
Recorded Lecture Errata: �Introduction to Programming�, ELE00029C

Prepared on 9th March 2023. Edited by Oliver Dixon <od641@york.ac.uk>.

Editor's Notes. These notes were collated for the purposes of identifying serious errors and rec-
ommendations of poor practice in the ELE00029C �Introduction to Programming� lecture series.
The Editor hereby places the entire errata in the Public Domain; readers with an appropriate aca-
demic interest are encouraged to improve and disseminate this document through relevant channels.
This PDF is available on-line at https://www-users.york.ac.uk/~od641/29c/export.pdf. The
LATEX source archive is available under errata-source.tar.gz, in the same HTTP web directory.
The Editor strongly encourages all comments regarding this document to be directed, in plain text,
to the e-mail address displayed above. General remarks concerning the ELE00029C module are also
warmly welcomed; such enquiries may also be sent to the �rst-year Electronic Engineering course rep-
resentatives: Thomas Mason <tm1451@york.ac.uk> and Adam Gottesmann <ag1676@york.ac.uk>.

General Notes. In both cases, the relevant videos were uploaded in the �rst quarter of 2021, and
reuploaded in the �rst quarter of 2022. Although the video �les are not byte-equivalent, the content
is essentially identical, with minor sections of audio being silenced, largely excluding points at which
the Lecturer mentioned any year-dependent information such as introductory speeches and details of
submission due-dates. It is also noted that these forty-minute videos are the only recorded lectures
visible to students, from a course supposedly lasting nine weeks. The given timestamps correspond
to the reuploaded videos.

Lecture V: �Introduction to C�

https://www.youtube.com/watch?v=vNcKEJjf6B8 (Published 17th January 2021)
https://www.youtube.com/watch?v=xQC6CjDfxoQ (Reuploaded 27th January 2022)

1. {4:41} C is a general-purpose language designed for processors, not �eld-programmable gate
arrays. Although C-to-FPGA compilers do exist, demonstrating the dominance of C with the
example of an FPGA is nothing short of ridiculous. These compilers often create discrete and
crude state machines, rendering C as a very ine�cient development tool for such applications.
Verilog and VHDL are used to describe logic circuits; C is used to describe programs for
execution on traditional microprocessors.

2. {4:43} It is explicitly claimed that C is �fast�, but no comparison or reference point is pro-
vided. A poor programmer or compiler may render C to be signi�cantly slower than similar
compiled counterparts, such as Go or Rust. At this point, the Lecturer should have stated
the performance bene�t of C, on average, in relation to other well-de�ned benchmarks, as was
done on the �fth page of the �rst ShockSoc Programming Support Session laboratory script.

3. {5:47} It is correctly stated that C [binaries] have a �relatively small runtime image�, however
this terminology is not explained, and will be completely alien to the majority of the cohort.

4. {6:31} C is not a low-level language, as is suggested by the Lecturer. By the industry-
standard categorisation of programming languages, it is a third-generation language, in the
same category of abstraction as Python or Java. It is also not possible to �get as close to the
machine as you want�. By their very nature, portable languages are generally incapable of
explicitly exploiting many processor-speci�c features and addresses, since such access would
imply processor-dependency. E�ciently mapping high-level C constructs to native instructions
is the primary purpose of any compiler.

Page 1

mailto:od641@york.ac.uk
https://www-users.york.ac.uk/~od641/29c/export.pdf
https://www-users.york.ac.uk/~od641/29c/errata-source.tar.gz
mailto:tm1451@york.ac.uk
mailto:ag1676@york.ac.uk
https://www.youtube.com/watch?v=vNcKEJjf6B8
https://www.youtube.com/watch?v=xQC6CjDfxoQ
https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=281
https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=283
https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=347
https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=391

Recorded Lecture Errata: �Introduction to Programming�, ELE00029C

5. {9:26} The concept of a C �data structures� is not well-de�ned. Whilst C primitive types
tend to be statically allocated within thread data and stack frames, it is incorrect to imply
that C is incapable of dynamically allocated data, just as it is incorrect to claim that Python
is incapable of storing statically allocated data. The term �less e�cient� is used throughout,
but this is similarly poorly de�ned. Less time-e�cient? Storage-e�cient?

6. {10:26} It is incorrect to claim that a language is bound to a development environment. At
this point, the Lecturer implies that the Code::Blocks IDE is standard for C development,
whilst the IDLE suite is standard for Python development. This is wholly untrue, and these
aforementioned environments are never used in industry. No mention of an abstracted build
chain is mentioned, as seen in the ShockSoc Programming Support Session lab scripts, and
there is a strong resultant implication of coupling between the programming languages and
IDEs. This has confused some students in the cohort, many of whom seemed surprised to
witness code being written in plain text editors with detached compiler, linker, and debugger
arrangements.

7. {11:06} The statement examples are unhelpful. The �gure (an uncaptioned pixillated raster)
suggests that a conditional expression is part of a �statement�, since the if keyword is shown
on the same line as the y = 3; assignment operation. Furthermore, the example of i = i +

1; contradicts the third bullet point, supposedly providing a de�nition for �statement�, as a
smaller expression can be derived that is semantically equivalent: i++;.

8. {12:06} The Lecturer's remarks concerning variable addresses are confusing, as they seem
to be haphazardly interchanged with the de�nition of a pointer, the concept of which will
not be introduced for many weeks. This slide also contains a very poor-quality image rep-
resenting a partial source code listing, again lacking a caption. At this stage, symbols and
symbolic referencing should be introduced in an abstract sense, to obviate confusion between
the interrelated notions of run-time symbol addresses, compile-time symbol addresses, symbol
debugging names, and the real symbol values.

9. {12:45} The term �pre-de�ned words� is used on the slides and during the delivery, as op-
posed to the standard �keywords� term. Stating that a symbol name has been pre-de�ned is
equivocal, as it does not specify the stage at which the reference was established. In particu-
lar, the wording of �pre-de�ned� could refer to keywords, compiler extensions, or compile-time
constants, amongst (many) others.

10. {14:35} The example comment is poorly aligned and of dreadful image quality. The single-
line comment, in which a comment begins with a double-oblique, is not mentioned. Nor is
it mentioned that the exemplar syntax may be used to create a comment spanning multiple
lines, and may not be nested.

11. {14:53} The code example makes the common mistake of including the void keyword within
the parentheses of a function implementation, for a function taking no arguments. Whilst
valid for function signatures, this should be generally omitted in modern code. The Lecturer
continues to claim that �C programs must have a main function�, which is untrue. Only stan-
dalone executable binaries (as opposed to shared object binaries intended to be dynamically
linked) must have an entry point, but this does not have to be identi�ed as main. This may
be of an arbitrary name, set accordingly with linker options.

12. {15:29} For some unknown reason, all example variable declarations are of the same int

type, and none are initialised. Other types are mentioned in the main body of the slideshow,
typeset in a variable-width font, but none of these are demonstrated in the example code. The
Lecturer also asserts that �C does not allow you to [port over one type to another]�, but given
the existence and ubiquity of typecasting, this is another inaccurate statement. The concepts
around explicit typecasting are not raised at any point during examined presentations.

Oliver Dixon (Ed.) 9th March 2023 Page 2

https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=566
https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=626
https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=666
https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=726
https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=765
https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=875
https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=893
https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=929

Recorded Lecture Errata: �Introduction to Programming�, ELE00029C

13. {16:01} This entire slide appears to have been designed without the aid of a monitor, or
keyboard, or mouse. Unhelpful and confusing parallels to Python continue to be drawn, as
opposed to simply stating that �C follows standard arithmetic precedence�. The caveats and
nuances around integer and �oating point division are completely skipped.

14. {18:36} The Lecturer begins discussing conditionals, despite having not completed describ-
ing all classes of operators. Bitwise operators (conjunction, disjunction, exclusive disjunction,
inversion, and shifting) are not mentioned at any point. The modulus operator is also ignored.
This slide continues to inexhaustively list various conditional statements, bypassing the condi-
tional ternary operator and its various uses in variable assignment and instantiation. Pointless
analogues to Python syntax continue to be made.

15. {19:36} The conditional nesting example consists of poor structure, and many compilers will
issue warnings due to the potential ambiguity induced from nesting else statements without
explicit braces to unequivocally de�ne the scope of each execution block. Additionally, the
�ow of execution does not make any sense. The �rst nested conditional could be intuitively
achieved with the logical conjunction operator introduced a few minutes prior, thus rendering
this a very poor example of wise and minimal nesting. Also, the reasoning supporting the area
of a circle becoming A = r2 as opposed to A = πr2, when 5 < r ≤ 10, remains unexplained.

16. {20:28} Despite claiming otherwise, the Lecturer does not provide an example of conditionals
explicitly using braces until the next slide. The optional rationale for omitting braces in cases
of single-statement execution blocks is not explained at all.

17. {21:06} The explanation of the switch-case construct is incomplete. The Lecturer does not
explicitly state the restriction of switch conditionals to integer-like types, nor does he explain
the run-time di�erences to nested if-else chains. In a live lecture, when a student asked
whether there was such a di�erence, the Lecturer claimed there was none, while reiterating
the incorrect assertion that switch statements act purely as syntactical sugar.

18. {21:28} The Lecturer states that �each case [label] will contain a break command�. This
is not true, and many classical programming constructs, such as Du�'s Device, are built on
the possibility of fall-through case statements. Furthermore, the provided example is poor, as
it does not exemplify a real application of a switch. The following listing demonstrates the
manner in which a sensible programmer would implement the same algorithm.

1 const char * const n_strs [] = { "one", "two", "three",

2 "four", "five", "six", "seven", "eight", "nine" };

3

4 /* Assuming `number_entered ' is a previously defined integer ... */

5 puts ((number_entered > 0 && number_entered < 10)

6 ? n_strs [number_entered]

7 : "Number is not between one and nine.");

The Lecturer's example also omits a �nal newline character in the �nal printf function call.
Unless stdout is explicitly �ushed, the text contained within the default block may not be
displayed at all. (The puts function used in the listing above automatically appends a newline
to the given constant string.)

19. {23:38} Again, the presented example is unhelpful and incomplete. Despite mentioning global
declarations and �user-de�ned� functions (in which main is not included, for unknown reasons),
these are not shown in the example. Only a single preprocessor statement and entry point is
presented, and the content of main is unintuitive and syntactically super�uous.

20. {28:36} The Lecturer continually seems to confuse Twitter terms with standard English,
repeatedly referring to the pound sign (#) as a �hash-tag�. The presentation slide also purports
that C has many �in-built� functions, when in reality, the language itself has none, aside from
a few notable pseudo-functions such as sizeof and GNU's introspective typeof. He does not
mention the notion of the standard library, nor the process through which implementations

Oliver Dixon (Ed.) 9th March 2023 Page 3

https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=961
https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=1116
https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=1176
https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=1228
https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=1266
https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=1288
https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=1418
https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=1716

Recorded Lecture Errata: �Introduction to Programming�, ELE00029C

thereof are linked with client programs. The role of header �les, proving function and data
signatures as opposed to executable code, is also left untouched.

21. {29:20} The `\n' character is an ANSI escape sequence for the ASCII line feed (LF, #10)
character, and is not a printf-speci�c placeholder, as is suggested. The list of format speci�ers
is also incomplete, neglecting formatters for displaying unsigned types and padding speci�ers.

22. {32:35} The example code contains a serious bug: the while statement is terminated with
a semicolon, and the following braces create an arbitrary scope unrelated to the loop. As
the �number >= 10� will always evaluate true, this program will cause an in�nite loop. The
indentation is also misaligned.

23. {33:22} The claims that �an ampersand is speci�c to scanf� and �scanf likes to read into
addresses� is confusing and unnecessary. Instead of describing the basic concepts of pointers
and addressing, the Lecturer omits any level of detail and begins to describe the return

statement without providing any description of why a function may need to return a value. In
the particular case of the main entry point function, the Lecturer asserts that the return value
is a �con�rmatory code�, �but in this case does not really give us much�. This is nonsensical;
program return status codes are an integral part of operating system scheduler structure and
should not be dismissed in such a casual manner.

24. {34:54} At this point, the Lecturer presents a slide describing ANSI escape sequences and
pointers, despite having (poorly) introduced them many minutes prior. Although the presented
information is largely correct, it does not make pedagogical sense to supply such knowledge
multiple slides after an incomplete and misleading introduction. ASCII/Unicode tables, to
describe the notion of all characters existing as integer bytes, are not discussed.

25. {36:11} The do-while example is contains substandard formatting, with incorrect brace in-
dentation and an incomplete syntax description for the condition; conditions should be sur-
rounded in parentheses and terminated with a semicolon. A similar error was made some
slides prior, in which the Lecturer purported the syntax of a standard while loop to be �while
condition do {...}�, which is incorrect.

26. {37:57} Although the Lecturer correctly mentions the optional nature of the initialisation and
conditional statements in the for loop syntax, he suggests that in�nite loops cannot occur with
for loops (�executes a block of statements a �xed number of times�), which is clearly incorrect.
Although both of the examples are �nite, the general description is partially �awed.

Lecture VI: �Functions, Arrays & Pointers in C�

https://www.youtube.com/watch?v=E4saN7DWw4o (Published 2nd February 2021)
https://www.youtube.com/watch?v=QkzHohvY5Oo (Reuploaded 31st January 2022)

1. {2:20} The provided raster �gure is of atrocious quality and does not contribute in any form
to the content of the slide. Again, code is set in a variable-width typeface, and the concept of
relating Python functions to C functions has confused a large section of the cohort.

2. {3:09} The indentation of the sample code is inconsistent; some sections use double-space
indentation, and others use quad-space. Further, the accompanying diagram doesn't make
sense, and it bears no resemblance to the sampled code being displayed. The stdio.h header
�le is included for some unknown reason, despite the sample having multiple basic C syntax
violations.

3. {4:40} No attempt is made to explain the call stack, or stack frames, or thread data. The �gure
is of exceptionally low quality and does not correctly depict hierarchical modularisation; for a
superior description and set of descriptive vector images, confer with the third Programming
Support Session lab script, in which these concepts are correctly described in detail.

Oliver Dixon (Ed.) 9th March 2023 Page 4

https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=1760
https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=1955
https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=2002
https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=2094
https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=2171
https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=2277
https://www.youtube.com/watch?v=E4saN7DWw4o
https://www.youtube.com/watch?v=QkzHohvY5Oo
https://www.youtube.com/watch?v=QkzHohvY5Oo&t=140
https://www.youtube.com/watch?v=QkzHohvY5Oo&t=189
https://www.youtube.com/watch?v=QkzHohvY5Oo&t=280

Recorded Lecture Errata: �Introduction to Programming�, ELE00029C

4. {8:23} The function de�nition is incomplete; no remarks concerning function quali�ers (such
as static or inline) are made, and it is not clear that the various arguments can be of
di�erent types, as the placeholder is uniformly named type. The parentheses surrounding the
return value are super�uous, aside from in the case of a void function, in which case the entire
return; statement is unneeded.

5. {9:00} In a list of example C data-types, void is included. void is a keyword, and not a data-
type. A void pointer (void *) may be valid, but this is not made clear during the presentation.

6. {9:34} The function prototype syntax is not correct; the terminating semicolon is omitted.
The Lecturer does not explain that in prototypes, argument names are not necessary; members
of the cohort seem consistently confused between function prototypes and implementations,
and they do not understand that certain symbol names may be skipped in some cases.

7. {10:05} The image presents an inaccurate schema of a standard C program. To be consis-
tent with previously described skeletons, �header �les� should be generalised to �preprocessor
statements�. This diagram also implies that non-main function implementations cannot appear
before the entry point, which is not true; pre-implementation prototypes are optional, and are
only required in cases where the function is being called prior to its initial de�nition.

8. {12:19} The printf call should be followed with an explicit fflush(stdout) call, since
there is no terminating new-line character to implicitly �ush the text to standard output. In
rare cases, dictated by a race condition, the prompt text will not be visible before the scanf

function begins to block the main thread. The example also does not follow the form described
elsewhere, in the same slide; void is a not a type, and thus does not have an associated local
symbol name. It is very atypical to encapsulate a simple expression, consisting of a single
variable, within parentheses for the operand of a return statement.

9. {13:50} The Lecturer correctly states that the exemplar library functions are not formally
�built-in�, however this contradicts the earlier (incorrect) assertation that C has �many built-in
functions�. (This was originally stated at {28:36} during Lecture V.)

10. {14:27} It is incorrect to claim that POSIX stdio.h library functions are �often treated as
standard by most programmers�. printf, and scanf even more so, are very rarely used in
production code for large projects. The majority of students in this cohort will be developing
programs for microcontrollers and other embedded systems, as electronic engineers tend to do,
in which cases these functions are never available.

11. {15:55} This list is very strange; it is implied that functions can only take a maximum of two
arguments, which is obviously untrue: �. . . functions with both arguments. . . �.

12. {16:26} The code listing has a very large and distracting attribution notice, within which the
Lecturer deemed it appropriate to include a full version history of a seven-line function. The
printf calls are not properly terminated with a new-line character or fflush(stdout) call,
there is a distinct lack of error-checking, and the indentation is nonsensical. Scope is explained
poorly over a single line, and the hierarchical nature of scoping is not mentioned. For the
function prototype of checkEven, but not the implementation, the parentheses should contain
the void keyword.

13. {19:25} The Lecturer claims that true and false values are represented with one and zero
respectively; this is not correct. True values are represented as non-zero, and false values are
represented as zero. The examples in this slide are unreasonably complex compared to the
immediately previous listings, and the Lecturer does not explain the concept of any expression
involving a boolean relational operator being reduced to zero or non-zero at runtime.

14. {20:09} The second example purports to show a �random box� being drawn to the screen,
but no random number-generation nor drawing/blitting code is listed. The example function,
projectile_collides_with_box, would more accurately be described as implementing some
collision-detection logic.

Oliver Dixon (Ed.) 9th March 2023 Page 5

https://www.youtube.com/watch?v=QkzHohvY5Oo&t=503
https://www.youtube.com/watch?v=QkzHohvY5Oo&t=540
https://www.youtube.com/watch?v=QkzHohvY5Oo&t=574
https://www.youtube.com/watch?v=QkzHohvY5Oo&t=605
https://www.youtube.com/watch?v=QkzHohvY5Oo&t=739
https://www.youtube.com/watch?v=QkzHohvY5Oo&t=830
https://www.youtube.com/watch?v=xQC6CjDfxoQ&t=1716
https://www.youtube.com/watch?v=QkzHohvY5Oo&t=867
https://www.youtube.com/watch?v=QkzHohvY5Oo&t=955
https://www.youtube.com/watch?v=QkzHohvY5Oo&t=986
https://www.youtube.com/watch?v=QkzHohvY5Oo&t=1165
https://www.youtube.com/watch?v=QkzHohvY5Oo&t=1209

Recorded Lecture Errata: �Introduction to Programming�, ELE00029C

15. {21:59} The �ling cabinet cartoon coupled with poor indentation and unclear colouring makes
this slide exceptionally di�cult to read. The �nal example is incorrect, in which the Lecturer
attempts to compare the output of an array index in C and Python. The Python equivalent to
the C printf function is print; the implicit printing is only performed by some IDLE-based
debuggers, and certainly does not write anything to stdout. A sensible parallel to Python's
implicit printing is a C debugger's inspection facility, such as the GDB print command, but
this is obviously not mentioned.

16. {24:08} The data_table array initialisation line is terminated with a colon, as opposed to a
semicolon. This is a syntax error, and would not compile. The amateurish term of �squiggly
brackets� is repeatedly used, instead of the standard �braces�.

17. {34:12} In some (many) cases, an implicit cast will be made by the compiler between similar
types for pointers. In this example, it would be generally acceptable to assign a character
address to an integer pointer, as any subsequent dereferencing will be una�ected by the type
width promotion. Although, the Lecturer is correct that �willy-nilly� typing is a generally poor
idea.

18. {35:39} The example listing contains no indentation or formatting white-space. The memory
addresses are printed in decimal, using the printf `%d' speci�er, as opposed to the correct
`%p'. The latter formatting indicator pre�xes values with `0x' and prints subsequent values in
hexadecimal, as is standard for address formatting. During a live Zoom lecture, the Lecturer
reiterated that memory addresses should be printed with `%d' or `%u' speci�ers, and seemed
shocked and mildly confrontational when a viewer raised the existence of the suitable `%p'.

19. {43:15} The spacing throughout the example listing seems random and overly dense, making
the entire slide di�cult to read. The declaration and initialisation of the temp variable in the
swap function is super�uously split across three lines, and there are two printf functions that
will always create identical output.

. . .

This �nal point concludes the current errata, as of 9th March 2023. If more lectures are uploaded
to YouTube in a similar fashion, this errata will be updated within a reasonable time frame. Please
e-mail Oliver Dixon <od641@york.ac.uk> in the event of any questions or queries regarding this
document or module.

Programming Support Sessions
Wednesdays, 2pm: P/T/401.
"The Instant Cure-All for ELE00029C!"

Oliver Dixon (Ed.) 9th March 2023 Page 6

https://www.youtube.com/watch?v=QkzHohvY5Oo&t=1319
https://www.youtube.com/watch?v=QkzHohvY5Oo&t=1448
https://www.youtube.com/watch?v=QkzHohvY5Oo&t=2052
https://www.youtube.com/watch?v=QkzHohvY5Oo&t=2139
https://www.youtube.com/watch?v=QkzHohvY5Oo&t=2595
mailto:od641@york.ac.uk

	Preliminary Notes
	Lecture V: "Introduction to C"
	Lecture VI: "Functions, Arrays & Pointers in C"

