
Overcoming Faults using Evolution
on the PAnDA Architecture

Pedro B. Campos, David M. R. Lawson,
Simon J. Bale, James Alfred Walker, Martin A. Trefzer and Andy M. Tyrrell

Intelligent Systems Group, Department of Electronics, University of York, Heslington, York, YO10 5DD, UK
Email: {pbc500, dl520, simon.bale, james.walker, martin.trefzer, andy.tyrrell}@york.ac.uk

Abstract—This paper explores the potential for transistor level
fault tolerance on a new Programmable Analogue and Digital
Array (PAnDA) architecture1. In particular, this architecture
features Combinatorial Configurable Analogue Blocks (CCABs)
that can implement a number of combinatorial functions similar
to FPGAs. In addition, PAnDA allows one to reconfigure features
of the underlying analogue layer. In PAnDA-EINS, the functions
that the CCAB can implement are predefined through the use
of a routing block. This paper is a study of whether removing
this routing block and allowing direct control of the transistors
provides benefits for fault tolerance. Experiments are conducted
in two stages. In the first stage, a logic function is evolved on a
CCAB and then optimised using a GA. A fault is then injected
into the substrate, breaking the logic function. The second stage
of the experiment consists of evolving the logic function again on
the faulty substrate. The results of these experiments show that
the removal of the routing block from the CCAB is beneficial
for fault tolerance.

I. INTRODUCTION

Electronic circuits are not immune to faults. There are
numerous different ways in which a particular circuit can
develop a fault, especially with stochastic transistor variability
becoming an issue in small manufacturing processes [1].
Taking a single transistor as an example, its behaviour can
vary from its ideal characteristics significantly. It can fail
completely and simply become a permanent conductor or
insulator, or it can fail somewhere in-between such as the
threshold voltage being too high or too low. Failing completely
is more commonly known in the digital domain as a “stuck-
at” fault, as in a stuck-at-1 or a stuck-at-0 fault. This failure
mode is examined at the analogue level.

PAnDA is a novel reconfigurable architecture that aims to
include reconfigurable circuit structures at different levels of
abstraction/complexity [2]. This paper considers the architec-
ture from the first and second iterations of the PAnDA chip
and makes a comparison between the two. Its various levels of
reconfiguration lend themselves well to research in transistor
variability and fault-tolerance, as well as being a versatile
substrate for general evolvable hardware study. This work
focuses on using structures from PAnDA as a substrate for
evolvable hardware, and using that to examine the possibility
of developing fault tolerant systems at the transistor level. All
experiments are carried out in simulation.

1This work is funded by EPSRC under the PAnDA project (EP/I005838/1)

II. BACKGROUND

This work comes as a result of bringing together many
different areas of electronic engineering. Fault tolerance is a
large area in the research community but due to limitations
on space, only a few of the most relevant topics are presented
below.

A. Evolvable Hardware

The Heidelberg and JPL FPTA work [3][4] demonstrates
that it is feasible to evolve circuits at the transistor level.
Langeheine [5] and Trefzer [6] demonstrated this by evolving
a number of analogue and digital circuits on an array of
transistors. The CCAB used in this work has a much smaller
search space than the FPTA, so intuitively circuits should be
found quicker.

B. Fault-Tolerant Design

Fault tolerance is an important topic in engineering as a
whole, but especially in electronic engineering. Triple Modular
Redundancy (TMR) is a commonly used approach in critical
systems. It uses modular redundancy and a voting system
to provide fault tolerance. TMR relies on the voting system
being fault free. Although there is redundancy in the number
of transistors used in this work, it is not a fixed factor like
in TMR, and being a reconfigurable architecture rather than
application specific, the transistors aren’t always redundant.
Currently however, our experimental system does rely on a
separate, working system to recognise faults and evolve a
working function again.

C. Evolved Fault Tolerance

Evolutionary techniques have previously been used for fault
tolerance [7][8][9][10]. Canham used an FPGA as a substrate
to evolve simple oscillator circuits in two environments - one
which was fault free and one with injected faults. It was found
that the circuits evolved in the environment with injected faults
showed a 12.5 times increase in fault tolerance to the circuits
evolved in the environment without faults.

D. Optimisation for Variability

Hilder [11][12] found that certain combinations of widths
lead to an increase in tolerance to transistor variability related
issues. The method used in Hilder’s work involved the use
of evolutionary algorithms to find these combinations in a

2013 IEEE Congress on Evolutionary Computation
 June 20-23, Cancún, México

978-1-4799-0454-9/13/$31.00 ©2013 IEEE 613

TABLE I
THE 16 CONFIGURABLE FUNCTIONS OF THE PANDA CCAB.

Function Function
Configuration (Standard Output) (Inverted Output)

0 Inverter Buffer
1 NAND-2 AND-2
2 NOR-2 OR-2
3 NAND-3 AND-3
4 NOR-3 OR-3
5 AND-OR-INV-21 AND-OR-21
6 OR-AND-INV-21 OR-AND-21
7 PROG-AND-OR-INV-2 PROG-AND-OR-2

similar way, although one difference in this work is that we are
changing the effective widths of our Configurable Transistors
(CTs) instead of actually changing transistor widths. These
experiments are more limited due to the fact that there is a
finite set of widths which can be selected in a CT, whereas
Hilder’s work did not have this constraint.

III. PANDA ARCHITECTURE

PAnDA is an architecture that is reconfigurable on mul-
tiple levels [13]. At the highest level of PAnDA-EINS2 are
Configurable Logic Blocks (CLBs), which are comparable to
FPGA blocks in that they can be configured to implement
different combinatorial or sequential logic functions, and two
8-bit inputs. CLBs consist of eight Configurable Analogue
Blocks (CABs), four each of two types: Combinatorial CABs
(CCABs) and Sequential CABs (SCABs), which can both be
configured to perform one of eight gate level functions, with
the inverted output giving a total of sixteen (See Table I for
the functions of a CCAB). Each CAB consists of fourteen
CTs, which behave as single NMOS or PMOS transistors that
can have their properties configured via the changing of their
effective widths.

A. Configurable Transistors

The characteristics of an ideal CMOS transistor are defined,
in part, by its physical width. In general, wider transistors tend
to perform faster, but consume more power, and vice-versa.
The trade-off that a particular circuit will require depends
on the application. Transistor variability introduces additional
levels of complexity as “fault” modes, although study of this
will be left for future work. PAnDA CTs have a configurable
width (120nm to 1140nm), post-fabrication, and so can be
generalised as being single transistors that can be resized.

As in regular CMOS transistors, CTs have three main nodes:
gate, source and drain. Inside a CT (see Fig. 1), there are seven
CMOS transistors connected in parallel, with the sources and
drains all connected together and the gates connected together
through configurable switches. These switches have the effect
of varying the effective width of the CT by either enabling or
disabling transistors.

2The first version of the PAnDA architecture.

Vdd
Vdd Clamp

Vdd
Vdd Clamp

Vdd
Vdd Clamp

Vdd

Gnd

PMOS CT

Gate

Drain

Source

Vdd/Gnd Clamp

Fig. 1. The structure of a PMOS flavour CT showing three of the seven
transistors. The “Vdd/Gnd” clamp controls whether the whole CT is enabled,
insulating or conducting, and the “Vdd” clamps control the effective width.

TABLE II
CT CONFIGURATIONS

Enable Clamp Configuration PMOS CT State NMOS CT State

0 0 Insulating Conducting
0 1 Conducting Insulating
1 0 Enabled Enabled
1 1 Enabled Enabled

Enabling a CT refers to the gate node being attached to a
functional input (A, B or C) of the respective CAB it is part
of. Disabling a transistor refers to connecting the transistor’s
gate to either Vdd (1V in this case) or Ground (0V), which
makes the transistor unconditionally either insulate or conduct.
Therefore, each transistor can be in one of three states:
enabled, conducting or insulating. Configurations are shown
in Table II.

For the experiments shown, our CTs are configured by nine
bits. There are two to configure the clamps as in Table II and
seven more to configure the width of the CT. When configuring
the width, transistors are disabled by making them insulate.
This means that a CT can also be put into an insulating state
by setting its width to zero.

B. PAnDA-ZWEI CCAB

The PAnDA-ZWEI3 CCAB (see Fig. 2) architecture allows
functions to be configured on it by enabling and disabling
specific combinations of the CTs. In PAnDA-EINS, a decoder
and routing block use three configuration bits to configure one
of eight predefined functions. This work is a study of whether
removing the routing block and decoder used in PAnDA-
EINS and adding in configurable clamps to CTs benefits fault
tolerance.

C. PAnDA Fault Tolerance

The structural elements on the PAnDA fabric make it a
suitable substrate for evolvable hardware, such as the inclusion
of Configurable Transistors (CTs) and configurable clamps.
The Combinatorial Configurable Analogue Block (CCAB) –

3The second version of the PAnDA architecture.

614

N5

C

A

B

B

A

C

A

A

A

A

B

C

C

B

P1

P2 P4 P7

P3 P5 P6 P8

N3 N6 N8

N7N4N2

N1

PMOS CT

NMOS CT

Fig. 2. The structure of the PAnDA-ZWEI CCAB showing the layout of the
PMOS and NMOS transistors. The letters A, B and C indicate which of the
three CCAB inputs goes to the gate of each transistor. Note that the rightmost
PMOS and NMOS transistors form an inverter to generate the complementary
output.

which is the fundamental combinatorial building block in
PAnDA– is made up of CTs and configurable clamps and has
a high level of flexibility, since the functional structure can be
completely changed by loading new configurations onto the
clamps.

There are multiple ways of implementing some functions
on a CCAB, giving room for faulty transistors to be worked
around. Below that, because of the nature of the CTs, faulty
transistors within them can be disabled in some circumstances,
giving redundancy at the lowest level.

Using the CT and CCAB structures from our PAnDA-EINS
chip, experiments were carried out to see whether, should a
transistor develop a fault in a working circuit, evolution could
find a way to recover functionality. As an example, in the
CCAB structure, there are tens of ways of building an inverter
(using different pairs of PMOS and NMOS CTs), so given a
fault in one of the transistors used in an inverter’s functionality,
the CCAB could just be reconfigured to use a different one.

IV. SOLUTION

Given the significant configurability available within the
PAnDA architecture, the authors decided to explore the ap-
proach that, should a fault be detected in a circuit, an
evolutionary algorithm is used to try to find a new circuit
configuration that works on the faulty substrate.

The presumption is that if the faulty structure is now treated
as the environment, the evolutionary algorithm may be able to
find a different way of configuring the same function in this
new environment. The architecture of the PAnDA-EINS fabric
may introduce some new possibilities within the realm of fault

tolerance due to its great flexibility in terms of how individual
logic functions can be implemented, on different levels.

V. EXPERIMENT

The solution proposed by the authors combines the PAnDA
architecture with an evolutionary algorithm in order to over-
come faults. A logic function is extrinsically evolved on a
CCAB and then broken by introducing a “stuck at” fault in
one of the transistors. The evolutionary algorithm is then used
to again try to evolve the same function on the now faulty
CCAB. This work is limited to investigation of single-faults,
although investigating the resilience of the proposed solution
to multiple faults is something to be looked into at a later
stage.

A Multi-Objective (MO) GA (NSGA-II [14]) was used to
evolve circuits on the substrate with a given functionality. This
allowed the GA to optimize a number of different objectives
at the same time without over-fitting on just one of them.

A SPICE [15] netlist was constructed for a CCAB, replacing
the configuration inputs with voltage sources controlled by
binary GA genes. There are 144 bits (32 for CT enabling
and clamp configuration, 112 for width configurations) used
to configure one CCAB. This size of the search space and the
non-concavity of the function mean that the problem is not
suitable for exhaustive search or a hill-climbing algorithm.

A. Tools

As mentioned previously, the NSGA-II algorithm was used
to evolve circuit netlists from a netlist template. The configura-
tion inputs of the reconfigurable structure, normally controlled
by SRAM, were attached to simple voltage sources, which in
turn had their voltages set by binary genes, essentially allowing
the GA to make configuration bits either high (1V) or low
(0V).

Ngspice [16] was used for simulating and measuring the
circuits once they had been produced from the template.
The transistor models used for this were the 25nm uniform
transistor models from GSS [17].

B. Fitness Function

The fitness function designed for the experiment comprised
several objectives, hence the choice of an MO algorithm [12]
such as NSGA-II. Initial experiments used the number of
correct truth-table outputs as the sole objective in order to try
to evolve some basic functions and to see what configurations
the evolutionary approach could find. Each truth table input
combination would be applied to the circuit at least once, and
the output measured. This method had a couple of serious
drawbacks when it came to evolving logic functions, however:
trying to evolve a 3-input NAND gate often resulted in a circuit
that output a constant ’1’, which would score very high in
the evaluation step and were difficult to move away from. In
some cases, circuits would be evolved that contained a floating
output during some input combinations. The floating output
state would maintain whatever value the previous state had as
the voltage would only drop slightly due to leakage current,

615

not enough to drain the charge within one input cycle, and
so these circuits would often still score high. These issues
were solved by both changing the input pattern so that the
desired output pattern would change on every new state. A
new objective was also added which used the RMS error
measurement between what was desired at the output and what
was seen. Since this objective also rewards circuits that have a
low RMS error during the transitions, it is also related to the
circuit’s speed. Adding to the standalone propagation delay
minimisation, this would reduce the power related objective’s
impact on the overall fitness, and therefore transitions were not
analysed when calculating the RMS error, and this is addressed
further in this section.

1) Truth Table: A voltage measurement was taken from the
output at each stable state and then normalised to either 0V
or 1V if it was below 0.05V or above 0.95V respectively. If
it was measured to be in between these values, it was left
as it was. The 1s and 0s were compared with a target truth
table and the number of correct outputs were summed. The
objective for the GA was then to maximise this number.

2) RMS Error: The Root Mean Squared (RMS) error
objective compares the transient output of the circuit with the
desired waveform. Any differences are squared (to bring them
into the positive domain) and then averaged and square-rooted,
to give the mean value. The RMS error objective was modified
to analyze only the stable states, disregarding the transitions.
This is because RMS error during transitions is related to speed
and in order for us to control the evolutionary run, speed (or
propagation delay) needed to be a separate objective. RMS
error has the advantage over our Truth Table objective in that
it is a continuous measurement rather than a discrete one,
which gives a smoother fitness gradient that is useful for the
evolutionary process.

3) Propagation Delay: The propagation delay of each tran-
sition of the output was found and then all of these added up
and averaged. By minimising the average propagation delay,
the algorithm would attempt to increase the speed of the
circuit. The difficulty with this objective was how to manage
transitions that didn’t happen, for instance when the desired
function wasn’t being performed.

4) Dynamic Power: Power usage was measured as the dy-
namic power used over the course of the run. Power is mainly
dissipated during transitions when the transistors switch states.
By trying to minimise this, evolution is prevented from just
maximising the widths of all the transistors, giving it a very
fast transition time (low delay) but using a lot of power.

When evolving the initial function, which would then be
broken, an objective was added to attempt to minimise the
number of CTs enabled. This was to try to tidy up the circuits
produced, getting rid of any non-functional CTs. When trying
to fix a broken function, however, this objective was removed
as it was found too restrictive.

The initial configuration for both experiments was to have
all the CTs in the enabled state, with all the main functional
PMOS CTs set to a width of 540nm and the NMOSs to
380nm. The CTs of the inverter that generates the inverted

output of the circuit were fixed at 380nm for the PMOS and
240nm for the NMOS.

C. The NAND3 Benchmark

In the NAND3 experiment an optimised, 3-input NAND
gate was evolved on the CCAB structure. It was then “broken”
by fault injection, which took the form of forcing one of the
functional transistors to always conduct. From this broken
state, evolution was again used to try to evolve a working
gate on the broken substrate.

1) Evolving from the Fault-Free Substrate: The first ex-
periment consisted of evolving a 3-input NAND gate on a
fault-free substrate. The initial conditions were set so that all
of the 14 transistors in the CAB were enabled.

2) Evolving from the Broken Substrate: After having
evolved an optimised 3-input NAND gate another experiment
was carried out. One transistor, previously chosen by evolution
to be enabled, was set to conduct constantly, affecting the
behaviour of the evolved gate and crippling its functionality.
Evolution was used once again to restore functionality to the
design and to optimise it for power and propagation delay
simultaneously.

D. The AOI21 Benchmark

In order to confirm that the same method can be applied
to other gates that can be realised by a single CAB, a 3-input
AND-OR-Invert function was evolved on a fault-free substrate,
from the same initial conditions as the ones set for the NAND
experiment. Similarly, an enabled transistor from the evolved
design was set to insulate constantly, and evolution was used
to restore functionality and also optimise it for power and
propagation delay at the same time.

VI. RESULTS

A. 3-input NAND Gate

Having set all of the transistors in a CCAB to be enabled,
this gate was evolved. In the testbench, the input signals were
used to perform a sweep of all the logic zeros and ones of
a function: all input combinations that should yield a logic
zero at the output were put between input combinations that
should yield logic ones at the output, so that every transistion
could be verified. With this setup, the output signal should
then consist of a sequence of alternating logic zeros and ones,
and any consecutive logic ones or zeros would represent a
non-functional circuit/design.

The waveforms of the result of the evolutionary run can be
seen on Fig. 3(a), and a complete schematic of the evolved
configuration for a 3-input NAND can be viewed in Fig. 4,
which represents the evolved circuit with the best performance
in speed, chosen as the benchmark circuit. The NSGA-II
algorithm was run for 100 generations of a population of 60
individuals, and the mutation rate set to 2%.

The next step was to simulate a fault in one of the tran-
sistors of the evolved design, and this was done as Fig. 5
demonstrates. Evolution was again used to create a new design
in the presence of the faulty transistor, this time increasing

616

1e 9

0.0
0.5
1.0v(inputa)(V)

1e 9

0.0
0.5
1.0v(inputb)(V)

1e 9

0.0
0.5
1.0v(inputc)(V)

1e 9

0.0
0.5
1.0v(output)(V)

1e 9

0.0
0.5
1.0v(targetout)(V)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time 1e 9

-0.4
0.2
0.9outputCurrent (mA)

(a)

1e 9

0.0
0.5
1.0v(output)(V)

1e 9

0.0
0.5
1.0v(targetout)(V)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time 1e 9

-0.3
0.3
0.9outputCurrent (mA)

(b)

1e 9

0.0
0.5
1.0v(output)(V)

1e 9

0.0
0.5
1.0v(targetout)(V)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time 1e 9

-0.3
0.1
0.6outputCurrent (mA)

(c)

Fig. 3. A simulation of (a) the evolved 3-input NAND gate on the CCAB with the waveforms of the 3 input signals – A, B and C –, (b) the faulty 3-input
NAND gate, and (c) the recovered 3-input NAND gate, showing the actual and target outputs and output current.

the NSGA-II population size to 1164 and running it for 50
generations, with the same mutation rate as before.

Functionality was lost and power consumption increased
dramatically, since the fault induced caused the output of the
CCAB to be permanently connected to the power rail (Vdd).
This can be verified by looking at the waveforms generated by
this faulty circuit, and the rise in power consumption becomes
evident with the generated current waveform, depicted in Fig.
3(b).

Fig. 3(c) shows the waveforms resulting from the simulation
of the design evolved in the presence of the faulty transistor,
which is shown in Fig. 6.

Table III shows the results obtained for the evolved gate,
one evolved in the presence of the fault and also the recovered
gates, individually optimised for speed and for power.

From this table it is possible to see that, as expected, the
design that is optimised for speed implements larger sized
transistors, whereas the one optimised for power uses smaller,
and thus slower transistors. The average delay measured on the
initially evolved NAND gate is higher than the one optimised
on the faulty fabric perhaps because it wasn’t evolved for a
sufficient number of generations. It does, however, sit between
the two evolved gates in terms of performance measurements.

4This number is derived from the number of cores on the cluster where the
experiments were carried out

Fig. 4. The evolved design of a 3-input NAND gate, with a simplification
of the effective circuit on the top right corner.

The average delay in the case of the faulty circuit is not shown
since it is not relevant for our testbench, as it is an average
measurement for a fully functional circuit. Nevertheless, the
power measurement is illustrated so that the serious effects of

617

Fig. 5. The fault was induced in a previously enabled transistor on the
evolved NAND3 design, making it conduct all the time and disabling the
gate’s functionality. A simplification of the effective circuit can be seen on
the top right corner.

Fig. 6. The 3-input NAND evolved on the faulty fabric, with a representation
of the effective circuit generated on the top right corner.

the induced fault can be observed.
The table proves that it is possible to restore both func-

tionality and performance in power consumption and speed
to a gate that experiences an extreme fault such as the one
implemented in this experiment.

B. 3-input AOI21

To establish a performance benchmark, such as in the case
of the NAND gate, a 3-input AOI21 (AND-OR-Invert) func-
tion was evolved on a fault-free fabric. An evolutionary run
took place, with the same initial conditions as set for evolving

TABLE III
THIS TABLE SHOWS THE WIDTHS OF ALL THE TRANSISTORS OF THE

INITIALLY EVOLVED 3-INPUT NAND GATE, THE FAULTY CIRCUIT, THE
ONE BEST OPTIMISED FOR SPEED, AND THE ONE BEST OPTIMISED FOR

POWER. THE LAST TWO ROWS DESCRIBE THEIR PERFORMANCE IN POWER
CONSUMPTION AND PROPAGATION DELAY (AVERAGE, PER TRANSISTION).
TRANSISTOR NUMBERS RELATE TO THE CCAB SCHEMATIC FROM FIG. 2

AND ENABLED TRANSISTORS HAVE THEIR WIDTHS WRITTEN IN BOLD.

Transistor Evolved Induced Evolved Evolved
ID NAND3 Fault for speed for power

P1 1020 1020 1140 1020
P2 1020 1020 1140 1020
P3 1020 1020 720 300
P4 1140 1140 1140 1140
P5 620 620 840 380
P6 1140 1140 880 340
P7 1000 1000 1000 1020

N1 1140 1140 1140 860
N2 1140 1140 980 400
N3 1020 1020 840 320
N4 340 340 660 0
N5 520 520 460 160
N6 280 280 520 480
N7 800 800 600 400

Power(µW) 32.395 338.797 33.127 30.279
Avg Delay (ps) 50.764 N/A 45.451 61.780
Enabled Transistors 7 6 6 6

Fig. 8. The evolved design of a 3-input AOI21 gate, with a simplification
of the effective circuit on the top right corner.

the NAND gate, and the NSGA-II algorithm was allowed to
evolve circuits for 100 generations of 60 individuals, with a
mutation rate set to 2%.

The circuit with the best performance in speed was chosen
as the benchmark, and it is represented in Fig. 8. The wave-
forms generated by this circuit can be see in Fig. 7(a).

A similar fault to the one introduced in the case of the
NAND was injected into one of the enabled transistors on
the evolved design, in this case one of the enabled NMOS
transistors, as shown in Fig. 9.

Again, the gate’s functionality was lost, and evolution was

618

1e 9

0.0
0.5
1.0v(inputa)(V)

1e 9

0.0
0.5
1.0v(inputb)(V)

1e 9

0.0
0.5
1.0v(inputc)(V)

1e 9

0.0
0.5
1.0v(output)(V)

1e 9

0.0
0.5
1.0v(targetout)(V)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time 1e 9

-0.5
0.5
1.6outputCurrent (mA)

(a)

1e 9

0.0
0.5
1.0v(output)(V)

1e 9

0.0
0.5
1.0v(targetout)(V)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time 1e 9

-0.4
0.1
0.6outputCurrent (mA)

(b)

1e 9

0.0
0.5
1.0v(output)(V)

1e 9

0.0
0.5
1.0v(targetout)(V)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time 1e 9

-0.5
0.3
1.1outputCurrent (mA)

(c)

Fig. 7. A simulation of (a) the evolved 3-input AOI21 gate on the CCAB with the waveforms of the 3 input signals – A, B and C –, (b) the faulty 3-input
AOI21 gate, and (c) the recovered 3-input AOI21 gate, showing the actual and target outputs and output current.

Fig. 9. The fault was induced in a previously enabled transistor on the
evolved AOI21 design, making it insulate all the time and disabling the gate’s
functionality. A simplification of the effective circuit can be seen on the top
right corner.

once again run for 50 generations of 116 individuals to try
and restore both functionality and performance values to the
gate. The evolved circuit with the best performance in speed

Fig. 10. The 3-input AOI21 evolved on the faulty fabric, with a representation
of the effective circuit generated on the top right corner.

is shown in Fig. 10.
A plot of the fault-induced and the repaired circuit’s wave-

forms can be viewed in Figs. 7(b) and 7(c), respectively.
Having had functionality restored to the gate, a comparison

of power consumption and speed is presented in Table IV.

619

TABLE IV
THIS TABLE SHOWS THE WIDTHS OF ALL THE TRANSISTORS OF THE

INITIALLY EVOLVED 3-INPUT AOI21 GATE, THE FAULTY CIRCUIT, THE
ONE BEST OPTIMISED FOR SPEED, AND THE ONE BEST OPTIMISED FOR

POWER. THE LAST TWO ROWS DESCRIBE THEIR PERFORMANCE IN POWER
CONSUMPTION AND PROPAGATION DELAY (AVERAGE, PER TRANSISTION).
TRANSISTOR NUMBERS RELATE TO THE CCAB SCHEMATIC FROM FIG. 2

AND ENABLED TRANSISTORS HAVE THEIR WIDTHS WRITTEN IN BOLD.

Transistor Evolved Induced Evolved Evolved
ID AOI21 Fault for speed for power

P1 880 880 980 340
P2 740 740 800 660
P3 660 660 660 640
P4 1140 1140 1140 580
P5 700 700 880 0
P6 1020 1020 880 600
P7 1140 1140 840 680

N1 1140 1140 860 520
N2 1140 1140 920 260
N3 1020 1020 1000 200
N4 1140 1140 0 0
N5 0 0 460 380
N6 880 880 880 880
N7 1000 1000 1000 540

Power(µW) 38.934 56.446 43.655 36.792
Avg Delay (ps) 41.812 N/A 50.369 76.058
Enabled Transistors 9 8 8 6

Once again, both functionality and performance in speed
and power consumption are restored to values that are very
close to those prior to the fault occurence.

In the case of the design optimised for speed, represented
in Fig. 10, one can state that the top left PMOS branch is a
repetition of the top right branch, and therefore redundant. If
evolution was allow to run for further generations, perhaps this
redundancy could be removed and both power consumption
and speed would be improved.

In any case, the circuit evolved for power on the faulty
fabric actually identifies this branch as redundant and removes
it from its design.

VII. CONCLUSION

From the results obtained with these experiments, where
both functionality and performance values were restored to
faulty circuits, it appears that the PAnDA fabric can be tolerant
to faults that involve the enabling and disabling of its internal
transistors, whether it be the transistors inside a CT or the
entire CT itself. The latter is considered to be the worst-case
scenario, and it was the one addressed in this paper.

The advantage of replacing the routing block and function
decoder by configurable clamps connected to CTs is evident
from the results. Without the configurable clamps, PAnDA-
EINS CCABs only allow for a single configuration for each
function, and so cannot be changed to tackle faults that occur
in the fabric. PAnDA-ZWEI proves to be a flexible substrate
that has the ability to restore a faulty design back to its fault-
free working parameters.

The results presented in this paper contribute to confirm
PAnDA-ZWEI as a flexible, potentially fault-tolerant and

reconfigurable platform, suitable for the implementation of
evolvable designs.

Intrinsic variability in circuit design is also an effect to
be considered in further experiments. Some of its effects
have already been modelled in this paper – such as the
complete malfunction of a single CT – but other less obvious
effects can occur, such as changes in the threshold voltage of
transistors, potentially causing reductions in speed and power
consumption performance. The solution proposed in this paper
has the potential to overcome some of these effects in real-time
on the chip, and it also has the potential to evolve designs that
are tolerant to variability in the sense that they are resilient to
changes in transistor properties within a certain range.

REFERENCES

[1] A. Asenov, “Random dopant induced threshold voltage lowering and
fluctuations in sub 50 nm MOSFETs: a statistical 3D ‘atomistic’
simulation study,” Nanotechnology, vol. 10, no. 2, pp. 153–158, Jun.
1999.

[2] M. A. Trefzer, J. A. Walker, and A. M. Tyrrell, “A Programmable Ana-
logue and Digital Array for Bio-inspired Electronic Design Optimization
at Nano-scale Silicon Technology Nodes,” in 45th Asilomar Conference
on Signals, Systems and Computers (ASILOMAR), 2011, pp. 1537–1541.

[3] J. Langeheine, S. Fölling, K. Meier, and J. Schemmel, “Towards a silicon
primordial soup: A fast approach to hardware evolution with a VLSI
transistor array,” in Proc. 3rd Int. Conf. on Evolvable Systems From
Biology to Hardware (ICES2000), J. Miller, A. Thompson, P. Thomson,
and T. C. Fogarty, Eds. Edinburgh, Scotland, UK: Springer Verlag,
Apr. 2001, pp. 123–132.

[4] A. Stoica, D. Keymeulen, R. S. Zebulum, A. Thakoor, T. Daud,
G. Klimeck, Y. Jin, R. Tawel, and V. Duong, “Evolution of Analog
Circuits on Field Programmable Transistor Arrays,” in Proc. of the
Second NASA/DOD Workshop on Evolvable Hardware. Palo Alto, CA,
USA: IEEE Computer Society Press, Jul. 2000, pp. 99–108.

[5] J. Langeheine, “Intrinsic Hardware Evolution on the Transistor Level,”
Ph.D. dissertation, 2005.

[6] M. A. Trefzer, “Evolution of Transistor Circuits,” Ph.D. dissertation,
2006.

[7] M. Garvie, “Reliable electronics through artificial evolution,” Ph.D.
dissertation, University of Sussex, Brighton, 2005.

[8] G. W. Greenwood, D. Hunter, and E. Ramsden, “Fault Recovery in
Linear Systems via Intrinsic Evolution,” in Proc. of the 2004 NASA/DoD
Conference on Evolvable Hardware. Seattle, WA, USA: IEEE Press,
Jun. 2004, pp. 115–122.

[9] R. O. Canham and A. M. Tyrrell, “Evolved Fault Tolerance in Evolvable
Hardware .” in Evolutionary Computation, 2002. CEC ’02. Proceedings
of the 2002 Congress on, vol. 2, 2002, pp. 1267 –1271.

[10] D. Keymeulen, R. Zebulum, Y. Jin, and A. Stoica, “Fault-tolerant
evolvable hardware using field-programmable transistor arrays,” IEEE
Transactions on Reliability, vol. 49, no. 3, pp. 305–316, 2000.

[11] J. a. Hilder, J. A. Walker, and A. M. Tyrrell, “Designing variability
tolerant logic using evolutionary algorithms,” Ph. D. Research in Mi-
croelectronics and Electronics, pp. 184–187, Jul. 2009.

[12] J. A. Walker, J. A. Hilder, D. Reid, A. Asenov, S. Roy, C. Millar,
and A. M. Tyrrell, “The evolution of standard cell libraries for future
technology nodes,” Genetic Programming and Evolvable Machines,
vol. 12, no. 3, pp. 235–256, Apr. 2011.

[13] J. A. Walker, M. A. Trefzer, and A. M. Tyrrell, “A Reconfigurable
Architecture for Current and Future Challenges in Electronic Design
and Technology,” in VAMM, 2012.

[14] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Transactions on
Evolutionary Computation, vol. 6, no. 2, pp. 182–197, Apr. 2002.

[15] P. Nenzi and H. Vogt, “Ngspice users manual,” September 2010.
[16] “Ngspice circuit simulator.” [Online]. Available: http://ngspice.

sourceforge.net/
[17] “Gold Standard Simulations Ltd. :: Home.” [Online]. Available:

http://www.goldstandardsimulations.com/

620

