binding threshold level of 127

(max
2) for both inhibiting and enhancing chemicals. The “Original setting” is used for the

experiments in the other sections of this chapter.

Table 8.8: The labels for protein concentration threshold values used in the experiments for
activating or inhibiting a gene.

Reference in Plots Mechanism

A Original setting

B Evolved thresholds

C Gene inhibition thresh: 255
4 , Activation thresh: 255

4

D Gene inhibition thresh: 255
2 , Activation thresh: 255

4

E Gene inhibition thresh: 255
4 , Activation thresh: 255

2

F Soft thresholds at 255
2

Ph.D. Thesis 198 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

A B E0

2

4

6

8

10

12

14

16

Fi
tn

es
s

(a) 2 Colour Mosaic

A B E0

5

10

15

20

Fi
tn

es
s

(b) Simple 2 Colour Mosaic

A B E0

5

10

15

20

25

30

35

Fi
tn

es
s

(c) 8 Patches

A B C D E F0

5

10

15

20

Fi
tn

es
s

(d) French Flag

A B D E F0

5

10

15

20

25

30

35

Fi
tn

es
s

(e) 4 Colour Mosaic (f) Asymmetric Borders

Figure 8.10: Fitness box plots of every pattern except the asymmetric borders pattern are
displayed in this figure for different chemical to gene binding threshold experiments. Due to the
high success rate of most experiments in achieving the asymmetric borders pattern, the number of
evolutionary generations to achieve stable results is used for its box plots. The aliases used in the
x-axis are explained in Table 8.8.

Once more evolving a developmental parameter improved the overall evolvability of

the ADS. Evolving the chemical to gene binding thresholds improved the performance

in most patterns when compared to experiments with pre-set values, and in two cases

(french flag and 4 colour mosaic) the results were comparable to the best case (“Original

setting”), see figures 8.9 and 8.10. Although none of the experiments returned a perfect

matching result for the 8 patches pattern, evolving the chemical to gene binding thresh-

olds improved the fitness distribution (with the best fitness being 4 mismatched pixels)

when compared to pre-set cases, see Figure 8.10. The “soft thresholds” implementation

have only complicated the chemical to gene binding processes and had no benefits in any

of the tested cases.

Ph.D. Thesis 199 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

8.6 Miscellaneous Developmental Mechanisms

The use of extra mechanisms in an ADS may enrich the model by providing access to

areas of design space that were not accessible before. Some mechanisms may allow the

developmental system to reach certain points in the design space more easily by creating

a less rugged search space. On the other hand extra mechanisms will increase complexity

of the ADS potentially slowing it down. Mechanisms that only duplicate the already

existing abilities of a system may create larger biases towards a specific area of a design

space forming a more rugged search space. Whether the inclusion of a mechanism in

an ADS is beneficial is often not clear. A biologically inspired developmental system is

highly dynamic, and it is poorly understood. Predicting the changes in the dynamics of a

dynamical system is a challenging task. Extensive empirical data on the behaviour of the

ADS with and without the mechanism in question can help with the decision on whether

the mechanism is worth keeping as part of the ADS.

Six developmental mechanisms that were not used in the previous experiments are in-

vestigated in this section.

• Local proteins: The effect of proteins that are only involved in the regulation of

the GRN within the source cell is investigated. This is similar to the role of the

chemicals in Haddow and Hoye’s model [Haddow and Hoye, 2007]. The local

proteins are not used for cell communication, hence they are not diffused or allowed

to pass onto the neighbouring cells via plasmodesmata (tunnels). In [Haddow and

Hoye, 2007] it was demonstrated that chemicals which are only used for local cell

regulation increase the complexity of the search space without any visible advan-

tages.

• Messenger Molecules: In Section 5.2.2 the role of messenger molecules was ex-

plained, but for the experiments presented thus far they were not used. The idea

of messenger molecules is to provide a more adaptive system in changing envi-

ronments, which does not really correspond to stable patterns. Nonetheless the

effect of messenger molecules on the evolvability of the ADS for evolving stable

patterns is investigated. In the pattern forming experiments presented here, the

sensor proteins are used to monitor the phenotype of the neighbouring cells and

Ph.D. Thesis 200 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

produce messenger molecules accordingly. The use of phenotypic information from

the neighbouring cells to regulate the developmental system has already been used

in many developmental systems before. In fact, almost half of the ADSs listed in

Table 5.1 include a form of this mechanism in their systems [Bentley and Kumar,

1999; Dellaert and Beer, 1994; Federici, 2004; Haddow and Hoye, 2007; Miller, 2003;

Tufte and Haddow, 2003].

• Voter decision mechanism: The decision mechanism on the activation of a gene in

the initial design is simply a conjunctive expression. As an alternative mechanism

a voter is used for deciding the activation of a gene. The voter mechanism counts

the number of bound enhancers and inhibitors, and activates the gene when there

are higher number of enhancing bindings or zero inhibitors. The aim of the voter

decision mechanism is to provide a smoother transition between active and inactive

genes rather than a sharp transition provided by a conjunctive expression.

• Protein Consuming Genes: Although the genes consume proteins when proteins

bind to a gene, protein consuming genes use up proteins as the result of their

postcondition as well. The ability to further consume a protein may allow the

GRN to regulate the protein chemical levels more precisely, and create redundant

behaviour for further gene degeneracy in the system.

• Unproductive Genes: Genes that do nothing when activated are named unpro-

ductive genes. Similar to protein consuming genes these genes may be useful for

protein regulation.

• Food reliance: A new type of chemical that is modelled to act as artificial food for

the cells in the ADS is introduced. The food chemical is required by the cells to

process genes, and every time a gene is activated the food chemical is used up. The

absence of food chemical prevents the activation of genes. This chemical is diffused

within the organism but it is not shared between neighbouring cells via contact cell

signalling. The food chemical is supplied via an outside source which is located

around the organism, and the source supplies a constant amount of food chemical

every developmental step to the cells on the outside borders of the organism. The

food chemical can not bind the genes and it can not be produced by the active genes.

In Table 8.9, the food reliance is given a “supply level”, which is the amount of food

chemical being supplied by the outside source every developmental step.

Ph.D. Thesis 201 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

Table 8.9: The labels for the charts and plots of experiments with various developmental
mechanisms.

Reference in Plots Mechanism

A Original setting

B 2 local proteins

C Voter decision mechanism

D 4 messenger molecules

E Food reliance - supply level 255

F Protein consuming genes

G Unproductive Genes

H 8 messenger molecules

I Food reliance - supply level 32

J Food reliance - supply level 64

K Food reliance - supply level 128

A B D E F G0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
o.

 S
uc

ce
ss

fu
l R

un
s

(a) 2 Colour Mosaic

A B D E F G0

5

10

15

20

25

30

35

N
o.

 S
uc

ce
ss

fu
l R

un
s

(b) Simple 2 Colour Mosaic

A B C D F G0

5

10

15

20

25

30

35

40

45

N
o.

 S
uc

ce
ss

fu
l R

un
s

(c) French Flag

A B C D E F G0.0

0.5

1.0

1.5

2.0

N
o.

 S
uc

ce
ss

fu
l R

un
s

(d) 4 Colour Mosaic

A B D E F G H0.0

0.2

0.4

0.6

0.8

1.0

N
o.

 S
uc

ce
ss

fu
l R

un
s

(e) 8 Patches

A B C D E F G0

10

20

30

40

50

N
o.

 S
uc

ce
ss

fu
l R

un
s

(f) Asymmetric Borders

Stable Solutions

Unstable Solutions

Figure 8.11: The success rates achieved by the different developmental mechanisms. The aliases
used in the x-axis are explained in Table 8.9.

Unlike most of the previous experiments the inclusion of different mechanisms presented

in this subsection did not have a large effect in the performance of the ADS. The patch

Ph.D. Thesis 202 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

A B D E F G0

2

4

6

8

10

12

14

16

18

Fi
tn

es
s

(a) 2 Colour Mosaic

A B D E F G0

5

10

15

20

Fi
tn

es
s

(b) Simple 2 Colour Mosaic

A B C D F G0

2

4

6

8

10

12

14

16

18

Fi
tn

es
s

(c) French Flag

A B C D E F G0

5

10

15

20

25

30

35

Fi
tn

es
s

(d) 4 Colour Mosaic

A B D E F G H0

5

10

15

20

25

30

35

40

Fi
tn

es
s

(e) 8 Patches (f) Asymmetric Borders

Figure 8.12: The box plots of the results from the experiments with the different developmental
mechanisms. The aliases used in the x-axis are explained in Table 8.9. The fitness values achieved
at the end of each run is used for all the experiments except the asymmetric borders pattern
experiments. Due to the high success rate of most experiments in achieving the asymmetric
borders pattern, the number of evolutionary generations to achieve stable results is used for its
box plots.

patterns slightly benefited from the use of “local proteins”, whereas the mosaic patterns

suffered from their use, see Figure 8.11. The same is true for “protein consuming genes”,

which gave the “simple 2 colour mosaic” pattern a boost in performance, and deteri-

orated the performance of the other patterns. In conclusion, none of the mechanisms

described in this section made any real improvement on the evolvability of the ADS;

some of them simply increased the biases in achieving certain patterns. The best over-

all performance was achieved without the use of any of these mechanisms. It is not

surprising that the messenger molecules does not improve the evolvability of ADS in

pattern experiments, since these chemicals are designed to adapt the ADS in a chang-

ing environment. The use of local proteins have already been shown to degrade the

performance of a multicellular developmental system, due to its limited use and the

extra complexity involved with its simulation [Haddow and Hoye, 2007]: the results

presented in this section confirms this. The use of “food reliance” created a similar

situation as the local proteins and increased the complexity of the system. In fact in this

Ph.D. Thesis 203 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

case evolution had less control over the “food chemical” causing the resulting system

to be less evolvable. The unproductive genes and protein consuming genes created

redundancy in the control of chemicals available in the system. The evolvability of

the system did not show a significant change with these two new functionalities, which

suggest that the developmental system already had a sufficient “tools” in controlling the

chemical levels in the organism.

Figure 8.12 illustrates the changes in the evolvability of the ADS with the new mech-

anisms well; most of the time the use of new mechanisms did not affect the fitness

distribution (number of generations for the asymmetric borders pattern). Only changing

the decision mechanism to a voter (not shown in all the plots) had really deteriorated the

ADS performance.

8.7 Improving the ADS

The previous subsections have investigated various mechanisms and developmental pa-

rameters that affect the evolvability of a bio-inspired GRN based multicellular ADS. It

was shown that several of these mechanisms (e.g. cell signalling, adaptive parameters,

etc.) had large effects on the evolvability of the multicellular ADS. Table 8.10 summarises

the results of these experiments. The mechanisms discussed and demonstrated to im-

prove the evolvability of the ADS to achieve stable patterns are simple to implement

and during the simulations had negligible effects in the computational complexity of the

system. These mechanisms (B–E in Table 8.11) should also be simple to implement in an

embedded system (on a microprocessor or Field Programmable Gate Array (FPGA)).

In this section the best of the mechanisms that have significant effects on the evolvability

of the ADS are shown side by side along with the original design of the ADS, and with

a combination of all these “best” mechanisms. The aim is to obtain an idea about the

amount of effect one mechanism may have on the evolvability of the ADS in comparison

to the others, as well as demonstrating the amount of improvement that can be achieved

via the use of correct combination of developmental mechanisms in an ADS.

Figure 8.13 displays the number of successful runs (as well as the stable ones) out of fifty

runs for each version of ADS in solving the six different patterns shown in Figure 8.1.

Ph.D. Thesis 204 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

Table 8.10: Summary of the investigations done on the evolvability of a multicellular ADS in
forming various patterns.

Mechanism Result
Contact It was shown that contact signalling is an essential part of an ADS, and
Signalling its absence made pattern formation almost impossible for some exam-

ples. It is also important to design a contact signalling mechanism
carefully, in order to allow the ADS to be able to control the intensity of
signalling.

Diffusion It was shown that both the lack of and constant presence of diffusion is
undesirable. The best overall performance was obtained via a simple
method that gave ADS control for the diffusion process without the
need for more complicated mechanisms.

Gene-Chemical The optimal values for ADS parameters were shown to be problem
Interactions dependent. Most of the time a non optimal combination of these

parameters was shown to be undesirable. Evolving these parameters
during the evolution of the genotype of the ADS provided the best
overall performance.

Non-Standard The use of messenger molecules were introduced to monitor the
Chemicals phenotypes of the neighbouring cells. Local proteins were introduced

to regulate the dynamics within a cell without the direct interaction of
other cells, and “food reliance” was introduced to create extra level of
control on the number of active genes. All these chemicals provide
alternative ways of guiding the ADS by gene regulation, but none
showed any real improvement in the overall performance of the ADS.

Mapping It was observed that a cell has more information in the oscillations
Development of its chemicals’ concentrations that arise during gene interactions

rather than the concentration of its chemicals at the end of a develop-
mental step. Thus it was concluded that using the final concentrations
of chemicals to map the cell phenotype is inefficient.

Regulatory Only two different decision mechanisms for activating a gene were
Logic compared: a conjunctive expression and a voter. There were large

negative effects of using a voter decision mechanism when compared
to a conjunctive expression. It would be worth investigating the effects
of a larger number of mechanisms.

Chemical The results showed that uncontrolled supply of chemicals via diffusers
Control or constant diffusion is not desired, and in most cases the performance

of the ADS deteriorates under such conditions. Protein consuming
genes and unproductive genes were introduced as redundant controls
of chemical supplies. But the results showed that the ADS did not need
need these mechanisms.

“Original setting” in the charts refer to the initial design of the developmental system;

“simple tunnels”, constant diffusion, pre-set chemical vs gene interaction constants. All

the other experiments use “controlled tunnels”, and have only one other mechanism

implemented differently from the “controlled tunnels” experiments. In a final case all

the improved mechanisms are used as part of the ADS.

Ph.D. Thesis 205 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

Table 8.11: The labels for the charts displaying the results for experiments with the best
mechanisms.

Reference Mechanism

A Original setting

B Controlled tunnels

C Evolved binding thresholds

D Evolved chemical production and consumption rates per gene

E Diffusion protein

F Combination of B,C,D,E

The mosaic and the 8 patches are the patterns that generally benefit from the combination

of all the improved mechanisms. In most cases the initial design of the ADS was unable

to find any perfectly matching patterns in fifty runs, and for the patterns it did, the

success rate was low (except asymmetric borders pattern). French flag pattern benefited

mainly from a single different implementation of a mechanism –the “controlled tunnels”

implementation of contact signalling–, and all the other “improved” mechanisms low-

ered the performance of the ADS in achieving French flag patterns. Asymmetric borders

pattern was generally not affected by the changes made to the ADS, however the ADS

achieved more stable asymmetric borders patterns with the use of “controlled tunnels”

contact signalling. The most complex patterns – 8 patches, 4 colour mosaic and 2 colour

mosaic– benefited from the combination of all the “improved” mechanisms, obtaining an

improvement of 100-400% from the best case achieved among the other experimental

runs. Using the combination of all the improved mechanisms, stable solutions were

found for the 8 patches pattern for the first time. A small number of experiments looking

at the stability and fault tolerance properties of some of the evolved organisms from this

section are discussed in Appendix D.

It seems that the contact signalling is the most important multicellular developmental

mechanism investigated here, and a careful design of contact signalling is important in

obtaining an evolvable ADS. However contact signalling alone is not sufficient for a

flexible ADS in tackling EC problems, and a careful design of other mechanisms is as

important. It is essential when solving unknown problems that the ADS is not biased on

a specific type of multicellular ordering, and it is equally evolvable for all EC problems.

Ph.D. Thesis 206 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

A B C D E F0

5

10

15

20

25

N
o.

 S
uc

ce
ss

fu
l R

un
s

(a) 2 Colour Mosaic

A B C D E F0

10

20

30

40

50

N
o.

 S
uc

ce
ss

fu
l R

un
s

(b) Simple 2 Colour Mosaic

A B C D E F0

5

10

15

20

25

30

35

40

N
o.

 S
uc

ce
ss

fu
l R

un
s

(c) French Flag

A B C D E F0

5

10

15

20

25

N
o.

 S
uc

ce
ss

fu
l R

un
s

(d) 4 Colour Mosaic

A B C D E F0

1

2

3

4

5

6

7

8

N
o.

 S
uc

ce
ss

fu
l R

un
s

(e) 8 Patches

A B C D E F0

10

20

30

40

50

N
o.

 S
uc

ce
ss

fu
l R

un
s

(f) Asymmetric Borders

Stable Solutions

Unstable Solutions

Figure 8.13: Combination of all the best mechanisms compared to the “original setting“ and each
best mechanism. The aliases used in the x-axis are explained in Table 8.11.

The experiments show that a version of an ADS may perform well on certain problems

and equally poorly on others. This strongly suggests that using a single class of experi-

mental problems for the empirical validation of an evolutionary system is not sufficient

and often misleading.

8.8 Summary

In chapters 4 and 5, a novel GRN based multicellular ADS was introduced in detail with

a description of the design process, using the literature in biology and EC as a guide.

Several mechanisms and design constraints were embodied as part of the ADS during

the design process. But the logic behind these decisions was merely an interpretation

of the biological development and artificial development in EC. Although the literature

on multicellular ADS is rich with various models and impressive demonstrations on the

capabilities of ADSs, the understanding of important mechanisms and parameters has

been poor.

Ph.D. Thesis 207 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

Consequently, a detailed investigation into some of the poorly understood mechanisms

and design constraints were undertaken in this chapter. These investigations were done

with the hope of optimising the presented ADS as well as providing a better understand-

ing of some of the developmental mechanisms. 2D patterns were used as the exper-

imental problems. Such 2D patterns are easy to understand, implement, and make a

distinction between different organisational ordering. Using problems of different orders

proved to be important throughout the experiments, as patterns with different types

of orders usually ended up providing different results. This was an important lesson

in choosing the set of problems carefully for empirical investigations on the properties

of a system. An example of this was demonstrated by the experiments on the effects

of constant diffusion; one of the patterns strongly favoured constant diffusion, three of

the patterns produced acceptable results with it, and two of the patterns produced poor

results. These results as well as the ones observed from the “chemical-gene interaction

parameters”, highlighted that most of the time the optimal parameters, and well perform-

ing mechanisms are highly problem dependent. The best mechanism/parameter value

was found to be the most flexible one that provided the best overall performance, but not

necessarily the best performance for each problem. Table 8.10 provides a summary all

the results of the experiments undertaken.

In almost all the experiments it was observed that an ADS is more evolvable when

evolution has more control over it. The ADS was the most evolvable:

• When its parameters were included in the genotype being evolved.

• With a diffusion cell signalling mechanism, where the diffusion rate could be ad-

justed by the ADS; indirectly giving control to evolution.

• With a contact cell signalling mechanism, where the ADS controlled the flow of

chemicals; again indirectly giving control to evolution.

A large number of experiments (of over 40 sets of 50 runs) were done with six different

patterns. Each run took approximately an hour of computational time on the single core

of a 2.83GHz Intel Q9550 CPU based Unix system. This totalled up to approximately

12000 hours of CPU time for all the investigations presented in this chapter. The experi-

Ph.D. Thesis 208 Tüze Kuyucu

Chapter 8 - Developmental Mechanisms and Parameters

ments presented in this chapter were run on a Unix based cluster PC that was built of 10

Intel Q9550 CPUs and 80GB of memory.

A few of the important mechanisms and parameters in multicellular development were

explored by the investigations provided, but many mechanisms were left out and even

more mechanisms and parameters that need detailed investigations were found. Growth

and cell division, cell movement and adhesion, importance of the order of cell processing

in a developmental step, the use of signalling pathways, long distance cell signalling (i.e.

auxins and endocrine) are some of the important and only partially explored mechanisms

that can have a significant effect on the performance of an ADS, and these mechanisms

would be worth investigating in future. It was also found in the experiments provided

in this chapter that a detailed investigation of the decision mechanisms used in the rule

based GRN models and the techniques of mapping a developmental system to a pheno-

type may provide important advancements in the use of ADS in EC.

Understanding the capabilities of the mechanisms that accompany ADS is an important

step towards harnessing the full potential of ADS for designing and optimising engi-

neering problems. With the advancing technology and a better understanding of what is

needed from EC, ADS has the potential to be used in the evolutionary design of real life

systems.

Ph.D. Thesis 209 Tüze Kuyucu

Chapter 9

Conclusions

Biological processes such as evolution and development are intricate systems. These

partially understood processes provide engineers and computer scientists with new in-

spirations for new design techniques and computing paradigms. However, using models

of these processes to achieve reliable design methods is arduous. In order to discover the

full potential of these approaches, one needs to sample a large number of cases exploiting

the properties of these models.

Using evolution, a stochastic meta-heuristic, to design circuits on a hardware platform is

a non-trivial task and there lie many traps created by the complex dynamics of evolution

and the hardware environment, which can divert progress. It has already been shown in

the literature that evolution on a hardware substrate can result in unconventional designs

(see Chapter 2). These designs are in a design space unreachable by conventional engi-

neering techniques. Although these examples in the literature reflect the good aspects of

evolution on hardware, it was shown in Chapter 3 that when uncontrolled, evolution of

circuits in hardware can be infeasible. The input pattern ordering during the evaluation

phase of evolution was shown to be essential for the evolution of valid digital circuits,

along with effective definition of fitness functions. It was discussed and demonstrated

that the fitness functions define the fitness landscape, and in a hardware substrate the

amount of information that can be detected by the fitness function contributed greatly

to the successful evolution of valid circuits. Along with the evolution of valid circuits,

multiple techniques were also developed for quick and effective evolution of circuits

in hardware. These methods involved effective use of input pattern ordering, fitness

210

Chapter 9 - Conclusions

function, partitioning of the circuit outputs and applying inputs of the evolved system

at multiple locations on the chip. Using these methods, it was shown that the evolution

process was considerably faster when evolving circuits in a hardware platform.

After a review of the Evolvable HardWare (EHW) field in Chapter 2, and the develop-

ment of various mechanisms for the efficient evolution of valid circuits in hardware in

Chapter 3, it was discussed that the complexity achievable when evolving circuits (intrin-

sically or extrinsically) is limited when direct genotype–phenotype mapping is used, and

in fact the experiments presented in Chapter 3 represent circuits with complexities close

to this limit. Therefore, artificial multicellular development was introduced in Chapter 4

as an effective genotype–phenotype mapping technique that has the potential to promote

the evolution of scalable circuits. It was further discussed that development is more

than just a genotype–phenotype mapping technique in biology and it has more to offer

for Evolutionary Computation (EC). Fault tolerance and adaptivity were discussed as

two of the most important benefits of evolving developmental systems. A new method

of classification was introduced to provide a clearer distinction in the existing artificial

implementations of development. This new method divides Artificial Developmental

Systems (ADS) into two categories depending on their sources of inspiration: macro-

modelling was used to refer to Artificial Developmental System (ADS)s that model the

overall behaviour of biological development (taking a ”high-level” view), and micro-

modelling was used to refer to ADSs that model biological development at a small scale

(taking a ”low-level” view), i.e. modelling cells and their interactions that lead to mul-

ticellular development. Chapter 5 provided the description of a new bio-inspired Gene

Regulatory Network (GRN) based developmental system. A table of relevant develop-

mental models was created and further discussed as the details of the new developmental

system were explained. The new developmental system was designed to be biologically

plausible, but the representation and processing of the developmental system were kept

simple in order to allow its implementation in embedded systems with limited memory

space and processing power.

A series of experiments investigating the evolvability of the GRN and the multicellular

developmental system were reported in Chapter 6. These experiments demonstrated

that the presented GRN is capable of creating stable dynamics using chemicals for in-

teractions, inputs and outputs. The initial experiments with GRNs also showed that

Ph.D. Thesis 211 Tüze Kuyucu

Chapter 9 - Conclusions

they can be evolved to be responsive to environmental changes reflected as changes in

chemical concentrations, and create clocks via the changes in chemical concentrations

and internal dynamics. The experiments with the multicellular developmental system in

Chapter 6 demonstrated that the developmental system is able to achieve multicellular

organisation and differentiation. It was shown that using non-deterministic maturing

and fitness functions that define the order of the pattern rather than the exact pattern

create a more evolvable developmental model. It was also shown that the developmental

model presented in this thesis is capable of fully recovering from transient faults, and

maintaining target cell organisation (either perfectly or with small imperfections) in the

presence of cell death or gene knock-outs.

The experiments with the ADS in Chapter 6 were followed by initial experiments devel-

oping digital circuits in Chapter 7. Circuits were developed using the ADS, where the

ADS built both the routing and logic side of the circuits. Although successful, it was

observed that developing the circuit connectivity limited the scalability properties of the

ADS. By providing a simpler way of creating circuit connectivity and a more effective

fitness function, it was shown that the evolution of an ADS that can develop a generic

even n-bit parity circuity. Once more, the importance of the fitness function and careful

design of the evolution environment was demonstrated to be of utmost importance for

evolving designs.

Chapter 7 concluded that there is a need to further investigate the mechanisms and

parameters that directly affect the evolvability of the developmental system. Therefore,

an in-depth investigation on the effects of some of the important developmental mecha-

nisms and parameters was undertaken. The results and discussions on this investigation

were presented in Chapter 8. A large number of experiments were undertaken using

six different patterns representing different test cases for multicellular organisation. The

experiments were aimed at testing the evolvability of the ADS in achieving stable mul-

ticellular organisation. It was shown that several of the mechanisms tested (such as cell

signalling and developmental parameters) had drastic effects on the evolvability of the

multicellular ADS. The results were gathered in a table (Table 8.10), which summarised

the experiments. It was later shown that using the information gathered, an optimized

version of the ADS could be obtained. Although this optimized version of the ADS

did not provide the best possible evolvability for every experimental pattern, it was

Ph.D. Thesis 212 Tüze Kuyucu

Chapter 9 - Conclusions

demonstrated to provide the best evolvability overall. Some of the contradictory results

from different patterns showed that using a single pattern or a group of patterns with the

same organisational properties can lead to misguided conclusions.

It was interesting to see that unrestricted diffusion was unfavourable, a conclusion that

confirms the observations from embryo development [Fagotto and Gumbiner, 1996].

Similarly, the investigations in contact signalling–which was modelled after the plasmod-

esmata in plant cells–revealed that creating direct links between two cells which allows

the uncontrolled movement of chemicals from one cell to another is not favoured. In

plant cells, when a plasmodesmata is created, the size of the “tunnel” is small and only

allows molecules of small sizes to travel through directly (passive movement). Larger

sized proteins can only go through the plasmodesmata via “movement proteins” that can

carry the larger proteins through the plasmotesmata channels (active transport) [Leyser

and Day, 2003]. From the investigations in Chapter 8, it was found that using “controlled

tunnels” that made the use of transport proteins had greatly enhanced the evolability of

the ADS.

The chapters in this thesis reviewed EHW and the use of artificial development in EC.

Evolution of circuits on hardware was suggested as an effective way of evolving valid

circuits with unusual properties that extrinsic evolution or traditional circuit design tech-

niques could not achieve. However, it was shown that evolving circuits on real hardware

can be problematic. Thus a set of techniques were developed to ensure the successful

evolution of valid circuits on hardware. For the evolutionary experiments on hardware,

a novel hardware evolution platform (Reconfigurable Integrated System Array (RISA))

was used and consequently, the properties of this platform were investigated. Once a

set of techniques were developed for evolving circuits on hardware, it was suggested

that a more scalable way of mapping the evolved genotype to the target phenotype

(circuits) is needed. A GRN based ADS was designed in the following chapters to satisfy

this need. The designed developmental system was demonstrated to be evolvable at a

single and multicellular level. It was also demonstrated to show inherent fault tolerant

properties both at genotypic and phenotypic levels. The developmental system was

evolved to build various circuits, including a scaling parity circuit. Finally, a detailed

investigations into some of the developmental mechanisms and parameters were done

in order to optimize the ADS designed and provide a better understanding on the use

Ph.D. Thesis 213 Tüze Kuyucu

Chapter 9 - Conclusions

of GRN based ADSs in EC. The investigations undertaken provided some crucial results

on understanding the effects of various developmental mechanisms on the evolvability

of a GRN based ADS for achieving multicellular organisation. By the end of this thesis,

a list of crucial mechanisms for the evolution of circuits on hardware as well as a better

understanding of the capabilities of evolution and artificial development in the design of

computational systems are obtained. The thesis’ novel contributions provide creating a

better understanding of:

• Evolving digital circuits on real hardware by addressing reliability issues that emerge

in intrinsic hardware evolution.

• The desired characteristics in a hardware evolution platform.

• Evolvability on the artificial models of GRN.

• Evolvability on the artificial models of multicellular development.

• Accurate evaluation of the properties of an evolutionary and developmental model.

The work presented proves the hypothesis stated at the start of this thesis. Evolution of

digital circuits in hardware can provide interesting and novel designs, but not complex

and human competitive results (Chapter 3). Multicellular development in biology can

be simulated to create a scalable system for the evolutionary design of electronic systems

(Chapter 7). By understanding evolution of circuits on real hardware and the behaviour

of multicellular development in a computational environment, the key factors that de-

termine the evolvability of an evolutionary developmental system can be determined

(chapters 3, 6, 7, and 8 and Appendix D).

Although a large number of experiments and research has been undertaken, there is still

a large scope for future investigative work.

9.1 Future Work

A large number of time-consuming experiments were reported in Chapter 8 of this thesis,

and only a few of the important mechanisms and parameters in multicellular develop-

ment could be explored. There is still a large number of developmental mechanisms that

Ph.D. Thesis 214 Tüze Kuyucu

Chapter 9 - Conclusions

are poorly understood for their effects on the evolvability of a developmental system.

Growth and cell division, cell movement and adhesion, importance of the order of cell

processing in a multicellular organism, the use of signalling pathways, long distance

cell signalling (i.e. auxins and endocrine) are some of the important and only partially

explored mechanisms that can have a significant effect on the performance of an ADS,

and these mechanisms would be worth investigating in future. It was also found in

the experiments provided in Chapter 8 that a detailed investigation into the decision

mechanisms used in the rule based GRN models and the techniques of mapping a de-

velopmental system to a phenotype may provide important advancements in the use of

ADS for EC. As shown in Chapter 8 using multiple types of patterns provided more

reliable information on how evolvable the developmental system is with the use of a

particular developmental mechanism. However, the decision of choosing the most evolv-

able developmental mechanism became tough in some cases due to the contradicting

results from different patterns. It would be worth investigating and including fitness

function independent evolvability measures into future investigations as well as fitness

function dependent measures with experimental applications other than patterns (such

as Artificial Neutral Networks (ANN), control systems, and image compression) for

even more reliable results. Jin and Trommler developed a fitness function independent

evolvability measure for GRN based developmental systems, where the GRN is modelled

using differential equations [Jin and Trommler, 2010]. It should be possible to extend the

method they present for developmental systems using rule-based GRN models.

In Chapter 6, it was shown that some of the developmental organisms could achieve

full recovery from transient faults, be unaffected by the loss of genetic information, and

maintain the target pattern after permanent cell failure within the organism. In Ap-

pendix D, some of these properties along with the ability to maintain a stable pattern

are further discussed. It would be interesting and perhaps highly rewarding to inves-

tigate and understand in detail the key mechanisms that enhance the fault tolerance

properties of developmental systems. By understanding the causes of different fault

tolerant and stable behaviours, ADSs can be used for fault tolerance as well as for fault

detection in computational applications. Chapter 4 had highlighted adaptivity as one

of the benefits of artificial development, but investigating the adaptive properties of

multicellular artificial development was not part of the work provided in this thesis.

Developmental organisms have been shown in another work to dynamically respond

Ph.D. Thesis 215 Tüze Kuyucu

Chapter 9 - Conclusions

and adapt to environmental information [Tufte, 2008b]. It was also shown in the first

section of Chapter 6 of this thesis that the presented GRN model is capable of providing

a responsive network and adapting its environment. Further experiments investigating

the adaptive properties of the presented multicellular ADS would be a valuable extension

to this thesis.

Understanding the capabilities of the mechanisms that accompany ADSs is an important

step towards harnessing the full potential of ADSs in the design of computational sys-

tems. With the advancing technology and a better understanding of what is needed from

EC, ADSs have the potential to provide the right approach to “evolving” problems into

solutions. Applying evolution and development to the right computational problem is

one of the foremost important steps that needs to be taken, before impressive designs

can emerge with the use of evolution and development. During the writing of this

thesis, the developmental model described in Chapter 5 has been used with many of

the improvements obtained from Chapter 8 as an image compression tool that produced

better results than JPEG image compression and provided robust results where a sin-

gle genome can encode multiple images [Trefzer et al., 2010]. With the right choice of

applications, the achievable designs by the evolution of a multicellular developmental

system seems promising. However, finding the right computational application to tackle

remains to be one of the grand challenges of EC using multicellular ADSs. Including

the Chapter 7 of this thesis several other publications have demonstrated the use of

development to design scalable digital electronic circuits; such as [Bidlo and Škarvada,

2008], and [Harding et al., 2009], who evolve developmental models that build generic

multiplier and parity circuits respectively. Although good demonstrators of the power

of developmental systems, these applications are not practical as they present already

existing solutions.

As a better understanding of GRNs and ADSs is obtained, the use of ADSs will be key to

the emergence of complex and intelligent artificial systems that can achieve comparable

behaviours to biological systems. The use of developmental approaches to the growth

of neural networks has been suggested and shown to be successful already [Khan et al.,

2008]. A more bio-inspired and better tuned approach to growing neural networks has

the potential of creating brain-like intelligent networks. With the successful application

of ADSs, adaptive and intelligent systems can be created to be used in situations that

Ph.D. Thesis 216 Tüze Kuyucu

Chapter 9 - Conclusions

require the intuition of humans. Security checking, handling of dangerous materials,

and human interactions are tasks that require intelligent, intuitive and adaptive systems.

Although achieving such systems via engineered designs is not possible, bio-inspired

approaches provide a gateway to these systems. With further research, implementation

of real applications via the evolution of ADSs will be possible in the near future.

Ph.D. Thesis 217 Tüze Kuyucu

Acronyms

ADS Artificial Developmental System

ADF Automatically Defined Function

AI Artificial Intelligence

ANN Artificial Neutral Networks

ASIC Application Specific Integrated Circuit

BIST Built-In Self Testing

BMH Bitwise Fitness Modified for Hardware

CA Cellular Automata

CAB Configurable Analogue Block

CE Cellular Encoding

CGP Cartesian Genetic Programming

CLB Configurable Logic Block

COP Constrained Optimisation Problems

CPLD Complex Programmable Logic Device

DC Diffusion Constant

DP Diffusion Protein

DNA DeoxyriboNucleic Acid

218

Chapter 9 - Conclusions

EA Evolutionary Algorithm

EC Evolutionary Computation

ECGP Embedded Cartesian Genetic Programming

EHW Evolvable HardWare

EP Evolutionary Programming

ES Evolution Strategy

FPAA Field Programmable Analogue Array

FPGA Field Programmable Gate Array

FPTA Field Programmable Transistor Array

GA Genetic Algorithm

GP Genetic Programming

GRN Gene Regulatory Network

HBS Hierarchical Bit-string Sampling

HIFF Hierarchical IF-and-only-iF

IO Input/Output

L-Systems Lindenmayer Systems

LUT Look-Up Table

mRNA messenger RNA

NMR N-Modular Redundancy

RNA RiboNucleic Acid

RISC Reduced Instruction Set Computer

RISA Reconfigurable Integrated System Array

SNAP Simple Networked Application Processor

TMR Triple Modular Redundancy

tRNA transfer RNA

Ph.D. Thesis 219 Tüze Kuyucu

Appendix A

Resource Consumption on RISA

In Chapter 3, evolution of circuits on the RISA hardware platform was described, and

various sequential and combinational circuits were evolved. Some of the circuits were

2,4

5,34,33,32,31,30,3

5,44,43,41,40,4

5,54,53,52,51,50,5

5,24,23,22,21,20,2

5,14,13,12,11,10,1

5,04,03,02,01,00,0W0

W1

W2

W3

W4

W5

E0

E1

E2

E3

E4

E5

S5S4S3S2S1S0

N5N4N3N2N1N0

IO Block
A B

X

Cluster

Constrained - tone discriminator Unconstrained - tone discriminator

A B A B A B A B A B

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

A B A B A B A B A B A B

A B A B A B A B A B

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

A B A B A B A B A B A B

5,34,33,32,31,30,3

5,44,43,42,41,40,4

5,54,53,52,51,50,5

5,24,23,22,21,20,2

5,14,13,12,11,10,1

5,04,03,02,01,00,0W0

W1

W2

W3

W4

W5

E0

E1

E2

E3

E4

E5

S5S4S3S2S1S0

N5N4N3N2N1N0

IO Block
A B

Cluster

Figure A.1: A map of the RISA clusters that are relevant for the operation of typical solutions
found with constrained and unconstrained evolution respectively. Clusters that were relevant for
all tested random input patterns are marked with a circle. Those, which became relevant in some
cases are marked with a triangle and those which are no longer necessary when the ones with the
triangles become relevant are marked with a cross.

220

Appendix A - Resource Consumption on RISA

evolved on both a constrained and unconstrained versions of the RISA’s reconfigurable

architecture. Two of the evolved tone discriminator circuits, one in unconstrained and

the other in constrained RISA platform, are analysed for the amount and style of cluster

usage. In the constrained RISA platform the size of configurable bits per cluster were

reduced from 472 to 58 bits.

The experiments were done only involving ten clusters out of 36 available on the RISA

chip for both constrained and unconstrained cases (marked as grey blocks in Figure A.1).

All the other clusters were configured to pass the incoming signals from west to east,

and their configurations were not altered during evolution. The information displayed

in Figure A.1, shows the clusters that were used in the final design of fully functional

tone discriminators.

The clusters, which are actually relevant for the operation of a solution found, are iden-

tified by successively clamping configuration bits to zero until the fitness gets worse.

It is interesting to see that evolution exploits clusters that were not explicitly subject to

evolution and configured with the default, unchanged pass through configuration. This

effect is present in both constrained and unconstrained evolution cases, however, it is

stronger in the unconstrained case. Another surprising observation is related to testing

with random input patterns: in order to provide the correct output for certain input

patterns, additional clusters became relevant, as can be seen from Figure A.1.

Ph.D. Thesis 221 Tüze Kuyucu

Appendix B

Cluster and IO Routing in RISA

The configuration options and the connectivity of the IO pads going in and out of RISA

FPGA is shown in Figure B.1. Each IO pad can be connected to only one line going in or

out of the RISA FPGA, and can only be used as an input or output port.

Figure B.1: The complete schematic for one of the IO blocks surrounding the RISA FPGA. Each
IO block has two IO pads, which can be configured as input or output to the FPGA substrate of
RISA. The configurable bits are displayed in boxes.

222

Appendix B - Cluster and IO Routing in RISA

Figure B.2 shows the connectivity of the IO blocks to the RISA FPGA, and the connectivity

among the RISA clusters. The maximum number of IO ports that can be used in each IO

block is two since there are only 2 IO pads. Each cluster has four function units that are

dedicated to inputs and outputs from and to a single direction (east, west, south, north).

For example, accessing a function unit dedicated for “north” via inputs coming from

“east” is not possible via combinational pathways. The only possible way to use these

inputs is to route them to the function unit dedicated for inputs coming from “east”, and

a single output from the latter function unit can be registered to be used in the next clock

cycle for the function unit dedicated for “north”. Each function unit has a 16-bit look-up

table, which require 4 inputs in order to be fully used. The limited number of inputs

(maximum of 12 in each direction) limits the usability of the substrate. For example, a

Figure B.2: The schematic for the routing between the clusters and IO blocks of RISA FPGA. The
routing at this level is fixed and not configurable. In the schematic only the eastward direction is
shown, the same routing scheme is present in all four directions.

Ph.D. Thesis 223 Tüze Kuyucu

Appendix B - Cluster and IO Routing in RISA

maximum of only 2 function units out of the 24 (6 clusters × 4 function units) nearest

function units to the IO blocks can be fully utilized.

Even though the RISA FPGA substrate provides 144 16-bit look-up tables for building

combinational and sequantial digital circuits, the total number of usable look-up tables

in one direction is less then 10. This is a main contributing factor for obtaining large

performance increase in evolution of multiple output circuits when the outputs of the

evolved circuits were partitioned, see Section 3.5.3. Therefore, the small number of avail-

able IOs and routing for the comparably large amount of logic provided in RISA makes

this platform hard to evolve circuits on. This is because, the number of IOs provided in

RISA only allow a very small portion of the FPGA substrate to be utilized, hence a large

part of the logic circuitry create unusable design space. Therefore when unconstrained, it

is possible for evolution to spend a long time searching for an optimal design by changing

the configuration of the vast amount of unusable logic provided in RISA. Although it has

been shown that in evolution of circuits, “neutral search” can improve the evolutionary

performance [Harvey and Thompson, 1997; Vassilev and Miller, 2000a]. The architectures

where these “neutrality” experiments with redundant hardware were done, provided the

possibility of connecting the redundant hardware to the actual design. As it was termed

by Harvey and Thompson, neutrality of the right kind with “potentially useful junk”

helps eliminate local optima [Harvey and Thompson, 1997]. Unfortunately, in RISA there

is a large amount of redundancy that is unusable by evolution, thus instead of being

eliminated, the local optima are enhanced.

Ph.D. Thesis 224 Tüze Kuyucu

Appendix B - Cluster and IO Routing in RISA

Ph.D. Thesis 225 Tüze Kuyucu

Appendix C

Explaining Box and Whisker Plots

A box plot displays a variety of information about the sample data being plotted; an

example plot illustrated in Figure C.1. The median of a sample data is shown as a line

in the middle of a box. The 25th and 75th percentiles of a sample are drawn as the lower

and upper lines of the box. The distance between the lower and upper lines of the box is

referred to as the inter-quartile range. The rest of a sample is shown by the whiskers of

the plot, which covers up to 1.5 times the inter-quartile range of the sample. If there are

any data outside the range covered by the whiskers, these are then marked by diamond

symbols above and below the whiskers and they are referred to as outliers. The notches

A B E
0

5

10

15

20

25

30

35

F
it
n
e
s
s

Median

Inter-quartile
Range

(50% of Data)

Outlier

Whiskers

Confidence Interval

C

Figure C.1: Example box and whisker plots of three different data sets.

226

Appendix C - Explaining Box and Whisker Plots

in the box plot, first introduced by [McGill et al., 1978], are a graphic confidence interval

about the median of a sample. A small confidence interval demonstrates a good sample

of data. A side-by-side comparison of two notched box plots can provide information

on the statistical difference between the two data sets. If the notches of the two data sets

do not overlap the medians are significantly different at about a 95% confidence. In the

example plot shown in Figure C.1, the confidence intervals of data set A and C overlap,

suggesting that these two data sets are not significantly different, whereas the confidence

interval of data set B does not overlap with either of the other two data sets, suggesting

that data set B is significantly different than the other two data sets.

Ph.D. Thesis 227 Tüze Kuyucu

Appendix D

Stability and Fault Tolerance

It was shown in Section 6.4 of Chapter 6 that the developmental system presented in this

thesis can achieve emergent fault tolerance and recovery in the presence of various faults

such as; gene knock-outs, cell death and transient faults. The most stable two organisms

from a total of 80 different runs (40 runs for each pattern) that achieve two different

patterns were used for these fault tolerance and recovery demonstrations. However,

neither of these organisms were able to maintain the target pattern for a very long time;

the asymmetric pattern would go in to an oscillatory state with one of the cells changing

state every 15 developmental steps, and the French flag would stay stable only for the

first 465 developmental steps.

One organism from each of the pattern experiments in Section 8.7 of case ‘F’ (the combi-

nation of “best” mechanisms) is chosen at random from the solutions marked as “stable”

(i.e. successfully tested during evolution to keep the target pattern for 10 developmental

steps). These are the organisms evolved with the final version of the developmental sys-

tem after the developmental mechanisms and parameters are tuned by the investigations

in Chapter 8. All six of the chosen organisms are evaluated for 1 million developmental

steps for their ability to remain stable at the pattern they were evolved to form. Each

of these (semi)randomly chosen organisms remain stable for 1 million developmental

steps without diverting from their respective target patterns. Figure D.1 illustrates the

developmental path of each organism used in this section.

Furthermore, two of the organisms are tested for their fault tolerant capabilities by re-

peating tests used in Section 6.4. The organisms that form the same patterns used in

228

Appendix D - Stability and Fault Tolerance

Age 3 Age 4 Age 5 Age 6 Age 10 Age 1Million

(a) 2 colour mosaic pattern

Age 3 Age 4 Age 5 Age 6 Age 13 Age 1Million

(b) Simple 2 colour mosaic pattern

Age 3 Age 4 Age 5 Age 6 Age 12 Age 1Million

(c) 4 colour mosaic pattern

Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 1Million

(d) Asymmetric borders pattern

Age 3 Age 4 Age 5 Age 6 Age 7 Age 1Million

(e) French flag pattern

Age 3 Age 4 Age 5 Age 6 Age 7 Age 8 Age 9 Age 1Million

(f) 8 patches pattern

Figure D.1: The development of organisms for 1 million developmental steps for each pattern
used in Chapter 8.

Section 6.4 –French flag and asymmetric borders patterns– are used for the fault tolerance

tests. Similar or slightly better results when compared to Section 6.4 are obtained in the

case of cell death or transient faults (see figures D.2 and D.3). However, both of the

organisms display tolerance to a higher number of gene knock-outs. Both organisms

can tolerate the loss of 7 genes. The organism forming French flag still forms the same

pattern even if all 7 of these genes are knocked out at the same time. The organism

forming asymmetric borders pattern can achieve the same pattern up to a knock-out of 6

Ph.D. Thesis 229 Tüze Kuyucu

Appendix D - Stability and Fault Tolerance

(a) Lower right
corner cells.

(b) Centre cells. (c) Top left corner
cells.

(d) Lower right
corner cells.

(e) Centre cells. (f) Top left corner
cells.

Figure D.2: Transient faults on organisms forming the French flag and asymmetric borders
patterns. Only the final stable patterns achieved after the faults are shown in these figures. The
cells where the transient faults were introduced are noted below each figure.

(a) (b) (c) (d)

Figure D.3: Cells are killed in the organisms forming the French flag and asymmetric borders
patterns. Only the final stable patterns achieved after the faults are shown in these figures. The
location of the cells killed are marked with letter ’K’ on each figure.

genes at a time (even though 7 different genes can be knocked out individually without

disturbing the pattern). This is a large increase in the number of redundant genes from

the examples shown in Section 6.4, where the French flag pattern had no redundant genes

and the asymmetric borders pattern only had one redundant gene.

Although there is not much improvement to the fault tolerant properties of the evolved

organisms with improved combination of mechanisms in the face of transient faults and

cell death, these organisms have a considerably larger number of redundant genes than

the ones in Chapter 6. Investigating the fault tolerance and long term stability of the

organisms evolved in the experiments presented in Chapter 8 in detail may provide

further insight into the effects of the mechanisms and parameters discussed as well as

a better understanding of how different types of fault tolerant properties emerge in a

developmental organism.

Ph.D. Thesis 230 Tüze Kuyucu

Appendix D - Stability and Fault Tolerance

Ph.D. Thesis 231 Tüze Kuyucu

Bibliography

(1997). Xilinx Xc6200 FPGA-Based Reconfigurable Co-Processor Data Sheet. Xilinx Inc.

Alpert, D. and Avnon, D. (1993). Architecture of the pentium microprocessor. IEEE Micro,

13(3):11–21.

Arad, B. and El-Amawy, A. (1994). Robust fault tolerant training of feedforward neural

networks. In Circuits and Systems, 1994., Proceedings of the 37th Midwest Symposium on,

pages 539–544, Lafayette, LA, USA.

Araujo, S. G., Mesquita, A. C., and Pedroza, A. (2003). Using genetic programming and

high level synthesis to design optimized datapath. In ICES’03: Proceedings of the 5th

international conference on Evolvable systems: from Biology to Hardware, pages 434–445.

Back, T., Hammel, U., and Schwefel, H.-P. (1997). Evolutionary computation: comments

on the history and current state. IEEE Transactions on Evolutionary Computation, 1(1):3–

17.

Banzhaf, W. (1993). Genetic programming for pedestrians. In Forrest, S., editor,

Proceedings of the 5th International Conference on Genetic Algorithms, ICGA-93, page 628,

University of Illinois at Urbana-Champaign. Morgan Kaufmann.

Banzhaf, W. (2003). On the dynamics of an artificial regulatory network. In Advances

in Artificial Life, Proceedings of the 7th European Conference (ECAL-2003),, pages 217–227.

Springer Berlin / Heidelberg.

Banzhaf, W., Beslon, G., Christensen, S., Foster, J. A., Kepes, F., Lefort, V., Miller, J. F.,

Radman, M., and Ramsden, J. J. (2006). Guidelines: From artificial evolution to

computational evolution: a research agenda. Nature Reviews Genetics, 7:729–735.

232

Bibliography

Bentley, P. (2005). Investigations into graceful degradation of evolutionary developmen-

tal software. Natural Computing: an international journal, 4(4):417–437.

Bentley, P. and Kumar, S. (1999). Three ways to grow designs: A comparison of em-

bryogenies for an evolutionary design problem. In Proc. of the Genetic and Evolutionary

Computation Conf., pages 35–43, Orlando, Florida, USA. Morgan Kaufmann.

Berleth, T. and Sachs, T. (2001). Plant morphogenesis: long-distance coordination and

local patterning. Current Opinion in Plant Biology, 4:57–62.

Bidlo, M. and Škarvada, J. (2008). Instruction-based development: From evolution to

generic structures of digital circuits. Int. J. Know.-Based Intell. Eng. Syst., 12(3):221–236.

Bland, A. S., Kendall, R. A., Kothe, D. B., Rogers, J. H., and Shipman, G. M. (2009). Jaguar:

The Worlds Most Powerful Computer. In CUG 2009 Proceedings.

Bode, H. R. (2003). Head regeneration in hydra. Developmental dynamics, 226:225–236.

Boers, E. J. and Kuiper, H. (1992). Biological metaphors and the design of modular

artificial neural networks. Master’s thesis, Leiden University.

Bonner, J. T. (1998). The origins of multicellularity. Integrative Biology: Issues, News, and

Reviews, 1(1):27–36.

Box, G. E. P. (1957). Evolutionary operation: A method for increasing industrial

productivity. Applied Statistics, 6(2):81–101.

Bradley, D., Ortega-Sanchez, C., and Tyrrell, A. (2000). Embryonics + immunotronics:

A bio-inspired approach to fault tolerance. In The Second NASA/DoD Workshop on

Evolvable Hardware, page 215.

Bradley, D. and Tyrrell, A. (2002). Immunotronics: Novel finite-state-machine architec-

tures with built-in self-test using self-nonself differentiation. In IEEE Trans. Evolutionary

Computation, pages 227–238.

Braitenberg, V. (2001). Brain size and number of neurons: An exercise in synthetic

neuroanatomy. Journal of Computational Neuroscience, 10(1):71–77.

Bramlette, M. F. and Bouchard, E. E. (1991). Genetic algorithms in parametric design

of aircraft. In Davis, L. D., editor, Handbook of Genetic Algorithms, chapter 10, pages

109–123. Van Nostrand Reinhold.

Ph.D. Thesis 233 Tüze Kuyucu

Bibliography

Bremermann, H. J. (1962). Optimization through evolution and recombination. Self-

Organizing Systems, pages 93–106.

Brown, S. and Rose, J. (1996). Fpga and cpld architectures: A tutorial. IEEE Des. Test,

13(2):42–57.

Canham, R. and Tyrrell, A. (2002). Evolved fault tolerance in evolvable hardware. In

Congress on Evolutionary Computation, pages 1267–1272, Hawaii.

Canham, R. and Tyrrell, A. (2003). A hardware artificial immune system and embryonic

array for fault tolerant systems. Genetic Programming and Evolvable Machines, 4(4):359–

382.

Chavoya, A. (2009). Foundations of Computational, Intelligence Volume 1, volume 201/2009

of Studies in Computational Intelligence, chapter Artificial Development, pages 185–215.

Springer Berlin / Heidelberg.

Claverie, J.-M. (2001). What if there are only 30,000 human genes? Science,

291(5507):1255–1257.

Corno, F., Prinetto, P., and Reorda, M. (1996). A genetic algorithm for automatic

generation of test logic for digital circuits. In Proceedings of the IEEE International

Conference On Tools with Artificial Intelligence, Toulouse, France.

Cramer, N. L. (1985). A representation for the adaptive generation of simple sequential

programs. In Grefenstette, J. J., editor, Proceedings of an International Conference on

Genetic Algorithms and the Applications, pages 183–187, Carnegie-Mellon University,

Pittsburgh, PA, USA.

Darwin, C. (1859). On the Origin of Species by Means of Natural Selection, or the Preservation

of Favoured Races in the Struggle for Life. John Murray, London, 1st edition.

Davidson, E. (2006). The Regulatory Genome: Gene Regulatory Networks In Development And

Evolution. ACADEMIC PRESS, 1 edition.

Davidson, S. (2005). Bist the hard way. IEEE Design and Test of Computers, 22:386–387.

Dawkins, R. (2003). On Growth, Form and Computers, chapter The evolution of Evolvabil-

ity, pages 239–255. Elsevier Academic Press.

Ph.D. Thesis 234 Tüze Kuyucu

Bibliography

de Jong, H. (2002). Modeling and simulation of genetic regulatory systems: A literature

review. Journal of Computational Biology, 9(1):67–103.

Deb, K. (2001). Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley &

Sons, Inc., New York, NY, USA.

Dellaert, F. and Beer, R. (1994). Toward an Evolvable Model of Development for Autonomous

Agent Synthesis. MIT Press Cambridge.

Devert, A., Bredeche, N., and Schoenauer, M. (2007). Robust multi-cellular develop-

mental design. In GECCO ’07: Proceedings of the 9th annual conference on Genetic and

evolutionary computation, pages 982–989, New York, NY, USA. ACM.

Edelman, G. M. and Gally, J. A. (2001). Degeneracy and complexity in biological

systems. Proceedings of the National Academy of Sciences of the United States of America,

98(24):13763–13768.

Eggenberger, P. (1997). Evolving morphologies of simulated 3d organisms based on

differential gene expression. In Proceedings of 4th European Conference on Artificial Life,

pages 205–213.

Fagotto, F. and Gumbiner, B. M. (1996). Cell contact-dependent signalling. Developmental

Biology, 180:445–454.

Fahrmair, M., Sitou, W., and Spanfelner, B. (2006). Unwanted behavior and its impact on

adaptive systems in ubiquitous computing. In ABIS 2006 : 14th Workshop on Adaptivity

and User Modeling in Interactive Systems.

Federici, D. (2004). Using embryonic stages to increase the evolvability of development.

In In Proceedings of the Genetic and Evolutionary Computation Conference (GECCO-2004).

Springer Verlag.

Flann, N., Jing, H., Bansal, M., Patel, V., and Podgorski, G. (2005). Biological development

of cell patterns : Characterizing the space of cell chemistry genetic regulatory networks.

In 8th European conference, ECAL. Springer Berlin / Heidelberg.

Fleischer, K. and Barr, A. H. (1993). A simulation testbed for the study of multicellular

development: The multiple mechanisms of morphogenesis. In Third Artificial Life

Workshop, pages 389–416, Santa Fe, New Mexico, USA.

Ph.D. Thesis 235 Tüze Kuyucu

Bibliography

Floreano, D. and Mondada, F. (1994). Automatic creation of an autonomous agent:

Genetic evolution of a neural-network driven robot. In From Animals to Animats 3:

Proceedings of Third Conference on Simulation of Adaptive Behavior, Cambridge, MA. MIT

Press/ Bradford Books.

Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966). Artificial Intelligence through Simulated

Evolution. John Wiley, New York, USA.

Friedberg, R. M. (1958). A learning machine: I. IBM Journal of Research and Development,

2(1):2–13.

Gao, P., McConaghy, T., and Gielen, G. (2008). Importance sampled circuit learning en-

sembles for robust analog ic design. In Computer-Aided Design, International Conference

on, pages 396–399, Los Alamitos, CA, USA. IEEE Computer Society.

Garvie, M. and Thompson, A. (2004). Scrubbing away transients and jiggling around the

permanent: Long survival of fpga systems through evolutionary self-repair. In Proc.

10th IEEE Intl. On-Line Testing Symposium, volume 2606 of LNCS, pages 155–160. IEEE

Computer Society.

Giustina, A. and Manelli, F. (2001). Growth Hormone and The Heart. Springer.

Goldbeter, A. (1996). Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of

Periodic and Chaotic Behaviour. Cambridge University Press.

Gordon, T. G. W. (2005). Exploiting Development to Enhance the Scalability of Hardware

Evolution. PhD thesis, University College London.

Greensted, A. and Tyrrell, A. (2003). Fault tolerance via endocrinologic based commu-

nication. In LNCS Evolvable Systems: From Biology to Hardware, 2606, pages 24–34,

Trondheim. ICES.

Greensted, A. and Tyrrell, A. (2004). An endocrinologic-inspired hardware implemen-

tation of a multicellular system. In 2004 NASA/DoD Conference on Evolvable Hardware

proceedings, Seaprele.

Greensted, A. and Tyrrell, A. (2007a). Extrinsic evolvable hardware on the risa architec-

ture. In International Conference on Evolvable Systems proceedings, Wuhan, China.

Ph.D. Thesis 236 Tüze Kuyucu

Bibliography

Greensted, A. and Tyrrell, A. (2007b). Risa: A hardware platform for evolutionary design.

In IEEE Workshop on Evolvable and Adaptive Hardware, 2007, pages 1–7, Honolulu, HI.

IEEE.

Gruau, F. (1994). Neural Network Synthesis using Cellular Encoding and the Genetic Algorithm.

PhD thesis, Ecole Normale Supirieure de Lyon, France.

Gwaltney, D. A. and Ferguson, M. I. (2003). Intrinsic hardware evolution for the design

and reconfiguration of analog speed controllers for a dc motor. In 5th NASA / DoD

Workshop on Evolvable Hardware (EH 2003), pages 81–90, Chicago, IL, USA.

Haddow, P. and Hoye, J. (2009). Investigating the effect of regulatory decisions in a

development model. In Evolutionary Computation, 2009. CEC ’09. IEEE Congress on,

pages 293–300.

Haddow, P. and Tufte, G. (1999). Evolving a robot controller in hardware. In In Proc. of

the Norwegian Computer Science Conference (NIK-99), pages 141–150.

Haddow, P. and Tufte, G. (2000). An evolvable hardware fpga for adaptive hardware. In

In Congress on Evolutionary Computation (CEC00), pages 553–560.

Haddow, P. C. and Hoye, J. (2007). Achieving a simple development model for 3d

shapes: Are chemicals necessary? In Proc. of the 9th Annual Conference on Genetic and

Evolutionary Computation (GECCO), pages 1013–1020, New York, NY, USA. ACM.

Haddow, P. C. and Tufte, G. (2001). Bridging the genotype-phenotype mapping for digital

fpgas. In EH ’01: Proceedings of the The 3rd NASA/DoD Workshop on Evolvable Hardware,

page 109, Washington, DC, USA. IEEE Computer Society.

Haddow, P. C., Tufte, G., and van Remortel, P. (2001). Shrinking the genotype: L-systems

for EHW? In ICES, pages 128–139.

Harding, S. (2006). Evolution In Materio. PhD thesis, University of York.

Harding, S., Miller, J. F., and Banzhaf, W. (2009). Self modifying cartesian genetic

programming: Parity. In 2009 IEEE Congress on Evolutionary Computation, pages 285–

292.

Ph.D. Thesis 237 Tüze Kuyucu

Bibliography

Harding, S. L., Miller, J. F., and Banzhaf, W. (2007). Self-modifying cartesian genetic

programming. In GECCO ’07: Proceedings of the 9th annual conference on Genetic and

evolutionary computation, pages 1021–1028, New York, NY, USA. ACM.

Harvey, I. and Thompson, A. (1997). Through the labyrinth evolution finds a way: A

silicon ridge. In Proc. 1st Int.Conf.on Evolvable Systems (ICES‘96), volume 1259 of LNCS,

pages 406–422. Springer-Verlag.

Hereford, J. and Kuyucu, T. (2006). Neural network with distributed nodes provides fault

tolerance. SPIE.org.

Hereford, J. and Pruitt, C. (2004). Robust sensor systems using evolvable hardware. In

6th NASA / DoD Workshop on Evolvable Hardware (EH 2004), pages 161–168.

Higuchi, T. (1994). Evolvable hardware with genetic learning.

Hilder, J. A., Walker, J. A., and Tyrrell, A. M. (2009). Optimising variability tolerant

standard cell libraries. In CEC’09: Proceedings of the Eleventh conference on Congress on

Evolutionary Computation, pages 2273–2280, Piscataway, NJ, USA. IEEE Press.

Holland, J. H. (1973). Genetic algorithms and the optimal allocation of trials. SIAM J. of

Computing, 2:88–105.

Hollingworth, G., Smith, S., and Tyrrell, A. (2000). The intrinsic evolution of virtex

devices through internet reconfigurable logic. In 3rd International Conference on

Evolvable Systems: from Biology to Hardware, pages 72–79, Edinburgh,. Springer-Verlag.

Hong, J.-H. and Cho, S.-B. (2003). Meh: modular evolvable hardware for designing

complex circuits. In Proceedings of the IEEE Congress on Evolutionary Computation, CEC

2003, 8 - 12 December 2003, Canberra, Australia, pages 92–99. IEEE.

Hornby, G., Kraus, W. F., and Lohn, J. D. (2008). Evolving MEMS resonator designs for

fabrication. In Proceedings of the 8th International Conference Evolvable Systems: From

Biology to Hardware, ICES 2008, volume 5216 of Lecture Notes in Computer Science, pages

213–224, Prague, Czech Republic. Springer.

Hornby, G., Lohn, J., and Linden, D. (2007). Computer-automated evolution of an x-

band antenna for nasas space technology 5 mission. IEEE Transactions on Evolutionary

Computation.

Ph.D. Thesis 238 Tüze Kuyucu

Bibliography

Hornby, G. S. and Pollack, J. B. (2001). The advantages of generative grammatical

encodings for physical design. In In Congress on Evolutionary Computation, pages 600–

607. IEEE Press.

Hounsell, B. I. and Arslan, T. (2001). Evolutionary design and adaptation of digital filters

within an embedded fault tolerant hardware platform. In 3rd NASA / DoD Workshop

on Evolvable Hardware (EH 2001), pages 127–135.

Huelsbergen, L., Rietman, E. A., and Slous, R. (1999). Evolving oscillators in silico. In

IEEE Transactions on Evolutionary Computation, volume 3, pages 197–204.

Imamura, K., Foster, J. A., and Krings, A. W. (2000). The test vector problem and

limitations to evolving digital circuits. In EH ’00: Proceedings of the 2nd NASA/DoD

workshop on Evolvable Hardware, page 75, Washington, DC, USA. IEEE Computer

Society.

Jakobi, N. (1995). Harnessing morphogenesis. In International Conference on Information

Processing in Cells and Tissues, pages 29–41.

Jeng, S.-L., Lu, J.-C., and Wang, K. (2007). A review of reliability research on nanotech-

nology. Reliability, IEEE Transactions on, 56(3):401–410.

Jin, Y. and Trommler, J. (2010). A fitness-independent evolvability measure for evolu-

tionary developmental systems. In IEEE Symposium on Computational Intelligence in

Bioinformatics and Computational Biology, pages 69–76.

Kajitani, I., Hoshino, T., Kajihara, N., Iwata, M., and Higuchi, T. (1999). An evolvable

hardware chip and its application as a multi-function prosthetic hand controller. In

AAAI ’99/IAAI ’99: Proceedings of the sixteenth national conference on Artificial intelligence

and the eleventh Innovative applications of artificial intelligence conference, pages 182–187,

Menlo Park, CA, USA. American Association for Artificial Intelligence.

Kalganova, T. (2000a). Bidirectional incremental evolution in extrinsic evolvable hard-

ware. In Lohn, J., Stoica, A., and Keymeulen, D., editors, The Second NASA/DoD

workshop on Evolvable Hardware, pages 65–74, Palo Alto, California. IEEE Computer

Society.

Kalganova, T. (2000b). An extrinsic function-level evolvable hardware approach. In

Poli, R., Banzhaf, W., Langdon, W. B., Miller, J. F., Nordin, P., and Fogarty, T. C.,

Ph.D. Thesis 239 Tüze Kuyucu

Bibliography

editors, Genetic Programming, Proceedings of EuroGP’2000, volume 1802, pages 60–75,

Edinburgh. Springer-Verlag.

Kauffman, S. (1969). Metabolic stability and epigenesis in randomly constructed genetic

nets. Journal of Theoretical Biology, 22(3):437–467.

Kauffman, S. (1996). At Home in the Universe: The Search for the Laws of Self-Organization

and Complexity. Oxford University Press.

Khan, G. M., Miller, J. F., and Halliday, D. M. (2008). Breaking the synaptic dogma:

Evolving a neuro-inspired developmental network. In SEAL ’08: Proceedings of the

7th International Conference on Simulated Evolution and Learning, pages 11–20, Berlin,

Heidelberg. Springer-Verlag.

Kirschner, M. and Gerhart, J. (1998). Evolvability. volume 95, pages 8420–8427,

Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.

marc@hms.harvard.edu.

Kitano, H. (1995). A simple model of neurogenesis and cell differentiation based on

evolutionary large-scale chaos. Artif. Life, 2(1):79–99.

Kitano, H. (1998). Building complex systems using developmental process: An engineer-

ing approach. In ICES ’98: Proceedings of the Second International Conference on Evolvable

Systems, pages 218–229, London, UK. Springer-Verlag.

Knabe, J. F., Nehaniv, C. L., and Schilstra, M. J. (2008). Regulation of gene regulation

- smooth binding with dynamic affinity affects evolvability. In IEEE Congress on

Evolutionary Computation (CEC 2008). Proc WCCI 2008, pages 890–896. IEEE Press.

Knabe, J. F., Nehaniv, C. L., Schilstra, M. J., and Quick, T. (2006). Evolving biological

clocks using genetic regulatory networks. In Proceedings of the Artificial Life X Conference,

Alife 10, pages 15–21. MIT Press.

Kovel, J. (2002). The Enemy of Nature: The End of Capitalism or the End of the World? Zed

Books.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of

Natural Selection. MIT Press, Cambridge, MA, USA.

Ph.D. Thesis 240 Tüze Kuyucu

Bibliography

Koza, J. R. (1994). Genetic programming II: automatic discovery of reusable programs. MIT

Press, Cambridge, MA, USA.

Koza, J. R., Bennett, III, F. H., Andre, D., and Keane, M. A. (1996). Automated wywiwyg

design of both the topology and component values of electrical circuits using genetic

programming. In GECCO ’96: Proceedings of the First Annual Conference on Genetic

Programming, pages 123–131, Cambridge, MA, USA. MIT Press.

Kramer, O. (2008). Self-Adaptive Heuristics for Evolutionary Computation, volume 147.

Springer.

Krohling, R., Zhou, Y., and Tyrrell, A. (2003). Evolving fpga-based robot controllers using

an evolutionary algorithm. In 1st international conference on Artificial Immune Systems,

Canterbury.

Kumar, S. and Bentley, P., editors (2003a). On Growth, Form and Computers. Elsevier

Academic Press.

Kumar, S. and Bentley, P. J. (2003b). Biologically plausible evolutionary development. In

In Proc. of ICES 03, the 5th International Conference on Evolvable Systems: From Biology to

Hardware, pages 57–68.

Lala, P. K. (2001). Self-checking and fault-tolerant digital design. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA.

Lambert, C., Kalganova, T., and Stomeo, E. (2006). Fpga-based systems for evolvable

hardware. In WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOL-

OGY, volume 12.

Langeheine, J., Becker, J., Fölling, S., Meier, K., and Schemmel, J. (2001). A cmos fpta

chip for intrinsic hardware evolution of analog electronic circuits. In Proc.of the Third

NASA/DOD Workshop on Evolvable Hardware, pages 172–175, Long Beach, CA, USA.

IEEE Computer Society Press.

Lawrence, P. A. (1992). The making of a fly: The genetics of animal design. London. Blackwell

Scientific.

Leech, N. L. and Onwuegbuzie, A. J. (2002). A call for greater use of nonparametric

statistics. Technical report, Educational Resources Information Center.

Ph.D. Thesis 241 Tüze Kuyucu

Bibliography

Leyser, O. and Day, S. (2003). Mechanisms in Plant Development. Blackwell.

Linden, D. S. (2001). A system for evolving antennas in-situ. In EH ’01: Proceedings of the

The 3rd NASA/DoD Workshop on Evolvable Hardware, page 249, Washington, DC, USA.

IEEE Computer Society.

Linden, D. S. and Altshuler, E. E. (1999). Evolving wire antennas using genetic

algorithms: A review. In EH ’99: Proceedings of the 1st NASA/DOD workshop on Evolvable

Hardware, page 225, Washington, DC, USA. IEEE Computer Society.

Lindenmayer, A. (1968). Mathematical models for cellular interactions in development.

i. filaments with one-sided inputs. Journal of Theoretical Biology, pages 280–299.

Liu, H. (2007). Biological Development model for the Design of Robust Digital System. PhD

thesis, University of York.

Liu, H., Miller, J. F., and Tyrrell, A. M. (2005). Intrinsic evolvable hardware imple-

mentation of a robust biological development model for digital systems. In EH

’05: Proceedings of the 2005 NASA/DoD Conference on Evolvable Hardware, pages 87–92,

Washington, DC, USA. IEEE Computer Society.

Lones, M. and Tyrrell, A. (2001). Enzyme genetic programming. In et al, J. K., editor, Proc.

2001 Congress on Evolutionary Computation. IEEE Press.

Mattiussi, C. and Floreano, D. (2006). Analog genetic encoding for the evolution of

circuits and networks. In IEEE Transactions on Evolutionary Computation.

McGill, R., Tukey, J. W., and Larsen, W. A. (1978). Variations of box plots. American

Statistician, 32:12–16.

Metta, G., Sandini, G., and Konczak, J. (1999). A developmental approach to visually-

guided reaching in artificial systems. Neural Networks, 12(10):1413–1427.

Miller, J. F. (2003). Evolving developmental programs for adaptation, morphogenesis,

and self-repair. In 7th European Conference on Artificial Life, pages 256–265. Springer

LNAI.

Miller, J. F. (2004). Evolving a self-repairing, self-regulating, french flag organism.

In Genetic and Evolutionary Computation GECCO, pages 129–139. Springer Berlin /

Heidelberg.

Ph.D. Thesis 242 Tüze Kuyucu

Bibliography

Miller, J. F. and Downing, K. (2002). Evolution in materio: Looking beyond the silicon

box. In EH ’02: Proceedings of the 2002 NASA/DoD Conference on Evolvable Hardware

(EH’02), page 167, Washington, DC, USA. IEEE Computer Society.

Miller, J. F., Job, D., and Vassilev, V. (2000). Principles in the evolutionary design of digital

circuits - part i. Genetic Programming and Evolvable Machines, 1(1):8–35.

Miller, J. F. and Thomson, P. (2000). Cartesian genetic programming. In Genetic

Programming, Proceedings of EuroGP’2000, pages 121–132. Springer-Verlag.

Miller, J. F. and Thomson, P. (2003). A developmental method for growing graphs and

circuits. In Evolvable Systems: From Biology to Hardware, 5th International Conference,

pages 93–104.

Muller, S. (2002). Bio-Inspired Optimization Algorithms for Engineering Applications.

Springer Verlag.

Murakawa, M., Yoshizawa, S., Kajitani, I., Furuya, T., Iwata, M., and Higuchi, T. (1996).

Hardware evolution at function level. In PPSN IV: Proceedings of the 4th International

Conference on Parallel Problem Solving from Nature, pages 62–71, London, UK. Springer-

Verlag.

N., W. and A., R. (1946). The mathematical formulation of the problem of conduction of

impulses in a network of connected excitable elements, specifically in cardiac muscle.

Archivos del Instituto de Cardiologa de Mxico, 16:205–265.

Neumann, J. V. (1966). Theory of Self-Reproducing Automata. University of Illinois Press,

Champaign, IL, USA.

Pearce, A. C., Senis, Y. A., Billadeau, D. D., Turner, M., Watson, S. P., and Vigorito, E.

(2004). Vav1 and vav3 have critical but redundant roles in mediating platelet activation

by collagen. Biological Chemistry, 279:53955–53962.

Periaux, J., Setriroui, M., and Mantel, B. (1995). Robust genetic algorithms for optimiza-

tion problems in aerodynamic design. Genetic Algorithms in Engineering and computer

Science, pages 251–270.

Poli, R. (1996). Parallel distributed genetic programming. Technical Report CSRP-96-15,

School of Computer Science, University of Birmingham, B15 2TT, UK.

Ph.D. Thesis 243 Tüze Kuyucu

Bibliography

Rechenberg, I. (1973). Evolutionsstrategie: optimierung technischer systeme nach prinzipien

der biologischen evolution. Frommann-Holzboog.

Reil, T. (1999). Dynamics of gene expression in an artificial genome - implications for

biological and artificial ontogeny. In ECAL ’99: Proceedings of the 5th European Conference

on Advances in Artificial Life, pages 457–466, London, UK. Springer-Verlag.

Roggen, D. (2005). Multi-Cellular Reconfigurable Circuits: Evolution Morphogenesis and

Learning. PhD thesis, EPFL.

Sakanashi, H., Iwata, M., and Higuchi, T. (2001). A lossless compression method

for halftone images using evolvable hardware. In ICES ’01: Proceedings of the 4th

International Conference on Evolvable Systems: From Biology to Hardware, pages 314–326,

London, UK. Springer-Verlag.

Samie, M., Dragffy, G., Popescu, A., Pipe, T., and Kiely, J. (2009). Prokaryotic bio-inspired

system. In Adaptive Hardware and Systems, NASA/ESA Conference on, pages 171–178, Los

Alamitos, CA, USA. IEEE Computer Society.

Sekanina, L. (2003). Virtual reconfigurable circuits for real-world applications of evolv-

able hardware. Lecture Notes in Computer Science, 2003(2606):186–197.

Sekanina, L. (2006). Evolutionary design of digital circuits: where are current limits? In

Adaptive Hardware and Systems, 2006. AHS 2006. First NASA/ESA Conference on, pages

171–178.

Shanthi, A. P., Muruganandam, P., and Parthasarathi, R. (2004). Enhancing the de-

velopment based evolution of digital circuits. In NASA/DoD Conference on Evolvable

Hardware, pages 91–94. NASA/DoD, IEEE.

Shiveley, R. (2006). Dual-core intel itanium 2 processors deliver unbeatable flexibility and

performance to the enterprise. Technology@IntelMagazine.

Sims, K. (1994). Evolving 3d morphology and behavior by competition. Artif. Life,

1(4):353–372.

Skobtsov, Y. A., Ivanov, D. E., Skobtsov, V. Y., and Ubar, R. (2004). Evolutionary approach

to the functional test generation for digital circuits. In In Proc. of 9th Biennial Baltic

Electronics Conf., BEC 2004, pages 229–232, Tallinn Univ. of Techn.

Ph.D. Thesis 244 Tüze Kuyucu

Bibliography

Spector, L. and Stoffel, K. (1996). Automatic generation of adaptive programs. In

Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior: From

animals to animats 4, pages 476–483, Cape Code, USA. MIT Press.

Stanley, K. O. (2007). Compositional pattern producing networks: A novel abstraction of

development. Genetic Programming and Evolvable Machines, 8(2):131–162.

Stanley, K. O. and Miikkulainen, R. (2002). Evolving neural networks through augment-

ing topologies. Evol. Comput., 10(2):99–127.

Stanley, K. O. and Miikkulainen, R. (2003). A taxonomy for artificial embryogeny. Artif.

Life, 9(2):93–130.

Steiner, T., Jin, Y., and Sendhoff, B. (2008). A cellular model for the evolutionary devel-

opment of lightweight material with an inner structure. In GECCO ’08: Proceedings of

the 10th annual conference on Genetic and evolutionary computation, pages 851–858, New

York, NY, USA. ACM.

Steiner, T., Schramm, L., Jin, Y., and Sendhoff, B. (2007). Emergence of feedback in articial

gene regulatory networks. In IEEE Congress on Evolutionary Computation (CEC 2007),

pages 867–874. IEEE.

Stoffel, K. and Spector, L. (1996). High-performance, parallel, stack-based genetic

programming. In Genetic Programming 1996: Proceedings of the First Annual Conference,

pages 224–229, Stanford University, CA, USA. MIT Press.

Stoica, A., Zebulum, R. S., Keymeulen, D., Tawel, R., Daud, T., and Thakoor, A. (2001).

Reconfigurable vlsi architectures for evolvable hardware: From experimental field

programmable transistor arrays to evolution-oriented chips. IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, 9(1):227–232.

Stomeo, E., Kalganova, T., and Lambert, C. (2006). Generalized disjunction decomposi-

tion for the evolution of programmable logic array structures. In AHS ’06: Proceedings

of the first NASA/ESA conference on Adaptive Hardware and Systems, pages 179–185,

Washington, DC, USA. IEEE Computer Society.

Stomeo, E., Lambert, C., Lipnitsakya, N., and Yatskevich, Y. (2005). On evolution

of relatively large combinational logic circuits. In EH ’05: Proceedings of the 2005

Ph.D. Thesis 245 Tüze Kuyucu

Bibliography

NASA/DoD Conference on Evolvable Hardware, pages 59–66, Washington, DC, USA. IEEE

Computer Society.

Strogatz, S. H. (1994). Nonlinear Dynamics And Chaos: With Applications To Physics, Biology,

Chemistry, And Engineering (Studies in nonlinearity). Studies in nonlinearity. Perseus

Books Group, 1 edition.

Sundaralingam, S. and Sharman, K. (1998). Evolving iir filters in multipath environments.

In Evolutionary Programming VII, 7th International Conference, pages 397–406, San Diego,

CA, USA.

Teerakittikul, P., Tempesti, G., and Tyrrell, A. (2009). The application of evolvable

hardware to fault tolerant robot control. In IEEE Symposium Series on Computational

Intelligence.

Teller, A. (1993). Learning mental models. In Proceedings of the Fifth Workshop on Neural

Networks: An International Conference on Computational Intelligence: Neural Networks,

Fuzzy Systems, Evolutionary Programming, and Virtual Reality.

Tempesti, G., Mange, D., Petraglio, E., Stauffer, A., and Thoma, Y. (2003). Developmental

processes in silicon: An engineering perspective. In EH ’03: Proceedings of the 2003

NASA/DoD Conference on Evolvable Hardware, pages 255–264, Washington, DC, USA.

IEEE Computer Society.

Tempesti, G., Mange, D., and Stauffer, A. (1999). The embryonics project: a machine

made of artificial cells. Rivisita di Biologia-Biology Forum, 92:143–188.

Terry, M. A., Marcus, J., Farrell, M., Aggarwal, V., and O’Reillym, U.-M. (2006). Grace:

Generative robust analog circuit design. In Proceedings of Applications of Evolutionary

Computing, EvoWorkshops 2006: (EvoHOT), Lecture Notes in Computer Science, pages 332–

343. Springer Verlag.

Thompson, A. (1995a). Evolving electronic robot controllers that exploit hardware

resources. In Advances in Artificial Life: Proc. 3rd Eur. Conf. on Artificial Life (ECAL95),

volume 929 of LNAI, pages 640–656. Springer-Verlag.

Thompson, A. (1995b). Evolving fault tolerant systems. pages 524–529, Sheffield, UK.

IEE/IEEE, IEEE.

Ph.D. Thesis 246 Tüze Kuyucu

Bibliography

Thompson, A. (1996). Silicon evolution. In Koza, J. R., Goldberg, D. E., Fogel, D. B., and

Riolo, R. L., editors, Genetic Programming 1996: Proceedings of the First Annual Conference,

pages 444–452, Stanford University, CA, USA. MIT Press.

Thompson, A., Harvey, I., and Husbands, P. (1996). Unconstrained evolution and hard

consequences. In Sanchez, E. and Tomassini, M., editors, Towards Evolvable Hardware:

The evolutionary engineering approach, volume 1062 of LNCS, pages 136–165. Springer-

Verlag.

Torresen, J. (1998). A divide-and-conquer approach to evolvable hardware. In ICES

’98: Proceedings of the Second International Conference on Evolvable Systems, pages 57–65,

London, UK. Springer-Verlag.

Torresen, J. (2002). A dynamic fitness function applied to improve the generalisation

when evolving a signal processing hardware architecture. In Proceedings of the

Applications of Evolutionary Computing on EvoWorkshops 2002, pages 267–279, London,

UK. Springer-Verlag.

Torresen, J. (2003). Evolving multiplier circuits by training set and training vector

partitioning. In Proc. ICES‘03:From biology to hardware, volume 2606, pages 228–237.

Springer-Verlag.

Trefzer, M. (2006). Evolution of Transistor Circuits. PhD thesis, Ruperto-Carola-University

of Heidelberg.

Trefzer, M. A., Kuyucu, T., Miller, J. F., and Tyrrel, A. M. (2010). Image compression of

natural images using artificial gene regulatory networks. In GECCO’10.

Tufte, G. (2008a). Discovery and investigation of inherent scalability in developmental

genomes. In 8th International Conference on Evolvable Systems: From Biology to Hardware,

LNCS, pages 189–201. Springer.

Tufte, G. (2008b). Evolution, development and environment toward adaptation through

phenotypic plasticity and exploitation of external information. In Seth Bullock (Chair),

Jason Noble, R. W. M. B., editor, Artificial Life XI (ALIFE XI). MIT Press.

Tufte, G. (2009). The discrete dynamics of developmental systems. In Evolutionary

Computation, 2009. CEC ’09. IEEE Congress on, pages 2209–2216.

Ph.D. Thesis 247 Tüze Kuyucu

Bibliography

Tufte, G. and Haddow, P. (2000). Evolving an adaptive digital filter. In The Second

NASA/DoD workshop on Evolvable Hardware, pages 143–150, Palo Alto, California. IEEE

Computer Society.

Tufte, G. and Haddow, P. (2003). Identification of functionality during development on

a virtual sblock fpga. In Evolutionary Computation, 2003. CEC ’03. The 2003 Congress on,

volume 1, pages 731–738 Vol.1.

Turney, P. (1999). Increasing evolvability considered as a large-scale trend in evolution. In

Proceedings of the 1999 Genetic and Evolutionary Computation Conference Workshop Program

(GECCO-99 Workshop on Evolvability), pages 43–46.

Tyrrell, A., Hollingworth, G., and Smith, S. (2001). Evolutionary strategies and intrinsic

fault tolerance. In Proceedings of the 3rd NASA/DOD Workshop on EHW.

Tyrrell, A., Sanchez, E., Floreano, D., Tempesti, G., Mange, D., Moreno, J., Rosenberg, J.,

and A.E.P. (2003). Poetic tissue: An integrated architecture for bio-inspired hardware.

In 5th International Conference on Evolvable Systems, pages 129–140, Trondheim.

Tyrrell, A. M. and Sun, H. (2006). A honeycomb development architecture for robust

fault-tolerant design. In AHS ’06: Proceedings of the first NASA/ESA conference on

Adaptive Hardware and Systems, pages 281–287, Washington, DC, USA. IEEE Computer

Society.

Vargha, A. and Delaney, H. D. (2000). A critique and improvement of the cl common

language effect size statistics of mcgraw and wong. Journal of Educational and Behavioral

Statistics, 25(2):101–132.

Vassilev, V. and Miller, J. (2000a). The advantages of landscape neutrality in digital circuit

evolution. In Proceedings of the 3rd International Conference on Evolvable Systems: From

Biology to Hardware, pages 252–26. Springer.

Vassilev, V. K. and Miller, J. F. (2000b). Scalability problems of digital circuit evolution:

Evolvability and efficient designs. In EH ’00: Proceedings of the 2nd NASA/DoD workshop

on Evolvable Hardware, pages 55–64, Washington, DC, USA. IEEE Computer Society.

Walker, J. and Miller, J. (2004). Evolution and acquisition of modules in cartesian

genetic programming. In EuroGp, volume 3003/2004, pages 187–197. Springer Berlin /

Heidelberg.

Ph.D. Thesis 248 Tüze Kuyucu

Bibliography

Walker, J. and Miller, J. (2006). Embedded cartesian genetic programming and the

lawnmower and hierarchical-if-and-only-if problems. In Proceedings of the 2006 Genetic

and Evolutionary Computation Conference, pages 911–918, Seattle, Washington. GECCO.

Walker, J. A. and Miller, J. F. (2007). Predicting prime numbers using cartesian genetic

programming. In Proceedings of 10th European Conference on Genetic Programming,

volume 4445/2007, pages 205–216. LNCS.

Walker, J. A., Miller, J. F., and Cavill, R. (2006). A multi-chromosome approach to standard

and embedded cartesian genetic programming. In GECCO ’06: Proceedings of the 8th

annual conference on Genetic and evolutionary computation, pages 903–910, New York, NY,

USA. ACM.

Watson, R. A., Hornby, G. S., and Pollack, J. B. (1998). Modeling building-block

interdependency. Lecture Notes in Computer Science, 1498:97–106.

White, D. R. and Poulding, S. (2009). A rigorous evaluation of crossover and mutation in

genetic programming. In Vanneschi, L., Gustafson, S., Moraglio, A., De Falco, I., and

Ebner, M., editors, Proceedings of the 12th European Conference on Genetic Programming,

EuroGP 2009, volume 5481 of LNCS, pages 220–231, Tuebingen. Springer.

Wolfram, S. (2002). A New Kind of Science. Wolfram Media, Champaign, IL, USA.

Wolpert, L., Beddington, R., Jessell, T. M., Lawrence, P., Meyerowitz, E. M., and Smith, J.

(2002). Principles of Development. Oxford University Press.

Xie, H., Zhang, M., and Andreae, P. (2006). Automatic selection pressure control in

genetic programming. In 6th International Conference on Intelligent System Design and

Applications, pages 435–440. IEEE.

Yao, X. and Higuchi, T. (1999). Promises and challenges of evolvable hardware. In IEEE

Transactions on Systems, Man and Cybernetics, Part C, volume 29, pages 87–97.

Yasunaga, M., Yamaguchi, Y., Nakayama, H., Yoshihara, I., Koizumi, N., and Kim, J. H.

(2008). The segmental-transmission-line: Its design and prototype evaluation. In

Lecture Notes in Computer Science. Springer Berlin / Heidelberg.

Zebulum, R. S., Pacheco, M. A., and Vellasco, M. (1998). Analog circuits evolution

in extrinsic and intrinsic modes. In ICES ’98: Proceedings of the Second International

Conference on Evolvable Systems, pages 154–165, London, UK. Springer-Verlag.

Ph.D. Thesis 249 Tüze Kuyucu

Bibliography

Zebulum, R. S., Stoica, A., Keymeulen, D., Ferguson, M. I., Duong, V., Guo, X., and

Vorperian, V. (2003). Automatic evolution of signal separators using reconfigurable

hardware. In Evolvable Systems: From Biology to Hardware, 5th International Conference,

pages 286–295, Trondheim, Norway. ICES.

Zhan, S., Miller, J. F., and Tyrrell, A. M. (2008). A developmental gene regulation network

for constructing electronic circuits. In 8th International Conference on Evolvable Systems:

From Biology to Hardware, pages 177–188. Springer-Verlag.

Zhan, S., Miller, J. F., and Tyrrell, A. M. (2009). An evolutionary system using

development and artificial genetic regulatory networks for electronic circuit design.

BioSystems, 93(3):176–192.

Ph.D. Thesis 250 Tüze Kuyucu

