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Abstract

We present a new method for symmetry-factored statis-
tical modelling of 3D shape. Our method comprises three
novel components. First, a means to symmetrise a 3D mesh,
regularised using the Laplace-Beltrami operator. Second, a
symmetry-aware variant of Generalized Procrustes Analy-
sis (GPA). Third, a means to compute a linear statistical
shape model in which symmetry and asymmetric shape vari-
ation are modelled separately. We focus on human head
data and build the first 3D morphable model of craniofa-
cial asymmetry. The qualitative and quantitative evaluation
demonstrates that the proposed model outperforms a linear
model that does not decompose symmetric and asymmetric
variation. It also validates that symmetry-aware GPA can
improve the data generalisation and reconstruction ability
of the standard PCA model. We will make our model and
the implementation of our method publicly available1.

1. Introduction

Most biological objects, including human heads and

bodies, posses approximate symmetries. Often this is prin-

cipally extrinsic, bilateral symmetry (i.e. reflective symme-

try about a vertical plane bisecting the object). Deviations

from exact symmetry are an interesting and potentially im-

portant geometric property in terms of modelling and under-

standing 3D shape variation. The degree of asymmetry may

convey information about an object. For example, there is

evidence that facial asymmetry is used by humans to mea-

sure genetic health [14] and asymmetry in man-made ob-

jects may indicate imperfections in the manufacturing pro-

cess. For this reason, we suggest that statistical shape mod-

els should separate symmetric from asymmetric shape vari-

ability in order to reveal interesting and potentially subtle

aspects of shape variation over population datasets.

The asymmetric variation in human head shape is much

smaller than symmetric variation. Hence, classical mod-

els obtained by applying Principal Component Analysis

1https://www-users.cs.york.ac.uk/˜nep/research/LYHM/

(PCA) directly to head shapes pools asymmetric variation

with the much larger symmetrical variation. In this paper,

we consider how to build a symmetry-factored statistical

shape model in a principled way. Once built, the symmetry-

factored statistical modelling of craniofacial shape opens up

new opportunities not afforded by existing 3D morphable

models (3DMMs). Firstly, it provides a different way to re-

construct a full head model from a profile scan beyond just

using the reflection of the profile. Secondly, we can analyze

the asymmetry of multiple craniofacial regions. Thirdly,

we can investigate the different importance of symmetry-

factored information in different applications, e.g. face

recognition or ergonomics.

Recently we developed a fully automatic pipeline for

building 3DMMs [9]. We did not exploit symmetry and

asymmetry constraint, which is the primary concern of this

paper. Here, our main contribution is to show how to build

a statistical model with separate parameters for symmet-

ric and asymmetric variations. The resulting model is still

linear and so can be used in place of any existing 3DMM

but with the additional ability to separate symmetric from

asymmetric variation. Secondary contributions include a

method for symmetrisation regularised by the Laplace-

Beltrami operator, symmetry-aware Generalized Procrustes

Analysis (GPA) and the symmetry-factored statistical mod-

elling method. Tertiary contributions include making avail-

able, for the first time, a morphable model of craniofacial

asymmetry. Comprehensive evaluation shows that the pro-

posed model has significantly better performance than the

linear models.

2. Related work
There is a large body of work on detecting symmetries

in images [28], 2D shapes, 3D meshes and point clouds.

These symmetries could be exact or approximate [22], ex-

trinsic [30] or intrinsic [25], partial [28, 34], hierarchical or

full [25]. Once detected, this enables symmetry-aware mesh

processing [12] to take place in which symmetries help reg-

ularise and de-noise a range of processing tasks.

We are not the first to consider symmetry in the context

of statistical shape modelling. The geometric morphomet-
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rics community [20, 15, 16, 17] have built models of devi-

ations from symmetry, though this has largely been in 2D.

Savriama et al. [33] present a decomposition of asymmet-

ric shape into a symmetric shape and asymmetry variation.

There are many works on how to measure facial asymmetry

variation. There is much literature from both the Computer

Vision perspective [19, 5, 21, 37] and the Biology perspec-

tive [6, 13, 16]. Symmetrisation is crucial to the acquisition

of asymmetry variation [23]. The literature closest to our

work is that of Liao et al. [18]. However, this work has three

limitations: i) the authors applied a linear average of the

left and right sides of the face, which is the basic version of

symmetrisation, to force the shape to be symmetric; ii) their

symmetrisation relies on facial landmarks, which limits the

usage of the method. iii) there was no statistical modelling

to study variation in facial symmetry and asymmetry. In

this paper, we pose symmetrisation as finding the symmet-

ric mesh that minimises distortion relative to a given mesh,

where distortion is measured via the Laplace-Beltrami op-

erator. Moreover, our method does not require landmarks.

Finally, we build a symmetry-factored statistical model to

analyze both symmetrical and asymmetrical variation.

Blanz and Vetter built a 3D morphable model (3DMM)

from 3D face scans [2] and employed it in a 2D face recog-

nition application [3]. Two hundred scans (100 males and

100 females) were used to build the model. Dense corre-

spondences were computed using optical flow with an en-

ergy that depended on both shape and texture. Currently,

the Basel Face Model (BFM) is the most well-known and

widely used 3D face model and was developed by Paysan

et al. [29]. Again 200 scans were used, but the method of

determining corresponding points was improved. Instead of

optical flow, a set of hand-labelled feature points is marked

on each of the 200 training scans. The corresponding points

on a template mesh are known, which is then morphed

onto the training scan using under-constrained per-vertex

affine transformations, which are constrained by regularisa-

tion across neighbouring points. The technique is known as

optimal-step Non-Rigid Iterative Closest Points (NICP) [1].

Booth et al. [4] built a Large Scale Facial Model (LSFM),

using the same NICP template morphing approach, fol-

lowed by GPA for alignment, and PCA for the model con-

struction. Recently Hang et al. [9] used a self-adapting

dense correspondence establishing system combining a hi-

erarchical parts-based template morphing framework in the

shape channel and a refining optical flow in the texture

channel to build the first 3DMM of the full human head

including the cranium. These 3DMMs are either standard

PCA linear models or multi-linear models, but there are no

3DMMs of craniofacial asymmetry.

The previous 3DMMs employ deformable template

methods [29, 10, 4, 32, 31] or optical flow [2, 8] to estab-

lish dense correspondence. When applied to 3D caniofacial

data, these methods have either over-fitting or under-fitting

problem, which makes it unfeasible to find the correct sym-

metric partner. This is validated in [9] and we apply the

same template morphing method as that paper. This hierar-

chical parts-based template morphing framework is able to

avoid both over-fitting and under-fitting and we exploit this

in the pipeline proposed here.

Many works [36, 7, 26, 27, 24] addressed the problem

of finding the facial symmetry plane or contour. But the

symmetry plane or contour problem is not the focus of this

paper. We apply a standard method to extract the symmetry

plane from 3D scans.

3. Symmetry-factored modelling
In symmetry-aware geometry processing, the task of

symmetry detection is usually decoupled from that of

symmetry-aware processing. In our proposed symmetry-

factored statistical modelling pipeline, we follow this idea

with a further decomposition into five processes that we

treat independently:

(i) Symmetry detection and symmetric remeshing:

Given an arbitrary mesh, for every vertex attempt to

find a corresponding symmetric partner vertex or point

on the surface. Then remesh the surface with sym-

metric topology so that every vertex has a symmetric

partner or is self-symmetric.

(ii) Symmetry plane alignment: Given a mesh with sym-

metric topology, estimate a plane which maximises

the symmetry about the plane.

(iii) Symmetrisation: Given a mesh with symmetric

topology, find the “closest” shape with exact geomet-

ric symmetry.

(iv) Symmetry-aware GPA: Given a collection of meshes

with symmetric topology with symmetry planes

aligned, solve for the remaining degrees of freedom

to best align the collection.

(v) Symmetry-factored statistical modelling: Sepa-

rately model symmetric and asymmetric modes of

shape variation.

Our specific aim in this paper is to model deviations from

exact extrinsic symmetry for a set of 3D head scans with

neutral facial expression.

4. Preliminaries
We represent a mesh either as a matrix of vertex posi-

tions X ∈ R
N×3 or as a vector x ∈ R

3N = vec(X) =
[x1, y1, z1, . . . , zN ]T . The ith vertex in the mesh, vi ∈
R

3, i ∈ [1, N ] is given by vi = [x3i−2, x3i−1, x3i]
T . We

assume that the meshes have been symmetrically remeshed.

This means that for any vertex i, its symmetric partner is
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given by sym(i). Vertices lying on the symmetry line are

self-symmetric, i.e. i = sym(i).
Therefore, each mesh is composed of N = 2M + S

vertices, S of which are self-symmetric, leaving M =
(N−S)/2 pairs of proper symmetric vertices. Without loss

of generality, we assume that the ordering of vertices is such

that the proper-symmetric vertices on one side of the mesh

(e.g. left) come first, followed by the self-symmetric ver-

tices and finally the proper-symmetric vertices on the other

(e.g. right) side. Hence:

x =

⎡
⎣ xleft

xself

xright

⎤
⎦ ,

with

xleft = Sleftx, xself = Sselfx, xright = Srightx,

where

Sleft =
[
I3M 03M×3(M+S)

] ∈ {0, 1}3M×3N ,

Sright =
[
03M×3(M+S) I3M

] ∈ {0, 1}3M×3N ,

Sself =
[
03S×3M I3S 03S×3M

] ∈ {0, 1}3S×3N

are selection matrices that select the proper symmetric ver-

tices from the left and right halves of the mesh and the self

symmetric vertices respectively. The vectors xleft and xright

are assumed to appear in symmetry pair order and so the

symmetry operator has a very simple form:

sym(i) =

⎧⎪⎨
⎪⎩
i+M + S if 1 ≤ i ≤M

i if M + 1 ≤ i ≤M + S

i−M − S if M + S + 1 ≤ i ≤ N

A symmetrised mesh is one with exact extrinsic symmetry.

For clarity, when we refer to a mesh that has been sym-

metrised, we use a tilde, x̃. We assume (without loss of

generality) that such symmetrised meshes have their sym-

metry planes aligned with the x = 0 plane. A single vertex

is reflected about the x = 0 plane by premultiplying with

the reflection matrix:

F =

⎡
⎣−1 0 0

0 1 0
0 0 1

⎤
⎦ .

so that Fv is the reflection of v. This can be extended to

the whole template by

G(N) = IN ⊗ F

so that G(N)x is the reflection of x (we use ⊗ to denote

the Kronecker product).

To avoid redundancy in symmetrised meshes, we store

only the vertices on one side of the mesh since those on

the other can be reconstructed by reflection. Moreover,

we need only store the y and z coordinates for the self-

symmetric vertices since, by definition, their x coordinate

is zero. Hence, if x̃ is a symmetrised mesh, we select the

non-redundant entries by:

xsym =

[
Sleft

Sself,yz

]
x̃ ∈ R

3M+2S

where

Sself,yz =

[
02S×3M IS ⊗

[
0 1 0
0 0 1

]
02S×3M

]

is a selection matrix that selects only the y and z compo-

nents of the self-symmetric vertices.

We can reconstruct a complete mesh from its reduced

representation xsym using:

x̃ = Txsym (1)

where

T =

[
I3M+3S

G(M)S−self

]
⎡
⎢⎢⎣

I3M 03M×2S

03S×3M IS ⊗
⎡
⎣0 0
1 0
0 1

⎤
⎦

⎤
⎥⎥⎦

and

S−self =
[
I3M 03M×3S

] ∈ {0, 1}3M×3(M+S)

is a selection matrix that removes the self-symmetric ver-

tices.

5. Proposed pipeline
The following five subsections describe our pipeline in

each of the five stages outlined in Sec. 3.

5.1. Symmetry detection and remeshing

The symmetry detection and remeshing can be done si-

multaneously using template morphing methods. The tem-

plate we use consists of three parts: left head, symmetry

contour and right head. We apply the template morphing

method in Hang et al. [9] . This hierarchical parts-based

template morphing framework is able to avoid over-fitting

and under-fitting and these two properties ensure that the

symmetry detection and remeshing is reliable.

5.2. Symmetry plane alignment

For a given mesh, we wish to find a best fit symmetry

plane that maximises bilateral extrinsic symmetry. Denote

a plane with equation:

ax+ by + cz = d (2)
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by p = [a, b, c, d]. We denote by Refp : R
3 �→ R

3 the

reflection of a point about the plane given by p. We seek the

plane which satisfies the following optimisation problem:

argmin
p

∑
i

‖Refp(vi)− vsym(i)‖2. (3)

This problem can be solved in closed form in a straightfor-

ward manner. First we compute a modified point cloud in

which we take the average of each vertex and its symmetric

partner. This gives an almost planar point cloud (it would

be exactly planar for a mesh with exact extrinsic symme-

try). Second, we apply PCA to this modified point cloud

and select the eigenvector with the smallest eigenvalue to

give the plane normal. The centre of mass gives a point

on the plane. Finally, having found the symmetry plane p,

compute a rigid transformation [R, t] such that the symme-

try plane coincides with the x = 0 plane.

5.3. Symmetrisation

We pose symmetrisation as finding the symmetric mesh

that minimises distortion relative to a given mesh, x, where

distortion is measured via linear operators Ma,Mb ∈
R

3N×3N . We write this as a linear least squares optimi-

sation problem:

argmin
xsym∈R3M+2S

∥∥∥∥∥∥Qxsym −
⎡
⎣Mbx

0
0

⎤
⎦
∥∥∥∥∥∥
2

, (4)

where

Q =

⎡
⎣ MaT

11×M ⊗
[
0 1 0
0 0 1

]
11×S ⊗

[
1 0
0 1

]
⎤
⎦ . (5)

The bottom two rows of Q resolve translational ambiguities

by setting the zeroeth moment to zero.

This provides quite a general formulation of the sym-

metrisation problem. If Ma = Mb = I3N then the

above simply performs linear averaging of the left and right

halves of the mesh, i.e. it minimises Euclidean distance

between the symmetric and original mesh. If instead we

construct Ma and Mb from the cotangent Laplacian matrix

L ∈ R
N×N as

Mi,j = L�i/3�,(j−1 mod N)+1

such that vec(LX) = M · vec(X), then it minimises local

bending distortion relative to the original mesh.

5.4. Symmetry-aware GPA

In Sec. 5.2, we computed a best fit symmetry plane for

all meshes. This determines three dimensions of the six de-

grees of freedom needed to align the meshes to a common

mean (three out of seven if we also allow scaling). Suppos-

ing that all faces have been aligned such that their symmetry

plane is equal to the x = 0 plane then the remaining degrees

of freedom are: scaling, rotation about the x axis and trans-

lation in y and z.

Denote by X ∈ R
3×N a training mesh aligned to the

x = 0 plane and by X̄ ∈ R
3×N the current estimate of the

mean (initialised using one of the samples). The Procrustes

alignment of a sample to the mean is given by a translation

[0, ty, tz], a rotation:

Rx(θ) =

⎡
⎣1 0 0
0 cos θ − sin θ
0 sin θ cos θ

⎤
⎦ , (6)

and an optional scale s. To factor out translation, all sam-

ples (and the mean) have their y, z centre of mass sub-

tracted:

ty = − 1

N

N∑
i=1

X2,i, (7)

tz = − 1

N

N∑
i=1

X3,i, (8)

Ignoring scale for now and assuming that X and X̄ have had

their y, z centre of mass subtracted, we solve the following

optimisation problem in terms of the angle of rotation:

argmin
θ

∥∥Rx(θ)X− X̄
∥∥2

Fro

= argmin
θ

N∑
i=1

(cos θX2,i − sin θX3,i − X̄2,i)
2

+ (sin θX2,i + cos θX3,i − X̄3,i)
2

Differentiating with respect to θ, setting to zero and solving

for θ yields:

F1 =

N∑
i=1

(X2,iX̄3,i −X3,iX̄2,i),

F2 =

N∑
i=1

(X2,iX̄2,i +X3,iX̄3,i),

θ = atan2 (F1,F2) .

Having aligned all of the meshes to the mean using the

above steps, we compute a new mean and iterate. We re-

fer to this process as Symmetry-aware GPA (SGPA).

5.5. Building a symmetry-factored model

We now build a statistical model composed of two parts:

a symmetric part (which only need model points on one side

of the symmetry plane and the self-symmetric points on the
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Figure 1. Visualisation of 5 principal components (mean ±5 SDs): Left box - Symmetry variation ; Right box - Asymmetry variation

symmetry plane, since the other half is by definition given

by a reflection), and an asymmetric part (modelled as dis-

placements to the output of the symmetric model).

We now construct a symmetric data matrix Dsym ∈
R

(3M+2S)×K from the K symmetrised and SGPA-aligned

training meshes. We apply PCA to find eigenvec-

tors/eigenvalues of the symmetrised meshes. The symmet-

ric statistical model is given by:

xsym = x̄sym +Psymbsym, (9)

where Psym ∈ R
(3M+2S)×K , x̄sym ∈ R

3M+2S . A complete

symmetric mesh can be built from xsym using (1).

The data matrix for the asymmetric model, Dasym ∈
R

3N×K , is constructed by subtracting the symmetrised

meshes from the original meshes, such that the ith column

is given by:

Dasym,i = xi −TDsym,i. (10)

We again apply PCA to this matrix but without computing

and subtracting a mean since the data matrix directly dse-

cribes displacements. The final combined model is hence

given by:

x = T(x̄sym +Psymbsym) +Pasymbasym (11)

Note that this could be rewritten in the form:

x = x̄+P

[
bsym

basym

]
(12)

where

x̄ = Tx̄sym (13)

P =

[
Psym

G(M)S−selfPsym
Pasym

]
. (14)

Hence, it is still just a standard linear model but for which

the parameters can be partitioned into those that only vary

the shape symmetrically and those that vary it asymmetri-

cally.

6. Experiments

We use 1212 individuals (606 males and 606 females)

[9, 11] to derive our symmetry-factored 3D craniofacial

model, by applying the proposed construction pipeline. We

compare the proposed model with linear PCA models which

are symmetry-aware GPA + PCA and standard GPA + PCA.

6.1. 3D morphable model of asymmetry

As can be seen from Fig.1, the left box shows the mor-

phable model of symmetry variation: mean ±5 standard

deviations of symmetry variation; the right box shows the

morphable model of asymmetry variation. In order to ob-

serve pure asymmetry variation, we use mean of symmetry

model ±5 standard deviations of asymmetry variation. Red

points are the symmetry contour. Note that the major mode

of asymmetry is the angle between head and neck.

6.2. Model fitting

Fig.2 illustrates the end results of symmetry plane align-

ment, symmetrisation and model fitting. After symmetri-

sation, the distance error color map becomes symmetrical,

see Fig.2 (2). The symmetry plane of Fig.2 (2) is the x = 0
plane. The aim of model fitting is to find the parameters P in

Eqn.12 and validate the effectiveness of morphable models.

Figure 3 shows the cumulative error distributions of the per-

vertex fitting error. For very small fitting errors (less than

0.487 mm), the standard PCA model is better than the pro-

posed model; but for larger fitting errors, which is 91.3% of

the dataset, the proposed model is better than the linear PCA

models. The proposed symmetry-aware GPA improves the

performance of the standard PCA model.

6.3. Model evaluation

We compute model compactness and generalisation error

in order to evaluate the proposed model quantitatively. To

ensure a fair comparison, when we compute these two cri-

teria, the number of principal components (PCs) from the
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Figure 2. (1) Symmetry plane alignment, red line shows deformed

symmetry contour from initial template morphing (2) symmetri-

sation, note the straightened symmetry contour (3) model fitting;

Average distance error (ADE, mm) against the shape sample (1).

Figure 3. Cumulative error distributions of the per-vertex fitting

error (mm): proposed V.S. standard PCA model (higher is better)

standard PCA model is the sum of PCs from symmetry-

factored model, i.e. if we use Npc PCs from the standard

PCA model, the number of PCs from the symmetry model

is
Npc

2 and also
Npc

2 from the asymmetry model. As can be

seen from Fig.4, the asymmetry model requires fewer com-

ponents to express its variation than the symmetry model,

which in turn requires fewer components than the PCA

model. When we combine
Npc

2 symmetry and
Npc

2 asym-

metry components with Npc PCA components in the com-

pactness plot in Fig. 5, we find that the proposed model is

slightly better than the standard PCA model and more com-

pact than the symmetry-aware GPA + PCA model.

Figure 4. Plot of eigenvalues. Fewer PCs describe more variation

Figure 5. Compactness, higher is better

The generalization ability of a model measures its capa-

bility to represent unseen instances of the object class [35].

The generalization ability of each model is measured us-

ing leave-one-out reconstruction. A model is built using

all but one member of the training set and then fitted to

the excluded example. The generalisation error shown in

Fig.6 implies that the proposed model has significantly bet-

ter generalisation ability than the linear PCA models. The

symmetry-aware GPA + PCA model has slightly lower re-

construction error than the standard PCA model, which im-

plies that the proposed symmetry-aware GPA can improve

model generalization ability.

6.4. Half head completion

When shade-from-shading is applied to a 2D profile im-

age, the standard way to make the depth information com-

plete is to calculate the reflection of the half head. There is

no asymmetry variation in this completion. A PCA model

can retain asymmetry variation in completion, but it tends
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Figure 6. Generalisation error of the proposed model and PCA

model with the number of principal components retained (lower

is better).

Figure 7. Simulation of half head completion from profile image.

to lose more symmetry information. The proposed model is

able to overcome the loss of both symmetry and asymme-

try information. From Eqn.12, the reconstruction from the

proposed model can be decomposed into two steps:

(i) Find the closest symmetry head, computing the sym-

metry parameters Psym by least squares;

(ii) Use Psym to find the closest asymmetry variation,

computing the asymmetry parameters Pasym by least

squares.

Step (i) retains symmetry information and step (ii) retains

asymmetry information. This can be validated by the results

in Fig.7 and Fig.8 in half-head completion experiments. We

use 606 training samples to build the 3DMMs of craniofa-

cial asymmetry and use the rest of dataset (606 subjects) for

the half-head completion task. 200 PCs from PCA model

are used to do the half head completion. For a fair com-

parison, 100 PCs from symmetry model and 100 PCs from

asymmetry model are used. As shown in Fig.8, the pro-

Figure 8. Cumulative error distributions of the per-vertex fitting

error (mm) from half head: proposed model V.S. standard PCA

model (higher is better)

Table 1. Age classification results

Precision Recall F-score

PCA 0.733 0.735 0.731

Sym 0.737 0.741 0.736

Asym 0.709 0.712 0.710

Sym+Asym 0.739 0.741 0.741

posed model has much greater proportion of subjects with

lower reconstruction error from half head.

6.5. Age classification: asymmetry V.S. symmetry

We divide the dataset into four age groups: age 0-11,

12-21, 22-60 and > 60. Psym and Pasym are used for the

age classification task and compared with the standard PCA

model. The comparasion uses

• the first 10 parameters from the PCA model

• the first 10 from Psym

• the first 10 from Pasym

• the first 5 from Psym and 5 from Pasym

A linear SVM is trained with 10-fold cross-validation. As

can be seen from the Table.1, symmetry parameters have

slightly better accuracy than that of PCA model, while

asymmetry parameters alone are worse in age classification

than that of PCA model. This implies that symmetry in-

formation is more discriminative in age classification than

asymmetry information. Since the asymmetry variation is

relevant to the age (faces in age group 0-11 are more sym-

metrical than that in > 60 age group), the asymmetry pa-

rameters are still valid in age classification. The combina-

tion of 5 Psym and 5 Pasym are better in age classification

than PCA model and Psym alone, which implies that the
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asymmetry information can improve the performance in age

classification when combined with symmetry parameters.

7. Conclusion

We presented a craniofacial symmetry-factored statis-

tical modelling pipeline and applied it to a craniofa-

cial dataset of 1212 subjects. Contributions included

Laplace-Beltrami regularized symmetrisation, symmetry-

aware GPA and symmetry-factored statistical modelling

method. We used it to build the first morphable model

that makes craniofacial asymmetry explicit. A comprehen-

sive evaluation shows that the proposed model has signifi-

cantly better performance than the linear PCA models, es-

pecially in terms of generalisation error and in the com-

pletion of head data. Symmetry-aware GPA can improve

the performance of the standard PCA model. Additionally,

we found that symmetry information is more discriminative

than asymmetry information in age classification. Future

work will focus on region-based asymmetry modelling and

give a comprehensive study of facial symmetry/asymmetry

in 3D face recognition.
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