Evolution of Circuits in Hardware and

The Evolvability of Artificial Development

Tiize Kuyucu

Intelligent Systems Group
Department of Electronics
University of York, York, UK

Dissertation for the degree of Doctor of Philosophy in Electronics, June 2010.
Thesis Committee:

Prof. Andy Tyrrell, University of York
Dr. Julian Miller, University of York
Dr. Gianluca Tempesti, University of York

Prof. Yaochu Jin, University of Surrey

Anacigma,

Egitimim i¢in verdigin emekleri asla unutmayacagim.

To Mom,

I will never forget your efforts for my education.

Abstract

Automatic design of digital electronic circuits via evolutionary algorithms is a promising area of
research. When evolved intrinsically on real hardware, evolved circuits are guaranteed to work
and the emergence of novel and unconventional circuits is likely. However, evolution of digital
circuits on real hardware can cause various reliability issues. Thus, key mechanisms that produce
reliable evolution of digital circuits on a hardware platform are developed and explained in the

first part of this thesis.

On the other hand, the evolution of complex and scalable designs without any assistance is
thwarted due to increasingly large genomes. Using traditional circuit design knowledge to assist
evolutionary algorithms, the evolution of scalable circuits becomes feasible, but the results found

in such experiments are neither novel anymore nor are they competitive with engineered designs.

A novel, biologically inspired gene regulatory network based multicellular artificial developmen-
tal model is introduced in this thesis. This developmental model is evolved to build digital circuits
that can automatically scale to larger designs. However, the results achieved still remain inferior

to engineered digital circuit designs.

Evolving a developmental system for the design of engineering systems or computational paradigms
provides a variety of desirable properties, such as fault tolerance, adaptivity, and scalable designs
automation. However, developmental systems in their role as computational networks are as yet
poorly understood. Many mechanisms and parameters that a developmental system comprises
are based on various assumptions, their biological counterparts, or educated guesses. There is a
lack of understanding of the roles of these mechanisms and parameters in forming an evolvable

platform for evolutionary computation.

Initially, various experiments are shown to demonstrate the evolvability of the new developmen-
tal system. A thorough investigation is then undertaken in order to obtain large amounts of em-
pirical data that yields a better understanding of some of the crucial developmental mechanisms

and parameters on the evolvability of multicellular developmental systems.

Acknowledgements

I would like to start by thanking my supervisors: Andy Tyrrell for his continuous en-
couragement and support, for proof reading, for his role in the funding of my PhD,
and always being so punctual; Julian Miller for his help, advice, ideas and numerous

discussions on evolution, development, and teaching.

I would like to thank Martin Trefzer, my research partner for the past 3 years; for the
endless discussions, pair programming sessions, never ending ideas and enthusiasm,
and above all for all the kit-kat and coffee sessions. Without him, it would have been

impossible to finish this thesis within 3 years. It was a real blast working with you dude!

In addition to above, I would like to thank all my office colleagues for their support and
constant supply of coffee and laughter: James Walker, for his help with genetic program-
ming and university administration, and always convincing me that I have something
worth to write about; Omer Qadir, for the beer, socials, and various discussions about the
ultimate question of life, the universe, and everything; Yang Liu (Jerry), Cristina Santini
and Mic Lones, for the discussions and advice on biological development, and research
in general; Andy Greensted, Antonio, and James Hilder for their company and help with

various geekery such as electronic hardware and Linux.

I would like to thank my undergraduate supervisors, Steve Cobb and James Hereford,
for their valuable support and advice during and after my undergraduate years, who

also inspired me to follow up a career in academia.

I would like to thank my parents, Dervise and Sadi Kuyucu, whose passion for my
education and ever growing support made this thesis possible. I would also like to thank
my future wife, Jie Chen, for all her emotional support, understanding, valuable advice,

and ability to cheer me up at the worst of times.

Finally, I would like to thank the Engineering and Physical Sciences Research Council

(EPSRC) UK, for their financial support (project reference EP/E028381/1).

Ph.D. Thesis 7 Tiize Kuyucu

Contents

Acknowledgements
Contents

List of Tables

List of Figures

List of Algorithms
Hypothesis

1 Introduction

1.1 Thesis Layout . .

1.2 Contributions . .

2 Evolvable Hardware

2.1 Innovative CircuitDesign

2.2 Fault Tolerant Circuit Design

2.3 Adaptive Design

14

17

23

24

25

Contents

24 ExtrinsicEvolution

25 IntrinsicEvolution

2.5.1 Hardware for Intrinsic Evolution of Circuits

2.6 Challenges of Evolving Hardware
2.6.1 Scalability
262 Evolvability 0.

27 SUMMATIY oo e

Publications I

3 Evolving Circuits in Hardware

3.1 Reconfigurable Integrated System Array (RISA)
3.1.1 ExperimentalSetup.

3.2 Getting Acquainted with Evolution in Hardware

3.3 Constrained vs Unconstrained Evolution

inHardware
3.4 Evolving Valid Circuits on Hardware
3.4.1 HardwareSampling
3.42 Randomness of the Input Pattern
3.4.3 Testing the Evolved Circuits for Validity
35 TricksandTreats
35.1 FitnessFunctions

3.5.2 MultiplyingInputs

50

Ph.D. Thesis 9

Tiize Kuyucu

Contents

3.5.3 DecomposingQOutputs 74

3.5.4 InputPattern Order Problem 77

3.5.5 Getting Stuckin Local Optima 78

356 Experiments 81

3.6 Circuits Evolved onRISA 83
37 Summary 84

4 Development 87
41 Biological Development 88

4.2 Benefits of Multicellular Development to Evolutionary Computation (EC) 93

421 Scalability 93

422 FaultTolerance 94

423 Adaptivity 96

4.3 Models of Artificial Development 98
43.1 Macro-model Developmental Systems 98

4.3.2 Micro-model Developmental Systems 99

44 Summary 101
Publications II 102
5 Modelling Multicellular Development 103
5.1 Micro-model Developmental Systems 104
51.1 Gene Regulatory Network 104

512 CellSignalling. 106

Ph.D. Thesis 10 Tiize Kuyucu

Contents

5.1.3 Growth/Cell Division
5.1.4 Genotype-Phenotype Mappings

5.2 The Artificial Developmental System

5.2.1

5.2.2 Protein Synthesis
5.2.3 Chemicals

5.3 Summary

6 Validating the Artificial Developmental System (ADS)

6.1 Algorithm Configuration

6.1.1

6.1.2 The Gene Regulatory Network (GRN) Settings
6.1.3 The ADS Settings
6.2 Single Cell Experiments

6.3 Multi-Cellular Experiments

6.3.1

6.3.2 Higher Complexity Patterns

6.4 Fault Tolerance and Recovery

6.4.1

6.4.2 Transient Faults

6.5 Summary

Publications III

Permanent Faults

Gene Representation and Processing

The Evolutionary Algorithm

Simple Motifs and Dynamics

156

Ph.D. Thesis

11

Tiize Kuyucu

Contents

7 Developing Digital Circuits 157
7.1 Mapping the Developmental Organisms to Circuits 157
7.2 Circuits Developed 160

7.2.1 Development of Even n-bit Parity Circuits 160
7.2.2 Development of a 2-bit Multiplier 166
7.2.3 Developing a Parity Solving Organism 167
73 SUMMATY e 169

8 Developmental Mechanisms and Parameters 172
8.1 Experiments on Mechanisms and Parameters 174
8.2 Direct Contact Signalling 176
83 Diffusion 180
8.4 Mapping The Phenotype 188
8.5 Parameters for Transcription Factors 191

8.5.1 Protein Production and Chemical Consumption Rates. 192
8.5.2 Gene Binding Threshold 197
8.6 Miscellaneous Developmental Mechanisms 200
8.7 Improvingthe ADS 204
88 Summary e 207

9 Conclusions 210
9.1 Future Work 214

Acronyms 218

Ph.D. Thesis 12 Tiize Kuyucu

Contents

A Resource Consumption on RISA 220
B Cluster and IO Routing in RISA 222
C Explaining Box and Whisker Plots 226
D Stability and Fault Tolerance 228
Bibliography 232

Ph.D. Thesis 13 Tiize Kuyucu

List of Tables

3.1

3.2

3.3

34

3.5

3.6

3.7

3.8

39

5.1

6.2

The results for the tone discriminator and 4 bit parity circuit experiments

areshown.
Ambiguities in fitness assignment for an XOR are shown.
Truth table used as input test pattern for XOR experiments.
Evolutionary run results on evolving an XOR gate on RISA.
The results for the tone discriminator and 4 bit parity circuits are shown. .

The results of evolving the tone discriminator circuit on the constrained

and unconstrained versions of the RISA platform.

Results obtained from 20 independent runs for 4-bit parity, 2-bit full adder

and 2-bit multiplier areshown. 000
Truth table for a 2-bit multiplier and a 4-bit Parity.
Results with the unbalanced and balanced output patterns for 4-bit parity,

4-bit AND, 2-bit full adder, and 2-bit multiplier.

List of some of the micro-model artificial developmental systems specif-
ically designed for computational problems with a list of the common

developmental mechanisms used by eachmodel.

The explanations of aliases for experiment results in Figure 6.6.

14

73

76

79

83

110

140

List of Tables

6.3

6.4

7.1

7.2

7.3

7.4

7.5

8.1

8.2

8.3

8.4

8.5

8.6

8.7

The explanations of aliases for experiment results in Figure 6.8.

The explanations of aliases for experiment results in Figure 6.10.

The multiplexers used for the experiments presented. A, B and C are the

Results of the even parity experiments.

Results of 9-bit parity experiments with different developmental steps. 30

evolutionary runs were done for each experiment listed.

Results of the development of larger parity experiments (10-12 bit) with
bigger organism sizes. 30 evolutionary runs were done for each experi-

ment listed.

Results of the 2-bit multiplier experiments are given. 30 evolutionary runs

were done for the experimentlisted.

The direct contact signalling cases used in the experiments.
The diffusion mechanisms used in the experiments.

Statistical comparison of diffusion mechanism using chemical specific dif-

fusion protein with six other diffusion mechanisms.

Statistical comparison of developmental system using the concentration
of a single protein for cell structuring to the developmental system using

structuring protein. Lo oo
The labels for each structuring mechanism used in the experiments.

Statistical test results for the developmental system that uses the concen-
tration of multiple proteins to map the cell phenotype compared with the

developmental system with structuring protein.

The labels for each protein production and chemical consumption values

used in the experiments. o oo L L

161

164

165

166

178

185

187

189

190

191

195

Ph.D. Thesis 15 Tiize Kuyucu

List of Tables

8.8 The labels for protein concentration threshold values used in the experi-

ments for activating or inhibitingagene. 198

8.9 The labels for the charts and plots of experiments with various develop-

mental mechanisms. 202

8.10 Summary of the investigations done on the evolvability of a multicellular

ADS in forming various patterns. oL L. 205

8.11 The labels for the charts displaying the results for experiments with the

best mechanisms. 206

Ph.D. Thesis 16 Tiize Kuyucu

List of Figures

2.1

2.2

2.3

3.1

3.2

3.3

34

3.5

3.6

3.7

The life cycle of an evolutionary algorithm. 31

The graph showing the increase in the number of transistors in Intel pro-
cessors, and the number of gates in the circuits evolved in Evolvable HardWare

(EHW) from 1992 t02006. . . . « o v o eee e e e 43

A simplified Field Programmable Gate Array (FPGA) architecture with

Configurable Logic Block (CLB)s and a routing layer. 47
The structure of a single RISA chip. 52
The FPGA substrate of RISA. 53

The schematic of a function unit (four in each cluster) in the RISA FPGA. . 55

Example fitness calculation for all four approaches (Bitwise, Bitwise Fit-
ness Modified for Hardware (BMH), Hierarchical IF-and-only-iF (HIFF),
Hierarchical Bit-string Sampling (HBS)) are shown. 67

Resulting fitness values for all approaches and all 256 possible logic input

vectors for 7y and ¢ (refer to table 3.2)are calculated and plotted. 69

Partitioning of problem outputs on the RISAchip 75

An example process determining the weights and repetition parameters

for the inputs and outputs for the 2-bit multiplier problem is demonstrated. 80

17

List of Figures

3.8

4.1

4.2

4.3

44

4.5

51

5.2

The corresponding output occurrences are shown for the balanced and un-
balanced output patterns used in the experiments presented in Section ref-

subsection:LocalOptima for all the circuits.

A simplified depiction of development of a multicellular organism.

A gene is activated by the correct matching of proteins that favour the

transcriptionof thegene. o oo L

A simple overview of protein synthesis in biological cells.

The initial stages of human embryogenesis.

Adaptivity.

Example ways of obtaining information from a developmental cell in a

digital system to build part of the organism phenotype.

An example gene of 32 bits is shown. The first 16 bits are reserved for the
preconditional part, which specifies the rules to activate the gene. There
are 8 chemicals defined in this figure; the first 4 being reserved for proteins,
while the last 4 are messenger molecules, see Section 5.2.2. Each chemical’s
required presence or absence is specified by a 2 bit number, which provide
two don’t care states. In the event of a don’t care state, the presence or
absence of a chemical has no effect on the activation of the particular gene.
The second 16 bits of the gene is reserved for the postconditional part,
which provides the ID of the chemical produced as a 2 bit number (this
means that only the first four chemicals [proteins] can be produced, i.e.
the messenger molecules can not be produced via the activation of a gene),
which is then followed by a 14 bit number. The last 14 bits in the gene
define the action of the chemical produced if it has one (further explained

in Subsection 5.2.2), if not the last 14 bits are treated asjunk.

89

97

Ph.D. Thesis 18 Tiize Kuyucu

List of Figures

5.3 Ina multicellular environment using the 4 basic protein types a cell is able

6.1

6.2

6.3

6.4

6.5

6.6

to: interact with its environment, grow, structure itself, and form a mul-
ticellular organism. The basic functions of the listed proteins are demon-
strated in this figure. Only cell 1 is drawn completely, certain components
are omitted in other cells. In the actual implementation of the organism
there are no spaces between cells, they are only separated by their borders.
In the example above, cells 1 and 2 both have active plasmodesma proteins,
which cause the formation of a channel on both cells towards the other,
creating a plasmodesmata to allow free movement of proteins from one
cell to other. Cells 1 and 2 both also have active plasmodesma proteins
on their southern sides. Cell 1’s southern neighbour does not exist, so
the active plasmodesma protein initiates a growth process in that direc-
tion. However, cell 2’s southern neighbour is an alive cell with no active
plasmodesma protein, thus cell 2 forms an unconnected channel on its
southern wall. The 4 sensors drawn monitor the outside activity on 4 sides
of each cell and produce sensor proteins with the changing environment.
The Structuring proteins are produced by the GRN to change the physical
structure of the cell, which is connected to the physical inputs and outputs

ofthecell. e 121

A hypothetical state space represented by possible states and state transi-

tions for a dynamical system. 0000 128

Desired GRN output protein to input stimulus is graphed for the ‘ON’

switch and ‘BOOSTER cases. 130
Evolved GRNs that mimic an ‘'ON-OFF’ behaviour. 132
Evolved GRNSs that produce oscillating outputs. 136
Three simple patterns used for Section6.3.1. 139

The average number of evolutionary generations it takes to find the perfect

solution for the “simple patterns”. 140

Ph.D. Thesis 19 Tiize Kuyucu

List of Figures

6.7 Three patterns of size 6x6 used for different experimental runs in “higher

complexity patterns” subsection (Section 6.3.2. 142

6.8 Success rates of the evolution of patterns with and without non-deterministic

maturing. 143

6.9 The method of evaluating a patch pattern only for its organisational prop-

ertiesiSShOWN. e 146

6.10 Number of successful runs out of 20 for patch pattern experiments with

different evolutionary conditions. 0L 147
6.11 Development of a French flag pattern. 148
6.12 Development of an asymmetric borders pattern. 148

6.13 The changes that occur in the French flag pattern formed by the develop-

mental organism after permanent faultsoccur. 150

6.14 The changes that occur in the asymmetric borders pattern formed by the

developmental organism after permanent faults occur. 150

6.15 Patterns achieved with knocked outgenes. 151

6.16 Patterns achieved with knocked out genes for the asymmetric borders pat-

ternorganism. 151

6.17 The changes that occur in the French flag pattern formed by the develop-

mental organism after permanent faultsoccur. 152

6.18 The changes that occur in the asymmetric borders pattern formed by the

developmental organism after transient faultsoccur. 153

7.1 The connectivity of an example 4 x 4 organism with 10 inputs is shown. . 158

7.2 An example decoding process is shown for 2 cells, each with a single

Cartesian Genetic Programming (CGP) node (i.e. 64-bit long cell function). 159

Ph.D. Thesis 20 Tiize Kuyucu

List of Figures

7.3

74

7.5

7.6

8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

The cells alive at the end of the fully developed organism of a 3-bit even

parity circuit are categorized via enumeration from1-8. 160

The GRN interaction graph of two fully developed cells in a 3-bit parity

circuit is illustrated asexamples. 0oL 162

The final cellular states of the two fully developed organisms are shown:
for 5-bit parity only 30 of the cells are alive, whereas for 12-bit parity all
100 of the cellsarealive. 166

An organism that was evolved to act as a growing parity circuit is shown,

with the list of its evolved genes and the GRN graph for the alive cells. . . 168

The patterns used for investigating the influence on evolvability of devel-

opmental mechanisms and parameters. 176

Bar charts displaying the number of successful runs out of fifty runs for
five of the six experimental patterns tried by developmental models using

different contact signalling mechanisms. 178

A fitness box and whisker plot of the different contact signalling models

for 8 patchespattern. L L oo 179

Bar charts displaying the number of successful runs for different diffusion

mechanisms. L 184
Box plots for the different diffusion mechanisms in achieving all the patterns.186
Box and whisker plots of different methods of constructing cell phenotype. 190

Success rates of experiments with different protein production and chemi-

cal consumptionrates. Lo Lo Lo oL 194

Box plots of each experiment with different protein production and chem-

ical consumptionrates. Lo 196

Success rates of experiments with different chemical to gene binding thresh-

Ph.D. Thesis 21 Tiize Kuyucu

List of Figures

8.10

8.11

8.12

8.13

Al

B.1

B.2

D.1

D.2

D.3

Fitness box plots of every pattern except the asymmetric borders pattern
are displayed in this figure for different chemical to gene binding threshold

experiments. L 199
The success rates achieved by the various developmental mechanisms. . . 202

The box plots of the results from the experiments with various develop-

mental mechanisms. o L oo 203
Combination of all the best mechanisms compared to the “original setting”

and each best mechanism. 207

A map of the RISA clusters that are relevant for the operation of typical

solutions found with constrained and unconstrained evolution respectively. 220

The complete schematic for one of the Input/Output (I0) blocks surround-
ingthe RISAFPGA. 222

The schematic for the routing between the clusters and 10 blocks of RISA
FPGA. . . . e 223
The development of organisms for 1 million developmental steps for each

pattern used in Chapter 8. 229

Transient faults on organisms forming the French flag and asymmetric

borders patterns. Lo Lo 230

Cells are killed in the organisms forming the French flag and asymmetric

borders patterns. Lo o 230

Ph.D. Thesis 22 Tiize Kuyucu

List of Algorithms

1 The pseudo-code for the variable mutation rate. This is part of a function
that is called once every evolutionary generation. 56
2 The pseudo-code for the simulation of Gene Regulatory Network for one
timestep. 117

3 The pseudo-code for the simulation of artificial development for one time

Step. 122
4 The fitness function pseudo-code of the ‘'ON-OFF’ switch experiment. . . 134
5 The pseudo-code for fitness function of patch patterns. 145

23

Hypothesis

Evolution of digital circuits in hardware can provide interesting and novel designs, but
not complex and human competitive results. Multicellular development in biology can
be simulated to create a scalable system for the evolutionary design of electronic systems.
By understanding the evolution of circuits on real hardware and the behaviour of multi-
cellular development in a computational environment, the key factors that determine the

evolvability of an artificial developmental system can be determined.

24

Chapter 1

Introduction

Technology is an ever growing endeavour of human avidity, since the invention of simple
tools like the wheel, spoon, or knife, the development of technology has never ceased.
What has allowed us to progress and advance our lives into a global social structure
today, has sometimes been labelled as the nemesis of nature [Kovel, 2002]. The invention
of the steam engine, gun powder, combustion engine, paper, nuclear fission and fusion,
are all outstanding sources of technology that have advanced against nature and its
equilibrium. The degrees of advancement achieved in technology is awe-inspiring, and
it provides us with prodigies that surpass the abilities of nature’s organisms. The su-
percomputers that can carry out quadrillions (order of 10'%) of mathematical operations
in a second [Bland et al., 2009], mobile phones that allow a person to talk to another
from the other end of the world, the telescopes that can look into the depths of galaxies
outside the Milky Way. Technology has created designs that operate beyond the scope
of any biological organism inhabiting earth. Despite this, technology has so far failed to
faithfully imitate even the simplest functions nature has long mastered for sustainability

and survival.

Today as researchers, a group of us tries to analyse and understand nature and its or-
ganisms. We try hard to understand, mimic and compete with nature itself. Biological
organisms exhibit behaviours that contrast markedly with engineering design. Adap-
tivity to unknown conditions, self-repair, self-replication, fault tolerance, intelligent and
intuitive decision making, and learning are some of the properties biological organisms

exhibit. Artificial Intelligence (Al) is a sub-field in engineering, where the latest technol-

25

Chapter 1 - Introduction

ogy is used to build intelligent systems. However, the intelligent systems built in Al are
far from achieving the intelligent behaviour and self control that biological organisms

demonstrate.

Natural sciences study nature and the origin of the biological organisms and their envi-
ronment. The study of natural sciences has partially revealed the complicated processes
that have built and shaped the biological organisms to their current state. Hence, some
researchers try to model what has been learnt from the biological way of building com-

plex systems in the hope of achieving comparable behaviours in engineering technology.

Perhaps technology does not need to go against or at a different direction to nature.
Lessons learnt from nature could be valuable in expanding technology to another dimen-
sion. This thesis attempts to model a small part of the knowledge attained from natural
sciences for building artificial systems. More specifically, this thesis presents chapters on
biologically inspired (bio-inspired) computational models. In an effort to learn from na-
ture in advancing the technology present in computer science and electronics, this thesis
attempts to develop and use bio-inspired techniques for the design of electronic circuits
and computational systems. It aims to develop techniques that enable effective use of bio-
inspired models of evolutionary design and multicellular development. The end result
also provides a study for a better understanding of these bio-inspired techniques, which
is progress towards understanding the evolution of biological organisms and the use of

bio-inspired techniques for the design of computational technologies.

1.1 Thesis Layout

This thesis is organised into eight chapters.

Chapters 2 and 3 are focused on Evolvable HardWare (EHW). Chapter 2 introduces the
tield of EHW, where the process of evolution in nature is used as the inspiration for
designing hardware models in engineering. Chapter 3 uses a new hardware platform for
the evolution of real circuits on hardware, and develops a group of essential techniques

for quick and effective evolution of digital circuits on real hardware.

Ph.D. Thesis 26 Tiize Kuyucu

Chapter 1 - Introduction

Chapter 4 provides background on multicellular development and its existing artificial
models in evolutionary computation. It also discusses the potential benefits of multicel-

lular development to Evolutionary Computation (EC).

Chapter 5 introduces a new bio-inspired developmental model to assist the evolutionary
design of artificial systems. The design of the developmental model is described in detail

and compared with similar models in literature.

Chapter 6 investigates the performance of the new developmental system and validates
its developmental properties. The general setup of the experimental environment used
for the evolutionary developmental experiments in the rest of the thesis is provided in
the algorithm configuration section (Section 6.1). Chapter 6 demonstrates; the responsive
and dynamic nature of the Gene Regulatory Network (GRN), the ability of the individual
cells in the multicellular Artificial Developmental System (ADS) to self-organise and

differentiate, and the fault tolerant abilities of the ADS via simple experiments.

Chapter 7 investigates the design of digital circuits via the use of evolution and the
proposed developmental system. For the first time, the design of a digital circuit via
the evolution of a GRN based ADS includes the connectivity of the circuit components as
well as the type of components. Chapter 7 demonstrates that the proposed ADS can be

used for the scalable design of digital circuits.

Chapter 8 provides detailed investigations on the properties of various parameters and
mechanisms that affect the performance of the artificial developmental system in order
to better understand the use of multicellular development in evolutionary computation

and improve the overall performance of the presented system.

The final conclusions on the work done and the future directions for the use of artificial

development in evolutionary computation is presented in Chapter 9.

1.2 Contributions

The novel contributions of this thesis are:

Ph.D. Thesis 27 Tiize Kuyucu

Chapter 1 - Introduction

1. The evolution of gate-level digital circuits on a novel hardware platform (Chap-

ter 3).

2. The development of mechanisms that enable the effective evolution of valid circuits

on real hardware (Chapter 3).

3. Providing experiments and discussions that supply evidence and support for the

development of an effective evolutionary platform (Chapter 3 and Appendix B).

4. The design of a new artificial genetic regulatory network model and multicellu-
lar developmental system, which use inspirations from biology and engineering

(Chapter 5).

5. Experiments, evidence, and discussions on improving the evolvability of a devel-
opmental system via identifying the suitable and the correct use of mechanisms,

parameters, and constraints (Chapters 6, 7, and 8).

6. Demonstration of a scalable approach to the evolution of digital circuits via the

evolution of a scaling circuit via the use of artificial development (Chapter 7).

7. Anunderstanding of developmental mechanisms and their effects on the evolvabil-

ity of a multicellular developmental system (Chapter 8).

8. Multiple demonstrations on the importance of an effective fitness function for the

successful evolution of a system (Chapter 3, 6, and 7).

Ph.D. Thesis 28 Tiize Kuyucu

Chapter 2

Evolvable Hardware

Evolution, a mechanism of random alterations and intelligent selection that was first
proposed by Darwin in 1859 [Darwin, 1859], is regarded as a key element in the emer-
gence and advance of biological organisms. These biological organisms are complex
and competent; they can survive harsh environmental conditions and are capable of
accomplishing highly sophisticated tasks. Although the emergence of any interesting
behaviour via evolution is a time consuming process due to the stochastic behaviour of
evolution, the biological marvels that exist in nature today are all a result of evolutionary
change. Thus evolution is and has been a fascinating and fundamental topic in biology.
The resulting evolved biological systems, possess an important set of characteristics that
the products of engineering can, at present, only aspire to. Adaptivity, fault tolerance and
recovery, regeneration, and learning are a few of these characteristics, which engineering

methods struggle to (or are unable to) capture.

Evolution has also attracted a large community of researchers outside biology who take
inspiration from the principles of evolution to tackle problems in their fields. The early
use of evolution in the field of computer science, electronics and engineering was with
the works of Von Neumann in late 40s, Box and Friedberg in late 50s, and Bremermann
in early 60s [Box, 1957; Bremermann, 1962; Friedberg, 1958, Neumann, 1966]. However,
it was not until the introduction of Evolutionary Algorithm (EA) that the field of Evolu-
tionary Computation (EC) started getting attention. EAs took inspiration from evolution
in solving mathematical problems, and they were introduced in late 60s / early 70s [Back

et al., 1997; Fogel et al., 1966; Holland, 1973; Rechenberg, 1973].

29

Chapter 2 - Evolvable Hardware

An EA uses random alterations and an intelligent selection mechanism to optimise an
existing solution to a given problem. An EA creates multiple variations of the solution at
hand and evaluates each of the new solutions for any improvements. The given problem
defines the most important part of the selection mechanism: the fitness function. The
fitness function is used for guiding the algorithm in its search for the optimal solution to
a given problem. The fitness function assigns a fitness, a score, to each of the potential
solutions, which reflects the quality of each solution. Once each candidate solution has a
fitness, selection is undertaken and a new batch of candidate solutions are created via
mutation! and crossover? for the next generation. The process of evaluation (using
the fitness function), selection, mutation and crossover carries on over and over again
until a satisfactory solution or a time (or more often generations) limit is reached. The
representations of a candidate solution in an evolutionary algorithm is referred to as
the genotype —inspired by the DeoxyriboNucleic Acid (DNA)? in biological organisms-,

which is often a binary string.

Other than optimising an existing solution, EAs are also used for finding a previously
unknown solution to an existing problem. In such a case the EA starts with a random set
of candidate solutions and optimises these. Figure 2.1 depicts the process a generic EA

goes through in finding a solution.

Three types of EAs that are widely used today are:

* Genetic Algorithm (GA): introduced by Holland [Holland, 1973], is the most common
form of EA, and was designed to model adaptive processes. The original represen-
tation of the “genotype”, which the algorithm worked on was in binary, and both

mutation and crossover operations were used during the search process.

* Evolution Strategy (ES): introduced by Rechenberg and Schwefel is similar to GAs [Back
et al., 1997; Rechenberg, 1973], and was designed for parameter optimisation. A
floating point representation was used in the initial implementation of ES, and
only the mutation operation was implemented during the search process. The

key differences with the classic GAs are the lack of crossover operation, use of

1Random alterations in a candidate solution.

2]oining parts of two candidate solutions (parents) to produce a new candidate solution (child).

3 A double helix structured nucleic acid that contains all the genetic information used in the development
of all biological organisms.

Ph.D. Thesis 30 Tiize Kuyucu

Chapter 2 - Evolvable Hardware

Initial Population of Genes Mutation

DNA1l WV B WV W wew } DNA1Im Vv B w W e
DNA2 W WwWw v wew DNA2m VW W v ww_

Cross-over (Sexual Reproduction)
DNA 1Im DNA 2m

Finish

¢¢IL£Q A o

V\Yes
o

'

Final Population of Genes

DNA 1m&2m DNA 1m WY VY Vv @ ew

ww wwe T ww ©®© DNA2M W W w = ww
DNA 2m € hinum e we v ww

ww ww v ww DNA2M&lm @ e W W ww

Natural Selection
(Survival of the Fittest)

Figure 2.1: The life cycle of an evolutionary algorithm.

self-adaptation to adjust control parameters, and the strict definition of parent-
offspring relationships in ES. The parent-offspring relationship in ES is defined by

two versions of the ES as
ES(u,A)and ES(u+A).

Here u is the parent size, and A is the offspring size. The parents for the next
iteration (referred to as generation in EAs) are deterministically selected only from
the set of offspring of the current iteration (for the first case above) or from the set

of parents of the current iteration and offspring (for the second case above).

* Evolutionary Programming (EP): introduced by Fogel [Fogel et al., 1966], was de-
veloped for the design of artificial intelligence through the evolution of finite state
machines. EP is very similar to ES, and it also uses self-adaptation of algorithm

parameters.

All these types of EAs share a similar process flow shown in Figure 2.1 with some dif-
ferences such as the exclusion of crossover, different representations or selection mecha-

nisms, and it is easy to create a different flavour of each of these EAs.

Ph.D. Thesis 31 Tiize Kuyucu

Chapter 2 - Evolvable Hardware

Initially, EAs were mostly used as optimisation algorithms to search for the global maxi-
mum or minimum in a mathematical function. They were successfully used for solving
classical optimisation problems such as travelling salesman, or even tough Engineering
Applications [Bramlette and Bouchard, 1991; Muller, 2002; Periaux et al., 1995]. Start-
ing with the work of Fogel [Fogel et al., 1966], EAs were also used as a method to
automatically create new designs. The popularity of the use of EAs as a method to
automatically create new designs increased greatly by the start of 90s (more than 20 years
after Fogels work). In 1990 Koza developed an evolutionary algorithm based automatic
program design technique further and named it Genetic Programming (GP), which was
first introduced by Cramer in 1985 [Cramer, 1985]. GP is an EA based methodology
specifically developed for the evolution of computer programs that perform predefined
tasks [Koza, 1992]. With the introduction of GP, more researchers started using EAs in
the automatic design of computer programs and electronic circuits. GP has contributed
to the EA community various novel computer program and circuit designs, and various
researchers also worked on improving GP and developed their own versions [Banzhaf,
1993; Lones and Tyrrell, 2001; Miller and Thomson, 2000; Poli, 1996; Spector and Stoffel,
1996; Stoffel and Spector, 1996; Teller, 1993]. Traditionally GP uses an EA to evolve its
genome, and the evolved genome is represented as a tree structure, which specifies the
program being evolved. The early version of GP was designed to evolve LISP programs,
and LISP is a programming language that favours tree structures. However GP and its
many variations were later used for the design of various engineering problems, such as

circuits and mathematical functions.

With the start of automatically generating designs using EAs, the field of EC expanded
beyond combinatorial optimisation problems. EC involves the use of EAs on optimisa-
tion problems as well as design problems such as control systems and hardware design.
The increasing interest in “evolving” hardware designs (particularly digital electronic
circuits) in the research community, has lead to the emergence of the sub-field Evolvable
HardWare (EHW). The use of EAs in the field of EC to create hardware designs is
referred to as EHW. Evolving digital electronic circuits is the most popular and common
design problem in EHW, and it is achieved on reconfigurable hardware platforms or

more usually using computer simulations.

Ph.D. Thesis 32 Tiize Kuyucu

Chapter 2 - Evolvable Hardware

There can be various reasons for evolving electronic circuits rather than engineering
them. Evolution is able to discover circuit topologies that an engineer would never
consider as a design option. Therefore evolving circuits allows us to sample design spaces
we have never sampled before. One of the most obvious advantages of discovering new

circuit topologies is innovation.

2.1 Innovative Circuit Design

Evolution has a unique approach in designing electronic circuits and programs when
compared to human designers. Human designers use the engineering approach of top-
down, divide and conquer; dividing the problem into smaller sub-problems that are
easily understood by the designer, then the designer combines the solutions to these
sub-problems using conventional design techniques. Evolution on the other hand uses
a bottom-up search, putting/removing components to find partial solutions to the prob-
lem, which are then further modified until the final solution is found. Unlike the engi-
neering approach, the partial solutions found to a problem by evolution does not nec-
essarily represent a sub-solution to the problem. The different nature of the design
approach gives evolution the ability to sample a different design space that may not be

within the reach of traditional design methodologies.

Part of the EHW community is interested in the creation of circuits for discovering in-
novative designs that are unattainable by conventional design methods. Thompson’s
work on evolving a tone discriminator in a Field Programmable Gate Array (FPGA)
substrate via combinational logic only is a good example of evolution’s ability to achieve
innovative designs [Thompson, 1996]. Thompson discovered that evolution was able to
design a circuit that could differentiate between a 1kHz and 10kHz wave by exploiting
the analogue properties of the FPGA. Such a design is impossible when engineering
design methods are used, since the components of an FPGA are considered to be strictly
digital. Some examples of work towards finding unusual circuits using evolution are
[Huelsbergen et al., 1999; Miller and Downing, 2002; Miller et al., 2000; Thompson, 1995a;
Thompson et al., 1996; Trefzer, 2006]. A few years after Thompson’s work, Linden was
able to utilise evolution for the design of a complex antenna and obtain efficient and im-

pressive designs that could not be achieved via traditional antenna design methodologies

Ph.D. Thesis 33 Tiize Kuyucu

Chapter 2 - Evolvable Hardware

[Linden and Altshuler, 1999]. This was a good demonstration of the importance of the
choice of hardware design problem as an EHW application. The simple but innovative
designs achieved via evolution were not only innovative but they were also good enough

to perform as real-world antenna designs [Linden and Altshuler, 1999].

Although the early work on evolving digital circuits showed promise, in the recent years
the interest in the evolution of digital circuits had diminished. This is because of the low
complexity barrier that evolution encountered using digital components, which means
that the digital circuits designed by evolution are too simple to be of any real use or

interest.

In 2006 Harding demonstrated a proof of concept by evolving circuits on a liquid crystal
substrate [Harding, 2006]; Harding used evolution purely for exploiting the character-
istics of a liquid crystal, where there is no known circuit design methodology. Harding
successfully evolved simple circuits on the liquid crystal, which is a good example for

the ability of evolution in making use of the available substrate in its entirety.

The ability of evolution to create unusual designs is thus one of the main reasons why
EHW is so attractive to the research community. As it was mentioned earlier, this ability
of evolution is due to evolution’s unusual approach to designing hardware. This unusual
approach allows evolution to sample different design areas, which may yield to designs

that are innovative and /or even fault tolerant.

One of the downsides of evolving circuits to create an unusual designs is that the result-
ing designs are not portable. Unusual designs such as Thompson’s tone discriminator
[Thompson, 1996] or Koza’s “embryonic” analogue circuits [Koza et al., 1996] most often
create configurations that are only valid for the specific piece of hardware used (in the
first case) or cannot be implemented or guaranteed to work if implemented in real hard-
ware. The evolution of designs that are not portable is a big disadvantage of evolution of

unusual circuits.

Ph.D. Thesis 34 Tiize Kuyucu

Chapter 2 - Evolvable Hardware

2.2 Fault Tolerant Circuit Design

Fault tolerance has probably been the biggest area of research in evolvable and bio-
inspired hardware in the last decade. With the increasing amount of hazardous, vital, and
remote processes depending heavily on electronic hardware, it has become important
that the hardware used is highly fault tolerant and maintenance free. Recent advances in
nanotechnology have even brought more reliability issues into the fabrication processes

[Jeng et al., 2007], which increased the need for effective fault tolerant designs.

The field of fault tolerance is a valued area with many diverse models. The variety of
approaches in the field provide a good selection of methods that can be suited to meet the
demands of specific cases. Redundancy is the key to achieving fault tolerance, whether
it is via hardware, software, information, or time redundancy. In the special case of
electronic hardware devices where failure of a device even for a moment is not acceptable,

hardware redundancy is the solution [Lala, 2001].

There are various hardware redundancy techniques; each with major differences in their

implementations. The three main hardware redundancy techniques are:

¢ Static Redundancy: Static redundancy works with multiple components that all
contribute to the outcome, and the faulty ones are masked via the majority. Hence,
in a simple case, there is a single common voter that receives the inputs from the
redundant components and outputs the result of the majority vote. An example of
this is N-Modular Redundancy (NMR) (Triple Modular Redundancy (TMR) being
a special case) [Lala, 2001].

¢ Dynamic Redundancy: In dynamic redundancy only one module contributes to
the outcome of the circuit, and when this module fails a fault detection system
rules out the faulty module and replaces it with a working version. Hence, there is
a single fault detection mechanism that monitors the working module and makes
the decision about when to replace a working module (so long as there are spare
ones). Dynamic redundancy systems are further divided into two classes: cold-
standby systems and hot-standby Systems depending on the implementation [Lala,
2001].

Ph.D. Thesis 35 Tiize Kuyucu

Chapter 2 - Evolvable Hardware

* Hybrid Redundancy: As the name suggests this is when both dynamic and static
redundancy is included in a system. An NMR system with spare standby modules

to replace the faulty ones would be an example of this type [Lala, 2001].

Fault tolerance via circuit redundancy can be a costly and inefficient approach. Replicat-
ing the same circuit N times can be an expensive solution, and a fault may not always be
caused by a component (or routing) failure; it could also be the changing environmental
conditions which affect the normal behaviour of a healthy circuit. These environmental
effects and the fabrication faults cannot be solved via circuit redundancy. Hence if a given
design is rendered useless due to changing environmental conditions, all its implemen-
tations will fail in those conditions. Thus there is a need for more adaptable techniques

that can tackle unforeseen circumstances.

Evolution has been used by researchers to evolve circuits that can sustain various faults
[Canham and Tyrrell, 2002; Gwaltney and Ferguson, 2003; Hounsell and Arslan, 2001;
Thompson, 1995b; Tyrrell et al., 2001], and it has been proven to be suitable and successful
in creating fault tolerant circuits. Evolving circuits that are fault tolerant effectively
creates circuits with redundant behaviour, but due to the bottom-up design approach
taken by evolution the circuit redundancy can be kept to a much lower level than an
engineered design [Gwaltney and Ferguson, 2003]. On top of hardware redundancy, time
redundancy can also be achieved by evolution. Evolution can be used to reconfigure
a faulty system once the fault is detected, e.g. [Teerakittikul et al., 2009] reconfigures
a robot controller using evolution when a fault occurs in the controller. Thus using
evolution, a fault tolerant system with hardware redundancy can be accompanied with
a time redundancy element that can recover the system in case it is unable to sustain any

more faults.

Further techniques have also been investigated to enhance evolution’s ability to design
fault tolerant circuits. Some of the implemented methods are borrowed from the non-
evolutionary fault tolerant systems, and used in conjunction with evolution to obtain
more effective fault tolerance mechanisms, e.g [Garvie and Thompson, 2004]. On the
other hand, a lot of researchers try to use bio-inspired techniques to create fault tol-
erant systems. Examples of bio-inspired techniques used for the evolution of robust

systems include the modelling of neural networks [Arad and El-Amawy, 1994; Here-

Ph.D. Thesis 36 Tiize Kuyucu

Chapter 2 - Evolvable Hardware

ford and Kuyucu, 2006], multicellular organisation via endocrinology based communica-
tion [Greensted and Tyrrell, 2003, 2004], immune systems and embryo development [Bradley
et al., 2000; Bradley and Tyrrell, 2002; Canham and Tyrrell, 2003], and multicellular de-
velopment [Liu et al., 2005; Miller, 2004; Tyrrell and Sun, 2006].

Although fault recovery is the final goal of fault tolerant circuits, fault detection is an
important step towards recovery. Most of the fault tolerant systems achieve fault detec-
tion via Built-In Self Testing (BIST). BIST mechanisms are easy to implement and does
not consume many resources [Davidson, 2005], but the mechanism itself is vulnerable to
faults. On the other hand a fault tolerant system that has an emergent fault detection as
part of the mechanism can provide a robust solution. In such a case, another link that can

fail is eliminated from the chain.

A system may sometimes fail to work not because of existing faults but because of the
changing environment. In a dynamic environment a system that works with the environ-
ment needs to be able to adapt to changes and respond appropriately. One of the research
areas of EC is on real-time autonomous adaptation of systems, which is also applied to

adaptive hardware systems in EHW.

2.3 Adaptive Design

Designing real-time systems that do not require human input to function in a changing
environment is a challenging task, it requires the system designed to be interactive and
adaptive with its environment. Engineering design methodologies in this area are not
yet well developed, hence most of the time human intervention is required to adapt an
existing system to the changing environment [Fahrmair et al., 2006]. EHW approaches to
more adaptive hardware systems can be promising [Spector and Stoffel, 1996; Tufte and
Haddow, 2000]. Continuous online evolution of already functioning systems may enable

them to adjust to small unpredictable environmental changes quickly.

Evolution has been effectively used to create systems that are able to survive changing
environments. Common examples of such systems are control, data compression, and
signal processing systems. The most popular test case for control systems has been

the wall avoidance in robots [Floreano and Mondada, 1994; Haddow and Tufte, 1999;

Ph.D. Thesis 37 Tiize Kuyucu

Chapter 2 - Evolvable Hardware

Krohling et al., 2003; Thompson, 1995a]. Metta et al. [Metta et al., 1999] demonstrate
an adaptive evolutionary system for the control of visually guided reaching. A good
example for successful adaptive data compression applications achieved via evolution
is the adaptive image compression system evolved by Sakanashi et al [Sakanashi et al.,
2001]. Adaptive digital filters [Sundaralingam and Sharman, 1998; Tufte and Haddow,
2000] and analogue filters [Zebulum et al., 2003] have also been successfully shown to

evolve on hardware.

In EHW an EA is used to change the configuration of a hardware architecture and be-
haviour dynamically and autonomously by using the provided resources and environ-
ment to achieve the design goals. Two major methods of evolving hardware systems

have been established in EHW: extrinsic and intrinsic.

2.4 Extrinsic Evolution

When a hardware design is extrinsically evolved, the complete process of evolution and
evaluation is done in simulation. Typically the EA runs in a PC (or multiple PCs) and the
generated hardware designs are simulated to determine how “fit” they are. An extrinsic
EHW approach is flexible and generic, as the level of abstraction can be determined
and conveniently altered by the experimenter, and it provides a portable EHW platform.
Extrinsic EHW is also the cheaper and quicker way of setting up a basic EHW experiment,
and its results are generally easier to analyse than those of an intrinsic approach. For
these reasons extrinsic EHW is quite appealing to researchers as a first step of testing
their EHW systems even if their final goal is to use intrinsic EHW. Examples of successful
application of extrinsic EHW includes but not limited to digital circuit design by using
synthesis tools [Araujo et al., 2003], simple gate level simulations [Koza, 1992; Miller et al.,
2000] and function level simulations [Kalganova, 2000b]. Evolution of wire antennas
[Linden and Altshuler, 1999], and synthesis of analogue circuits [Mattiussi and Floreano,

2006] are also successful examples of extrinsic hardware evolution.

Ph.D. Thesis 38 Tiize Kuyucu

Chapter 2 - Evolvable Hardware

2.5 Intrinsic Evolution

When the evolved designs are implemented and evaluated on real hardware rather than
being simulated to test their fitness, the evolution is referred to as intrinsic. Intrinsic
evolution brings many advantages such as, more reliable evolution of hardware systems
and greater possibility of finding novel designs; since the substrate properties can be
explored as well and the conventional engineering system design constraints can be
relaxed. In some cases intrinsic EHW speeds up the evolution process as well since
the evaluation time for hardware systems such as circuits is much shorter in hardware
than it is in software simulations. Examples of Intrinsic Evolution in literature include
most commonly the use of FPGAs: to evolve digital circuits [Hollingworth et al., 2000;
Thompson, 1996, Thompson et al., 1996], and robot controllers [Krohling et al., 2003;
Thompson, 1995a; Thompson et al., 1996]. The intrinsic evolution of antennas [Linden,
2001], transistor circuits [Trefzer, 2006], and analogue circuits [Zebulum et al., 1998] have
also been explored. In the early applications of intrinsic evolution Thompson [Thomp-
son, 1996] was able to evolve an unconventional circuit that made use of the physics of the
FPGA substrate, which is not possible to achieve using conventional design techniques

or extrinsic evolution of digital circuits.

2.5.1 Hardware for Intrinsic Evolution of Circuits

There are a number of different systems that could be evolved on hardware, such as robot
controllers on real robots, filters on Digital Signal Processors, and circuits on a range of

available hardware architectures.

EHW started with the evolution of digital circuits, which eventually became the most
popular target application. Evolution of digital circuits could be done on various avail-
able reconfigurable digital circuit architectures the two current and most popular recon-
figurable logic devices being Complex Programmable Logic Device (CPLD) and FPGA [Brown
and Rose, 1996]. FPGAs provide a larger amount of logic and rich routing, thus they
dominate most of the reconfigurable logic market. Most of the intrinsic EHW experi-

ments target combinational logic designs, and even though CPLDs are meant to be the

Ph.D. Thesis 39 Tiize Kuyucu

Chapter 2 - Evolvable Hardware

preferred design platform for combinational digital circuits, FPGAs still dominate the

EHW experiments.

FPGAs are reconfigurable devices that provide Configurable Logic Block (CLB) and con-
figurable routing that connect the CLBs. Each CLB provides simple digital elements
(usually a few look-up tables and flip-flops) that can be programmed to perform simple
logic functions, which then can be connected together using the configurable routing to

create large functional circuits.

Although intrinsic EHW started with the evolution of digital circuits, later the intrinsic
evolution of analogue circuits started getting attention as well [Terry et al., 2006; Trefzer,
2006; Zebulum et al., 1998]. Intrinsic analogue hardware evolution is done either using
Field Programmable Analogue Array (FPAA) [Hereford and Pruitt, 2004; Terry et al.,
2006; Zebulum et al., 1998] or Field Programmable Transistor Array (FPTA) [Gwaltney
and Ferguson, 2003; Stoica et al., 2001; Trefzer, 2006]. Both types of devices are similar to
FPGAs in the way they work, but instead of having logic blocks, they have Configurable
Analogue Block (CAB), at different levels of granularity; FPAAs being more coarse than
FPTAs.

These reconfigurable devices are important in EHW, since they render intrinsic evolution
of circuits possible. With the reliability issues in the recent advances in nanotechnology
[Jeng et al., 2007], intrinsic evolution within reconfigurable devices that have been pro-
duced with latest fabrication processes could be used to build circuits that are tolerant
to fabrication faults and variability. Evolution has been demonstrated to be effective in
designing circuits tolerant to transistor variability [Hilder et al., 2009], but these experi-

ments remain in simulation and can not be guaranteed to work once implemented.

2.6 Challenges of Evolving Hardware

Evolving hardware brings many promising properties; fault tolerance, adaptivity, au-
tonomous reconfiguration. However, there exists some challenges that limit the practical
applicability of the evolution of hardware systems, especially digital circuits. The two
major issues in EHW that are regarded to be the main bottleneck in many EHW applica-

tions are scalability and evolvability.

Ph.D. Thesis 40 Tiize Kuyucu

Chapter 2 - Evolvable Hardware

2.6.1 Scalability

Over the years of research in EC, the complexity of the evolved designs has not increased
significantly. The inability of evolution to find circuits at the desired level of complexity
in a reasonable amount of time is a major problem. Scalability has been a problem for the
evolution of digital circuits in FPGAs [Haddow and Tufte, 2001; Murakawa et al., 1996;
Torresen, 1998], as well as in simulations [Kalganova, 2000a; Koza, 1994; Vassilev and
Miller, 2000b; Walker and Miller, 2004]. The ability to achieve higher complexity systems
from a smaller system in a reasonable amount of time is referred to as scalability. An
example scalable technique would be to design a full adder, and create a 16-bit adder
from the knowledge gained from the design of a full adder. In this way, the effort of
designing the 16-bit adder is not greatly different from the effort of designing the full
adder. If scalable engineering techniques did not exist, the design of many systems that

would be considered simple today would have been impossible.

After re-introducing GP in 1990, Koza realised the limited complexity GP could obtain
in the evolved designs. Therefore, shortly after his introduction of GP, he suggested
the use of Automatically Defined Function (ADF) [Koza, 1994]; a method of gene reuse
during evolution. ADFs introduced modularity to GP aiming to speed up evolution and
increase the achievable complexity. Koza demonstrated in his work that ADFs increase
the evolutionary speed of GP [Koza, 1994]. However even the use of ADFs did not
introduce scalability in the evolution of higher complexity systems. A similar modularity
was introduced by Walker and Miller [Walker and Miller, 2004], for Cartesian Genetic
Programming (CGP) [Miller and Thomson, 2000] to speed up the evolution of more
complex problems with CGP, a different form of GP. It was shown that evolution of
problems with modular CGP was much faster (20x in some cases), and scaled better
for complex problems. The modularity in GP and CGP is done systematically, where a
mechanism works in parallel with evolution to create modules from the already existing

parts of the evolved system which can be reused by evolution.

Although achieving scalability in EHW is important, it is also important that the desired
properties (such as innovation and fault tolerance) of evolution are not lost while doing
s0, e.g. [Shanthi et al., 2004] uses conventional circuit design knowledge to partition the

desired problem before evolving, which constrains evolution to the traditional design

Ph.D. Thesis 41 Tiize Kuyucu

Chapter 2 - Evolvable Hardware

space. One of the obvious reasons for the scalability challenge evolution faces is the direct
genotype*-phenotype® mapping that is present in most EHW systems; this causes the
genotype to grow linearly with the phenotype, which creates an exponentially growing
design space. This problem has already been addressed in detail by researchers, and
biological development inspired approaches has been suggested as ways to introduce
scalability to EC in general [Bentley and Kumar, 1999; Dellaert and Beer, 1994; Eggen-
berger, 1997] and specifically for evolvable hardware [Gordon, 2005; Haddow et al., 2001;
Miller and Thomson, 2003; Roggen, 2005].

As listed above, there are many researchers that suggested the use of modularity [Had-
dow and Tufte, 2001; Kalganova, 2000a; Koza, 1994; Murakawa et al., 1996; Torresen, 1998;
Vassilev and Miller, 2000b; Walker and Miller, 2004], and some of them have achieved
some improvement by the use of modularity in EC. However, even with an explicitly
defined mechanism that incorporates modularity into evolution, the scalability can not be
fully achieved so long as there is a direct genotype-phenotype mapping. However, the ex-
tensive research and successful results on modular evolution suggests that a mechanism
that provides modularity during evolution is desired and more likely to be successful

than a one that does not.

Sekanina, in his paper in 2006, mentions that evolutionary algorithms are limited to a
search space size of approximately 1000 bits [Sekanina, 2006]. He compares various en-
coding schemes used for the evolution of electronic circuits with respect to their scalabil-
ity and innovativeness. Sekanina claims that all these methods have the potential to find
innovative circuit designs, however their scaling properties vary greatly. He suggests that

developmental approaches have the potential to be infinitely scalable [Sekanina, 2006].

Figure 2.2 shows the increase in the complexity of the circuits evolved vs the increase
in the number of transistors per chip in Intel processors over a 14 year period. The
biggest circuit that was evolved in year 1992 was a 5-bit parity that is composed of
approximately 20 gates [Koza, 1992]. In year 2005 the biggest circuit evolved was a
6-bit multiplier that was formed of 500 gates [Stomeo et al., 2006, 2005], even though
traditionally it would be much less. This is a 25 times increase in the number of gates used

for the largest evolved circuit in 13 years, which is extremely low when compared to the

“Genetic information in a cell that is used to obtain a certain phenotype
5The physical form and characteristics of an organism; i.e the circuit.

Ph.D. Thesis 42 Tiize Kuyucu

Chapter 2 - Evolvable Hardware

3.5
©
N —
CRCHE
=g
3 v 25
= o
O - —
= g 2
C -
O ® 15
o _'8’ The transistor ratio in
o5 Intel CPUs since 1992
gu 5 os The gate ratio in the
< evolved circuits since 1992

0
1992 1993 1994 1995 1997 1999 2000 2003 2004 2005 2006

Years

Figure 2.2: The graph showing the increase in the number of transistors in Intel processors,
and the number of gates in the circuits evolved in EHW from 1992 to 2006, on a logarithmic
scale. Traditional design techniques advanced much quicker than the evolutionary circuit design
in obtaining large circuits.

increase in transistors per chip on the commercially available CPUs. In 1993 the number
of transistors in an