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Abstract

Automatic design of digital electronic circuits via evolutionary algorithms is a promising area of
research. When evolved intrinsically on real hardware, evolved circuits are guaranteed to work
and the emergence of novel and unconventional circuits is likely. However, evolution of digital
circuits on real hardware can cause various reliability issues. Thus, key mechanisms that produce
reliable evolution of digital circuits on a hardware platform are developed and explained in the

first part of this thesis.

On the other hand, the evolution of complex and scalable designs without any assistance is
thwarted due to increasingly large genomes. Using traditional circuit design knowledge to assist
evolutionary algorithms, the evolution of scalable circuits becomes feasible, but the results found

in such experiments are neither novel anymore nor are they competitive with engineered designs.

A novel, biologically inspired gene regulatory network based multicellular artificial developmen-
tal model is introduced in this thesis. This developmental model is evolved to build digital circuits
that can automatically scale to larger designs. However, the results achieved still remain inferior

to engineered digital circuit designs.

Evolving a developmental system for the design of engineering systems or computational paradigms
provides a variety of desirable properties, such as fault tolerance, adaptivity, and scalable designs
automation. However, developmental systems in their role as computational networks are as yet
poorly understood. Many mechanisms and parameters that a developmental system comprises
are based on various assumptions, their biological counterparts, or educated guesses. There is a
lack of understanding of the roles of these mechanisms and parameters in forming an evolvable

platform for evolutionary computation.

Initially, various experiments are shown to demonstrate the evolvability of the new developmen-
tal system. A thorough investigation is then undertaken in order to obtain large amounts of em-
pirical data that yields a better understanding of some of the crucial developmental mechanisms

and parameters on the evolvability of multicellular developmental systems.
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Hypothesis

Evolution of digital circuits in hardware can provide interesting and novel designs, but
not complex and human competitive results. Multicellular development in biology can
be simulated to create a scalable system for the evolutionary design of electronic systems.
By understanding the evolution of circuits on real hardware and the behaviour of multi-
cellular development in a computational environment, the key factors that determine the

evolvability of an artificial developmental system can be determined.

24



Chapter 1

Introduction

Technology is an ever growing endeavour of human avidity, since the invention of simple
tools like the wheel, spoon, or knife, the development of technology has never ceased.
What has allowed us to progress and advance our lives into a global social structure
today, has sometimes been labelled as the nemesis of nature [Kovel, 2002]. The invention
of the steam engine, gun powder, combustion engine, paper, nuclear fission and fusion,
are all outstanding sources of technology that have advanced against nature and its
equilibrium. The degrees of advancement achieved in technology is awe-inspiring, and
it provides us with prodigies that surpass the abilities of nature’s organisms. The su-
percomputers that can carry out quadrillions (order of 10'%) of mathematical operations
in a second [Bland et al., 2009], mobile phones that allow a person to talk to another
from the other end of the world, the telescopes that can look into the depths of galaxies
outside the Milky Way. Technology has created designs that operate beyond the scope
of any biological organism inhabiting earth. Despite this, technology has so far failed to
faithfully imitate even the simplest functions nature has long mastered for sustainability

and survival.

Today as researchers, a group of us tries to analyse and understand nature and its or-
ganisms. We try hard to understand, mimic and compete with nature itself. Biological
organisms exhibit behaviours that contrast markedly with engineering design. Adap-
tivity to unknown conditions, self-repair, self-replication, fault tolerance, intelligent and
intuitive decision making, and learning are some of the properties biological organisms

exhibit. Artificial Intelligence (Al) is a sub-field in engineering, where the latest technol-
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Chapter 1 - Introduction

ogy is used to build intelligent systems. However, the intelligent systems built in Al are
far from achieving the intelligent behaviour and self control that biological organisms

demonstrate.

Natural sciences study nature and the origin of the biological organisms and their envi-
ronment. The study of natural sciences has partially revealed the complicated processes
that have built and shaped the biological organisms to their current state. Hence, some
researchers try to model what has been learnt from the biological way of building com-

plex systems in the hope of achieving comparable behaviours in engineering technology.

Perhaps technology does not need to go against or at a different direction to nature.
Lessons learnt from nature could be valuable in expanding technology to another dimen-
sion. This thesis attempts to model a small part of the knowledge attained from natural
sciences for building artificial systems. More specifically, this thesis presents chapters on
biologically inspired (bio-inspired) computational models. In an effort to learn from na-
ture in advancing the technology present in computer science and electronics, this thesis
attempts to develop and use bio-inspired techniques for the design of electronic circuits
and computational systems. It aims to develop techniques that enable effective use of bio-
inspired models of evolutionary design and multicellular development. The end result
also provides a study for a better understanding of these bio-inspired techniques, which
is progress towards understanding the evolution of biological organisms and the use of

bio-inspired techniques for the design of computational technologies.

1.1 Thesis Layout

This thesis is organised into eight chapters.

Chapters 2 and 3 are focused on Evolvable HardWare (EHW). Chapter 2 introduces the
tield of EHW, where the process of evolution in nature is used as the inspiration for
designing hardware models in engineering. Chapter 3 uses a new hardware platform for
the evolution of real circuits on hardware, and develops a group of essential techniques

for quick and effective evolution of digital circuits on real hardware.
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Chapter 1 - Introduction

Chapter 4 provides background on multicellular development and its existing artificial
models in evolutionary computation. It also discusses the potential benefits of multicel-

lular development to Evolutionary Computation (EC).

Chapter 5 introduces a new bio-inspired developmental model to assist the evolutionary
design of artificial systems. The design of the developmental model is described in detail

and compared with similar models in literature.

Chapter 6 investigates the performance of the new developmental system and validates
its developmental properties. The general setup of the experimental environment used
for the evolutionary developmental experiments in the rest of the thesis is provided in
the algorithm configuration section (Section 6.1). Chapter 6 demonstrates; the responsive
and dynamic nature of the Gene Regulatory Network (GRN), the ability of the individual
cells in the multicellular Artificial Developmental System (ADS) to self-organise and

differentiate, and the fault tolerant abilities of the ADS via simple experiments.

Chapter 7 investigates the design of digital circuits via the use of evolution and the
proposed developmental system. For the first time, the design of a digital circuit via
the evolution of a GRN based ADS includes the connectivity of the circuit components as
well as the type of components. Chapter 7 demonstrates that the proposed ADS can be

used for the scalable design of digital circuits.

Chapter 8 provides detailed investigations on the properties of various parameters and
mechanisms that affect the performance of the artificial developmental system in order
to better understand the use of multicellular development in evolutionary computation

and improve the overall performance of the presented system.

The final conclusions on the work done and the future directions for the use of artificial

development in evolutionary computation is presented in Chapter 9.

1.2 Contributions

The novel contributions of this thesis are:
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Chapter 1 - Introduction

1. The evolution of gate-level digital circuits on a novel hardware platform (Chap-

ter 3).

2. The development of mechanisms that enable the effective evolution of valid circuits

on real hardware (Chapter 3).

3. Providing experiments and discussions that supply evidence and support for the

development of an effective evolutionary platform (Chapter 3 and Appendix B).

4. The design of a new artificial genetic regulatory network model and multicellu-
lar developmental system, which use inspirations from biology and engineering

(Chapter 5).

5. Experiments, evidence, and discussions on improving the evolvability of a devel-
opmental system via identifying the suitable and the correct use of mechanisms,

parameters, and constraints (Chapters 6, 7, and 8).

6. Demonstration of a scalable approach to the evolution of digital circuits via the

evolution of a scaling circuit via the use of artificial development (Chapter 7).

7. Anunderstanding of developmental mechanisms and their effects on the evolvabil-

ity of a multicellular developmental system (Chapter 8).

8. Multiple demonstrations on the importance of an effective fitness function for the

successful evolution of a system (Chapter 3, 6, and 7).
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Evolvable Hardware

Evolution, a mechanism of random alterations and intelligent selection that was first
proposed by Darwin in 1859 [Darwin, 1859], is regarded as a key element in the emer-
gence and advance of biological organisms. These biological organisms are complex
and competent; they can survive harsh environmental conditions and are capable of
accomplishing highly sophisticated tasks. Although the emergence of any interesting
behaviour via evolution is a time consuming process due to the stochastic behaviour of
evolution, the biological marvels that exist in nature today are all a result of evolutionary
change. Thus evolution is and has been a fascinating and fundamental topic in biology.
The resulting evolved biological systems, possess an important set of characteristics that
the products of engineering can, at present, only aspire to. Adaptivity, fault tolerance and
recovery, regeneration, and learning are a few of these characteristics, which engineering

methods struggle to (or are unable to) capture.

Evolution has also attracted a large community of researchers outside biology who take
inspiration from the principles of evolution to tackle problems in their fields. The early
use of evolution in the field of computer science, electronics and engineering was with
the works of Von Neumann in late 40s, Box and Friedberg in late 50s, and Bremermann
in early 60s [Box, 1957; Bremermann, 1962; Friedberg, 1958, Neumann, 1966]. However,
it was not until the introduction of Evolutionary Algorithm (EA) that the field of Evolu-
tionary Computation (EC) started getting attention. EAs took inspiration from evolution
in solving mathematical problems, and they were introduced in late 60s / early 70s [Back

et al., 1997; Fogel et al., 1966; Holland, 1973; Rechenberg, 1973].
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An EA uses random alterations and an intelligent selection mechanism to optimise an
existing solution to a given problem. An EA creates multiple variations of the solution at
hand and evaluates each of the new solutions for any improvements. The given problem
defines the most important part of the selection mechanism: the fitness function. The
fitness function is used for guiding the algorithm in its search for the optimal solution to
a given problem. The fitness function assigns a fitness, a score, to each of the potential
solutions, which reflects the quality of each solution. Once each candidate solution has a
fitness, selection is undertaken and a new batch of candidate solutions are created via
mutation! and crossover? for the next generation. The process of evaluation (using
the fitness function), selection, mutation and crossover carries on over and over again
until a satisfactory solution or a time (or more often generations) limit is reached. The
representations of a candidate solution in an evolutionary algorithm is referred to as
the genotype —inspired by the DeoxyriboNucleic Acid (DNA)? in biological organisms-,

which is often a binary string.

Other than optimising an existing solution, EAs are also used for finding a previously
unknown solution to an existing problem. In such a case the EA starts with a random set
of candidate solutions and optimises these. Figure 2.1 depicts the process a generic EA

goes through in finding a solution.

Three types of EAs that are widely used today are:

* Genetic Algorithm (GA): introduced by Holland [Holland, 1973], is the most common
form of EA, and was designed to model adaptive processes. The original represen-
tation of the “genotype”, which the algorithm worked on was in binary, and both

mutation and crossover operations were used during the search process.

* Evolution Strategy (ES): introduced by Rechenberg and Schwefel is similar to GAs [Back
et al., 1997; Rechenberg, 1973], and was designed for parameter optimisation. A
floating point representation was used in the initial implementation of ES, and
only the mutation operation was implemented during the search process. The

key differences with the classic GAs are the lack of crossover operation, use of

1Random alterations in a candidate solution.

2]oining parts of two candidate solutions (parents) to produce a new candidate solution (child).

3 A double helix structured nucleic acid that contains all the genetic information used in the development
of all biological organisms.
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Figure 2.1: The life cycle of an evolutionary algorithm.

self-adaptation to adjust control parameters, and the strict definition of parent-
offspring relationships in ES. The parent-offspring relationship in ES is defined by

two versions of the ES as
ES(u,A)and ES(u+A).

Here u is the parent size, and A is the offspring size. The parents for the next
iteration (referred to as generation in EAs) are deterministically selected only from
the set of offspring of the current iteration (for the first case above) or from the set

of parents of the current iteration and offspring (for the second case above).

* Evolutionary Programming (EP): introduced by Fogel [Fogel et al., 1966], was de-
veloped for the design of artificial intelligence through the evolution of finite state
machines. EP is very similar to ES, and it also uses self-adaptation of algorithm

parameters.

All these types of EAs share a similar process flow shown in Figure 2.1 with some dif-
ferences such as the exclusion of crossover, different representations or selection mecha-

nisms, and it is easy to create a different flavour of each of these EAs.
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Initially, EAs were mostly used as optimisation algorithms to search for the global maxi-
mum or minimum in a mathematical function. They were successfully used for solving
classical optimisation problems such as travelling salesman, or even tough Engineering
Applications [Bramlette and Bouchard, 1991; Muller, 2002; Periaux et al., 1995]. Start-
ing with the work of Fogel [Fogel et al., 1966], EAs were also used as a method to
automatically create new designs. The popularity of the use of EAs as a method to
automatically create new designs increased greatly by the start of 90s (more than 20 years
after Fogels work). In 1990 Koza developed an evolutionary algorithm based automatic
program design technique further and named it Genetic Programming (GP), which was
first introduced by Cramer in 1985 [Cramer, 1985]. GP is an EA based methodology
specifically developed for the evolution of computer programs that perform predefined
tasks [Koza, 1992]. With the introduction of GP, more researchers started using EAs in
the automatic design of computer programs and electronic circuits. GP has contributed
to the EA community various novel computer program and circuit designs, and various
researchers also worked on improving GP and developed their own versions [Banzhaf,
1993; Lones and Tyrrell, 2001; Miller and Thomson, 2000; Poli, 1996; Spector and Stoffel,
1996; Stoffel and Spector, 1996; Teller, 1993]. Traditionally GP uses an EA to evolve its
genome, and the evolved genome is represented as a tree structure, which specifies the
program being evolved. The early version of GP was designed to evolve LISP programs,
and LISP is a programming language that favours tree structures. However GP and its
many variations were later used for the design of various engineering problems, such as

circuits and mathematical functions.

With the start of automatically generating designs using EAs, the field of EC expanded
beyond combinatorial optimisation problems. EC involves the use of EAs on optimisa-
tion problems as well as design problems such as control systems and hardware design.
The increasing interest in “evolving” hardware designs (particularly digital electronic
circuits) in the research community, has lead to the emergence of the sub-field Evolvable
HardWare (EHW). The use of EAs in the field of EC to create hardware designs is
referred to as EHW. Evolving digital electronic circuits is the most popular and common
design problem in EHW, and it is achieved on reconfigurable hardware platforms or

more usually using computer simulations.
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There can be various reasons for evolving electronic circuits rather than engineering
them. Evolution is able to discover circuit topologies that an engineer would never
consider as a design option. Therefore evolving circuits allows us to sample design spaces
we have never sampled before. One of the most obvious advantages of discovering new

circuit topologies is innovation.

2.1 Innovative Circuit Design

Evolution has a unique approach in designing electronic circuits and programs when
compared to human designers. Human designers use the engineering approach of top-
down, divide and conquer; dividing the problem into smaller sub-problems that are
easily understood by the designer, then the designer combines the solutions to these
sub-problems using conventional design techniques. Evolution on the other hand uses
a bottom-up search, putting/removing components to find partial solutions to the prob-
lem, which are then further modified until the final solution is found. Unlike the engi-
neering approach, the partial solutions found to a problem by evolution does not nec-
essarily represent a sub-solution to the problem. The different nature of the design
approach gives evolution the ability to sample a different design space that may not be

within the reach of traditional design methodologies.

Part of the EHW community is interested in the creation of circuits for discovering in-
novative designs that are unattainable by conventional design methods. Thompson’s
work on evolving a tone discriminator in a Field Programmable Gate Array (FPGA)
substrate via combinational logic only is a good example of evolution’s ability to achieve
innovative designs [Thompson, 1996]. Thompson discovered that evolution was able to
design a circuit that could differentiate between a 1kHz and 10kHz wave by exploiting
the analogue properties of the FPGA. Such a design is impossible when engineering
design methods are used, since the components of an FPGA are considered to be strictly
digital. Some examples of work towards finding unusual circuits using evolution are
[Huelsbergen et al., 1999; Miller and Downing, 2002; Miller et al., 2000; Thompson, 1995a;
Thompson et al., 1996; Trefzer, 2006]. A few years after Thompson’s work, Linden was
able to utilise evolution for the design of a complex antenna and obtain efficient and im-

pressive designs that could not be achieved via traditional antenna design methodologies
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[Linden and Altshuler, 1999]. This was a good demonstration of the importance of the
choice of hardware design problem as an EHW application. The simple but innovative
designs achieved via evolution were not only innovative but they were also good enough

to perform as real-world antenna designs [Linden and Altshuler, 1999].

Although the early work on evolving digital circuits showed promise, in the recent years
the interest in the evolution of digital circuits had diminished. This is because of the low
complexity barrier that evolution encountered using digital components, which means
that the digital circuits designed by evolution are too simple to be of any real use or

interest.

In 2006 Harding demonstrated a proof of concept by evolving circuits on a liquid crystal
substrate [Harding, 2006]; Harding used evolution purely for exploiting the character-
istics of a liquid crystal, where there is no known circuit design methodology. Harding
successfully evolved simple circuits on the liquid crystal, which is a good example for

the ability of evolution in making use of the available substrate in its entirety.

The ability of evolution to create unusual designs is thus one of the main reasons why
EHW is so attractive to the research community. As it was mentioned earlier, this ability
of evolution is due to evolution’s unusual approach to designing hardware. This unusual
approach allows evolution to sample different design areas, which may yield to designs

that are innovative and /or even fault tolerant.

One of the downsides of evolving circuits to create an unusual designs is that the result-
ing designs are not portable. Unusual designs such as Thompson’s tone discriminator
[Thompson, 1996] or Koza’s “embryonic” analogue circuits [Koza et al., 1996] most often
create configurations that are only valid for the specific piece of hardware used (in the
first case) or cannot be implemented or guaranteed to work if implemented in real hard-
ware. The evolution of designs that are not portable is a big disadvantage of evolution of

unusual circuits.
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2.2 Fault Tolerant Circuit Design

Fault tolerance has probably been the biggest area of research in evolvable and bio-
inspired hardware in the last decade. With the increasing amount of hazardous, vital, and
remote processes depending heavily on electronic hardware, it has become important
that the hardware used is highly fault tolerant and maintenance free. Recent advances in
nanotechnology have even brought more reliability issues into the fabrication processes

[Jeng et al., 2007], which increased the need for effective fault tolerant designs.

The field of fault tolerance is a valued area with many diverse models. The variety of
approaches in the field provide a good selection of methods that can be suited to meet the
demands of specific cases. Redundancy is the key to achieving fault tolerance, whether
it is via hardware, software, information, or time redundancy. In the special case of
electronic hardware devices where failure of a device even for a moment is not acceptable,

hardware redundancy is the solution [Lala, 2001].

There are various hardware redundancy techniques; each with major differences in their

implementations. The three main hardware redundancy techniques are:

¢ Static Redundancy: Static redundancy works with multiple components that all
contribute to the outcome, and the faulty ones are masked via the majority. Hence,
in a simple case, there is a single common voter that receives the inputs from the
redundant components and outputs the result of the majority vote. An example of
this is N-Modular Redundancy (NMR) (Triple Modular Redundancy (TMR) being
a special case) [Lala, 2001].

¢ Dynamic Redundancy: In dynamic redundancy only one module contributes to
the outcome of the circuit, and when this module fails a fault detection system
rules out the faulty module and replaces it with a working version. Hence, there is
a single fault detection mechanism that monitors the working module and makes
the decision about when to replace a working module (so long as there are spare
ones). Dynamic redundancy systems are further divided into two classes: cold-
standby systems and hot-standby Systems depending on the implementation [Lala,
2001].
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* Hybrid Redundancy: As the name suggests this is when both dynamic and static
redundancy is included in a system. An NMR system with spare standby modules

to replace the faulty ones would be an example of this type [Lala, 2001].

Fault tolerance via circuit redundancy can be a costly and inefficient approach. Replicat-
ing the same circuit N times can be an expensive solution, and a fault may not always be
caused by a component (or routing) failure; it could also be the changing environmental
conditions which affect the normal behaviour of a healthy circuit. These environmental
effects and the fabrication faults cannot be solved via circuit redundancy. Hence if a given
design is rendered useless due to changing environmental conditions, all its implemen-
tations will fail in those conditions. Thus there is a need for more adaptable techniques

that can tackle unforeseen circumstances.

Evolution has been used by researchers to evolve circuits that can sustain various faults
[Canham and Tyrrell, 2002; Gwaltney and Ferguson, 2003; Hounsell and Arslan, 2001;
Thompson, 1995b; Tyrrell et al., 2001], and it has been proven to be suitable and successful
in creating fault tolerant circuits. Evolving circuits that are fault tolerant effectively
creates circuits with redundant behaviour, but due to the bottom-up design approach
taken by evolution the circuit redundancy can be kept to a much lower level than an
engineered design [Gwaltney and Ferguson, 2003]. On top of hardware redundancy, time
redundancy can also be achieved by evolution. Evolution can be used to reconfigure
a faulty system once the fault is detected, e.g. [Teerakittikul et al., 2009] reconfigures
a robot controller using evolution when a fault occurs in the controller. Thus using
evolution, a fault tolerant system with hardware redundancy can be accompanied with
a time redundancy element that can recover the system in case it is unable to sustain any

more faults.

Further techniques have also been investigated to enhance evolution’s ability to design
fault tolerant circuits. Some of the implemented methods are borrowed from the non-
evolutionary fault tolerant systems, and used in conjunction with evolution to obtain
more effective fault tolerance mechanisms, e.g [Garvie and Thompson, 2004]. On the
other hand, a lot of researchers try to use bio-inspired techniques to create fault tol-
erant systems. Examples of bio-inspired techniques used for the evolution of robust

systems include the modelling of neural networks [Arad and El-Amawy, 1994; Here-
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ford and Kuyucu, 2006], multicellular organisation via endocrinology based communica-
tion [Greensted and Tyrrell, 2003, 2004], immune systems and embryo development [Bradley
et al., 2000; Bradley and Tyrrell, 2002; Canham and Tyrrell, 2003], and multicellular de-
velopment [Liu et al., 2005; Miller, 2004; Tyrrell and Sun, 2006].

Although fault recovery is the final goal of fault tolerant circuits, fault detection is an
important step towards recovery. Most of the fault tolerant systems achieve fault detec-
tion via Built-In Self Testing (BIST). BIST mechanisms are easy to implement and does
not consume many resources [Davidson, 2005], but the mechanism itself is vulnerable to
faults. On the other hand a fault tolerant system that has an emergent fault detection as
part of the mechanism can provide a robust solution. In such a case, another link that can

fail is eliminated from the chain.

A system may sometimes fail to work not because of existing faults but because of the
changing environment. In a dynamic environment a system that works with the environ-
ment needs to be able to adapt to changes and respond appropriately. One of the research
areas of EC is on real-time autonomous adaptation of systems, which is also applied to

adaptive hardware systems in EHW.

2.3 Adaptive Design

Designing real-time systems that do not require human input to function in a changing
environment is a challenging task, it requires the system designed to be interactive and
adaptive with its environment. Engineering design methodologies in this area are not
yet well developed, hence most of the time human intervention is required to adapt an
existing system to the changing environment [Fahrmair et al., 2006]. EHW approaches to
more adaptive hardware systems can be promising [Spector and Stoffel, 1996; Tufte and
Haddow, 2000]. Continuous online evolution of already functioning systems may enable

them to adjust to small unpredictable environmental changes quickly.

Evolution has been effectively used to create systems that are able to survive changing
environments. Common examples of such systems are control, data compression, and
signal processing systems. The most popular test case for control systems has been

the wall avoidance in robots [Floreano and Mondada, 1994; Haddow and Tufte, 1999;

Ph.D. Thesis 37 Tiize Kuyucu



Chapter 2 - Evolvable Hardware

Krohling et al., 2003; Thompson, 1995a]. Metta et al. [Metta et al., 1999] demonstrate
an adaptive evolutionary system for the control of visually guided reaching. A good
example for successful adaptive data compression applications achieved via evolution
is the adaptive image compression system evolved by Sakanashi et al [Sakanashi et al.,
2001]. Adaptive digital filters [Sundaralingam and Sharman, 1998; Tufte and Haddow,
2000] and analogue filters [Zebulum et al., 2003] have also been successfully shown to

evolve on hardware.

In EHW an EA is used to change the configuration of a hardware architecture and be-
haviour dynamically and autonomously by using the provided resources and environ-
ment to achieve the design goals. Two major methods of evolving hardware systems

have been established in EHW: extrinsic and intrinsic.

2.4 Extrinsic Evolution

When a hardware design is extrinsically evolved, the complete process of evolution and
evaluation is done in simulation. Typically the EA runs in a PC (or multiple PCs) and the
generated hardware designs are simulated to determine how “fit” they are. An extrinsic
EHW approach is flexible and generic, as the level of abstraction can be determined
and conveniently altered by the experimenter, and it provides a portable EHW platform.
Extrinsic EHW is also the cheaper and quicker way of setting up a basic EHW experiment,
and its results are generally easier to analyse than those of an intrinsic approach. For
these reasons extrinsic EHW is quite appealing to researchers as a first step of testing
their EHW systems even if their final goal is to use intrinsic EHW. Examples of successful
application of extrinsic EHW includes but not limited to digital circuit design by using
synthesis tools [Araujo et al., 2003], simple gate level simulations [Koza, 1992; Miller et al.,
2000] and function level simulations [Kalganova, 2000b]. Evolution of wire antennas
[Linden and Altshuler, 1999], and synthesis of analogue circuits [Mattiussi and Floreano,

2006] are also successful examples of extrinsic hardware evolution.
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2.5 Intrinsic Evolution

When the evolved designs are implemented and evaluated on real hardware rather than
being simulated to test their fitness, the evolution is referred to as intrinsic. Intrinsic
evolution brings many advantages such as, more reliable evolution of hardware systems
and greater possibility of finding novel designs; since the substrate properties can be
explored as well and the conventional engineering system design constraints can be
relaxed. In some cases intrinsic EHW speeds up the evolution process as well since
the evaluation time for hardware systems such as circuits is much shorter in hardware
than it is in software simulations. Examples of Intrinsic Evolution in literature include
most commonly the use of FPGAs: to evolve digital circuits [Hollingworth et al., 2000;
Thompson, 1996, Thompson et al., 1996], and robot controllers [Krohling et al., 2003;
Thompson, 1995a; Thompson et al., 1996]. The intrinsic evolution of antennas [Linden,
2001], transistor circuits [Trefzer, 2006], and analogue circuits [Zebulum et al., 1998] have
also been explored. In the early applications of intrinsic evolution Thompson [Thomp-
son, 1996] was able to evolve an unconventional circuit that made use of the physics of the
FPGA substrate, which is not possible to achieve using conventional design techniques

or extrinsic evolution of digital circuits.

2.5.1 Hardware for Intrinsic Evolution of Circuits

There are a number of different systems that could be evolved on hardware, such as robot
controllers on real robots, filters on Digital Signal Processors, and circuits on a range of

available hardware architectures.

EHW started with the evolution of digital circuits, which eventually became the most
popular target application. Evolution of digital circuits could be done on various avail-
able reconfigurable digital circuit architectures the two current and most popular recon-
figurable logic devices being Complex Programmable Logic Device (CPLD) and FPGA [Brown
and Rose, 1996]. FPGAs provide a larger amount of logic and rich routing, thus they
dominate most of the reconfigurable logic market. Most of the intrinsic EHW experi-

ments target combinational logic designs, and even though CPLDs are meant to be the
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preferred design platform for combinational digital circuits, FPGAs still dominate the

EHW experiments.

FPGAs are reconfigurable devices that provide Configurable Logic Block (CLB) and con-
figurable routing that connect the CLBs. Each CLB provides simple digital elements
(usually a few look-up tables and flip-flops) that can be programmed to perform simple
logic functions, which then can be connected together using the configurable routing to

create large functional circuits.

Although intrinsic EHW started with the evolution of digital circuits, later the intrinsic
evolution of analogue circuits started getting attention as well [Terry et al., 2006; Trefzer,
2006; Zebulum et al., 1998]. Intrinsic analogue hardware evolution is done either using
Field Programmable Analogue Array (FPAA) [Hereford and Pruitt, 2004; Terry et al.,
2006; Zebulum et al., 1998] or Field Programmable Transistor Array (FPTA) [Gwaltney
and Ferguson, 2003; Stoica et al., 2001; Trefzer, 2006]. Both types of devices are similar to
FPGAs in the way they work, but instead of having logic blocks, they have Configurable
Analogue Block (CAB), at different levels of granularity; FPAAs being more coarse than
FPTAs.

These reconfigurable devices are important in EHW, since they render intrinsic evolution
of circuits possible. With the reliability issues in the recent advances in nanotechnology
[Jeng et al., 2007], intrinsic evolution within reconfigurable devices that have been pro-
duced with latest fabrication processes could be used to build circuits that are tolerant
to fabrication faults and variability. Evolution has been demonstrated to be effective in
designing circuits tolerant to transistor variability [Hilder et al., 2009], but these experi-

ments remain in simulation and can not be guaranteed to work once implemented.

2.6 Challenges of Evolving Hardware

Evolving hardware brings many promising properties; fault tolerance, adaptivity, au-
tonomous reconfiguration. However, there exists some challenges that limit the practical
applicability of the evolution of hardware systems, especially digital circuits. The two
major issues in EHW that are regarded to be the main bottleneck in many EHW applica-

tions are scalability and evolvability.
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2.6.1 Scalability

Over the years of research in EC, the complexity of the evolved designs has not increased
significantly. The inability of evolution to find circuits at the desired level of complexity
in a reasonable amount of time is a major problem. Scalability has been a problem for the
evolution of digital circuits in FPGAs [Haddow and Tufte, 2001; Murakawa et al., 1996;
Torresen, 1998], as well as in simulations [Kalganova, 2000a; Koza, 1994; Vassilev and
Miller, 2000b; Walker and Miller, 2004]. The ability to achieve higher complexity systems
from a smaller system in a reasonable amount of time is referred to as scalability. An
example scalable technique would be to design a full adder, and create a 16-bit adder
from the knowledge gained from the design of a full adder. In this way, the effort of
designing the 16-bit adder is not greatly different from the effort of designing the full
adder. If scalable engineering techniques did not exist, the design of many systems that

would be considered simple today would have been impossible.

After re-introducing GP in 1990, Koza realised the limited complexity GP could obtain
in the evolved designs. Therefore, shortly after his introduction of GP, he suggested
the use of Automatically Defined Function (ADF) [Koza, 1994]; a method of gene reuse
during evolution. ADFs introduced modularity to GP aiming to speed up evolution and
increase the achievable complexity. Koza demonstrated in his work that ADFs increase
the evolutionary speed of GP [Koza, 1994]. However even the use of ADFs did not
introduce scalability in the evolution of higher complexity systems. A similar modularity
was introduced by Walker and Miller [Walker and Miller, 2004], for Cartesian Genetic
Programming (CGP) [Miller and Thomson, 2000] to speed up the evolution of more
complex problems with CGP, a different form of GP. It was shown that evolution of
problems with modular CGP was much faster (20x in some cases), and scaled better
for complex problems. The modularity in GP and CGP is done systematically, where a
mechanism works in parallel with evolution to create modules from the already existing

parts of the evolved system which can be reused by evolution.

Although achieving scalability in EHW is important, it is also important that the desired
properties (such as innovation and fault tolerance) of evolution are not lost while doing
s0, e.g. [Shanthi et al., 2004] uses conventional circuit design knowledge to partition the

desired problem before evolving, which constrains evolution to the traditional design
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space. One of the obvious reasons for the scalability challenge evolution faces is the direct
genotype*-phenotype® mapping that is present in most EHW systems; this causes the
genotype to grow linearly with the phenotype, which creates an exponentially growing
design space. This problem has already been addressed in detail by researchers, and
biological development inspired approaches has been suggested as ways to introduce
scalability to EC in general [Bentley and Kumar, 1999; Dellaert and Beer, 1994; Eggen-
berger, 1997] and specifically for evolvable hardware [Gordon, 2005; Haddow et al., 2001;
Miller and Thomson, 2003; Roggen, 2005].

As listed above, there are many researchers that suggested the use of modularity [Had-
dow and Tufte, 2001; Kalganova, 2000a; Koza, 1994; Murakawa et al., 1996; Torresen, 1998;
Vassilev and Miller, 2000b; Walker and Miller, 2004], and some of them have achieved
some improvement by the use of modularity in EC. However, even with an explicitly
defined mechanism that incorporates modularity into evolution, the scalability can not be
fully achieved so long as there is a direct genotype-phenotype mapping. However, the ex-
tensive research and successful results on modular evolution suggests that a mechanism
that provides modularity during evolution is desired and more likely to be successful

than a one that does not.

Sekanina, in his paper in 2006, mentions that evolutionary algorithms are limited to a
search space size of approximately 1000 bits [Sekanina, 2006]. He compares various en-
coding schemes used for the evolution of electronic circuits with respect to their scalabil-
ity and innovativeness. Sekanina claims that all these methods have the potential to find
innovative circuit designs, however their scaling properties vary greatly. He suggests that

developmental approaches have the potential to be infinitely scalable [Sekanina, 2006].

Figure 2.2 shows the increase in the complexity of the circuits evolved vs the increase
in the number of transistors per chip in Intel processors over a 14 year period. The
biggest circuit that was evolved in year 1992 was a 5-bit parity that is composed of
approximately 20 gates [Koza, 1992]. In year 2005 the biggest circuit evolved was a
6-bit multiplier that was formed of 500 gates [Stomeo et al., 2006, 2005], even though
traditionally it would be much less. This is a 25 times increase in the number of gates used

for the largest evolved circuit in 13 years, which is extremely low when compared to the

“Genetic information in a cell that is used to obtain a certain phenotype
5The physical form and characteristics of an organism; i.e the circuit.
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Figure 2.2: The graph showing the increase in the number of transistors in Intel processors,
and the number of gates in the circuits evolved in EHW from 1992 to 2006, on a logarithmic
scale. Traditional design techniques advanced much quicker than the evolutionary circuit design
in obtaining large circuits.

increase in transistors per chip on the commercially available CPUs. In 1993 the number
of transistors in an