
York Graphics Reference Manual Oliver Dixon March 7, 2022

WARNING: do not use this library. It is poorly implemented, contains severe bugs, does
not perform comprehensive error-checking, and interfaces terribly with any client programs.
Use Allegro instead; complete manuals, documentation, and examples can be found within
the Allegro 5 GitHub repository: https://github.com/liballeg/allegro5. ShockSoc are
offering support sessions for Allegro at 2pm on Wednesdays in P/T/401; we are not able to
help with York Graphics.

The in-house York Graphics library purports to reduce the burden on Allegro programmers
by maintaining an internal set of global variables pertaining to the current instance of Allegro
and its various displays. When a “GFX *” function is invoked, those global state variables are
automatically passed through to an Allegro “al *” function. Notwithstanding the few spared key-
presses, York Graphics suffers from many issues, to the point of becoming a greater hindrance than
help. However, for students adamant to continue using its interface, this document attempts to
remedy the lack of quality documentation associated with its implementation. For each function
defined in graphics lib.h, there corresponding function signature and short description. This is a
reference document, and has been written to be easily searchable by humans.

— GFX InitWindow
void GFX InitWindow (int x, int y);

Initialise a window with dimensions (x, y). The initial pen colour is set to white, and the
background colour is set to black. This function is a wrapper for al create display, but
also implicitly initialises Allegro and various add-ons with the al init and al init {image,
primitives} addon functions. If any of these constructors fail, an error message is printed to
stdout and the program is killed with a nonzero status code.

— GFX CloseWindow
void GFX CloseWindow (void);

Deinitialise the window and Allegro instance created by GFX InitWindow. This function is a
wrapper for al destroy display.

— GFX InitFont
void GFX InitFont (void);

Initialises a fixed Allegro font from ./data/fixed font.tga, which may or may not be in-
cluded with your York Graphics distribution. This function is a wrapper for the Allegro
al init font addon and al load font. If the latter function fails, or the aforementioned
TGA font file does not exist, multiple error lines to stdout will be printed, and the process
will be killed with a zero (success) status code. There is no corresponding destructor routine
for this function; it will always cause a memory leak.

— GFX PauseFor
void GFX PauseFor (int time in milliseconds);

This function is a one-to-one wrapper for the Allegro al rest routine. Passing a negative
number will likely cause undefined behaviour, henceforth denoted by “UB”.

Draft Copy Page 1

https://github.com/liballeg/allegro5

York Graphics Reference Manual Warning: do not use this library.

— GFX RandNumber
int GFX RandNumber (int lower range, int upper range);

This function supposedly uses the standard rand(3) function to generate a random number
within the range [lower range, upper range]. However, it does not seed the random number
generator, so it must be patched in order to work correctly:

1. Append “#include <time.h>” to the list of preprocessor directives in graphics lib.c.

2. Add “srand (time (NULL));” to the beginning of GFX RandNumber.

Once this is completed, the function should return a random number within the desired range.
This is not cryptographically secure.

— GFX MakeRGB
COLOUR GFX MakeRGB (unsigned colour);

Pack a value from the colour enumerable—implemented as a list of #define statements—into
a COLOUR structure. See below for a comprehensive list of available colours:

BLACK RED DARKGRAY LIGHTRED
BLUE MAGENTA LIGHTBLUE LIGHTMAGENTA
GREEN BROWN LIGHTGREEN YELLOW
CYAN LIGHTGRAY LIGHTCYAN WHITE

The return value is a packed COLOUR struct, consisting of red, green, and blue values. If a
colour not within the recognised list is passed, the content of the return value is undefined.
Attempting to use the RGB fields thereof will always invoke UB. Similar colour-mapping
behaviour can be achieved through the al map rgba function, which also provides an optional
field for setting the alpha (opacity) channel.

— GFX SetColour
void GFX SetColour (unsigned x);

Sets the global colour state variable, RGB, to a value indicated by a human-readable constant,
as above. No value is returned, but all future primitives will be drawn with the given colour.

— GFX UpdateDisplay
void GFX UpdateDisplay (void);

This function is a one-to-one wrapper to the Allegro-provided al flip display. Writing
directly to the screen hardware buffer is extremely expensive, so a buffer is maintained in
RAM and all drawing operations blit to the latter software buffer. To copy the software buffer
to the screen, this routine can be used. Due to its significant cost, invocations of this function
should be kept to an absolute minimum.

— GFX DrawFilledCircle
void GFX DrawFilledCircle (int x, int y, int radius, unsigned fillcolour);

This function draws a circle with centre (x, y) and radius “radius” to the buffer. It is filled with
the colour indicated with fillcolour. This function is a wrapper for al draw filled circle.

— GFX DrawCircle
void GFX DrawCircle (int x, int y, int radius, int thickness);

This function behaves the same as GFX DrawFilledCircle, but does not fill the circle with a
specified colour. The thickness of the border is denoted by “thickness”. This function is a
wrapper for al draw circle.

Oliver Dixon <od641@york.ac.uk> Compiled March 7, 2022. Page 2

mailto:od641@york.ac.uk

York Graphics Reference Manual Warning: do not use this library.

— GFX DrawFilledRectangle
void GFX DrawFilledRectangle (int upper left x, int upper left y,

int lower right x, int lower right y, unsigned fillcolour);

Draw a filled rectangle to the buffer with corners at the specified positions. The rectangle is
then filled with a specified colour, denoted by “fillcolour”. This function is a wrapper for
al draw filled rectangle.

— GFX DrawRectangle
void GFX DrawRectangle(int upper left x, int upper left y, int lower right x,

int lower right y, int thickness);

This function behaves the same as GFX DrawFilledRectangle, but does not fill the rectangle
with a specified colour. The thickness of the border is denoted by “thickness”. This function
is a wrapper for al draw rectangle.

— GFX DrawFilledTriangle
void GFX DrawFilledTriangle (int x1, int y1, int x2, int y2, int x3, int y3,

unsigned colour);

This function draws a triangle to the buffer with points at (x1, y1), (x2, y2), and (x3, y3). The
resultant triangle is then filled with the colour denoted by “colour”. Although this function
is a wrapper for al draw filled triangle, there is no analogue for a non-filled triangle. If
desired, the native Allegro al draw triangle can provide this functionality.

— GFX DrawFilledEllipse
void GFX DrawFilledEllipse (int centre x, int centre y, int radius x,

int radius y, unsigned fillcolour);

This function draws an ellipse to the screen, with centre (cx, cy) and radii rx and ry at the
loci. It is filled with the colour denoted by “fillcolour”. This function is a wrapper for the
Allegro al draw filled ellipse routine.

— GFX DrawEllipse
void GFX DrawEllipse (int centre x, int centre y, int radius x,

int radius y, int thickness);

This function behaves the same GFX DrawFilledEllipse, but does not fill the ellipse with a
specified colour. The thickness of the border is denoted by “thickness”. This function is a
wrapper for al draw ellipse.

— GFX DrawArc
void GFX DrawArc (int centre x, int centre y, int radius, double angle start,

double angle end, int thickness);

Draw an arc, with a border width denoted by “thickness”, about (cx, cy), with point angles
“angle start” and “angle end”. Angles are specified in radians and converted to degrees
internally. This function is a wrapper for the al draw arc Allegro function.

— GFX DrawLine
void GFX DrawLine (int xstart, int ystart, int xend, int yend,

int thickness);

This function draws a line, of width “thickness”, between the points (xstart, ystart) and
(xend, yend). This function is a wrapper for the Allegro al draw line routine.

Oliver Dixon <od641@york.ac.uk> Compiled March 7, 2022. Page 3

mailto:od641@york.ac.uk

York Graphics Reference Manual Warning: do not use this library.

— GFX DrawLineTo
void GFX DrawLineTo (int x, int y, int thickness);

This function draws a line from the current global cursor position, updated on every primitive
draw call, or GFX MoveTo, to a given point (x, y). This function is an indirect wrapper for the
al draw line routine.

— GFX SetBackgroundColour
void GFX SetBackgroundColour (unsigned colour);

This function sets the internal global background colour state with a single colour, denoted
by “colour”, that is ultimately denoted mapped to a COLOUR struct with GFX MapRGB. Future
GFX ClearWindow invocations will respect any state-changes applied through this interface.

— GFX ClearWindow
void GFX ClearWindow (void);

This function is a one-to-one wrapper for the Allegro al clear to colour function, clearing
the current global display with the colour stored in the “BACKGROUND RGB” state; this variable
can be set through an invocation of GFX SetBackgroundColour.

— GFX MoveTo
void GFX MoveTo (int x, int y);

This function alters the internal global cursor state to the given point (x, y).

— GFX CreateEventQueue
void GFX CreateEventQueue (void);

This function is a direct wrapper for the Allegro al create event queue routine, and assigns
the return value to the internal “event queue” global. This must be invoked before any

events are attempted to be captured, as only the resultant queue may be polled. As this
function does not contain any error-handling, York Graphics should be rewritten to export the
resultant queue global, thus allowing client programs to ensure its validity before attempting to
use further event-handling routines. However, since anyone using the library will be inherently
indifferent to such risks, this is not an important concern.

— GFX RegisterDisplayEvents
void GFX RegisterDisplayEvents (void);

This is a wrapper for the al register event source Allegro routine. If the wrapped function
fails, an error is written to stdout and the process is killed with a status code indicating
successful execution. On success, the event queue will become stackable with display events,
pertaining to the state of any interactions performed on the window; this function must be
successfully invoked before attempting to detect such events.

— GFX RegisterMouseEvents
void GFX RegisterMouseEvents (void);

This is a wrapper for the al register event source Allegro routine. If the wrapped function
fails, an error is written to stdout and the process is killed with a status code indicating
successful execution. On success, the event queue will become stackable with mouse events,
recording any events reported via the standard OpenGL/DirectX mouse interface; this function
must be successfully invoked before attempting to detect such events.

Oliver Dixon <od641@york.ac.uk> Compiled March 7, 2022. Page 4

mailto:od641@york.ac.uk

York Graphics Reference Manual Warning: do not use this library.

— GFX RegisterKeyboardEvents
void GFX RegisterKeyboardEvents (void);

This is a wrapper for the al register event source Allegro routine. If the wrapped function
fails, an error is written to stdout and the process is killed with a status code indicating
successful execution. On success, the event queue will become stackable with keyboard events,
recording any events reported via the standard OpenGL/DirectX keyboard interface; this
function must be successfully invoked before attempting to detect such events.

— GFX DrawText
void GFX DrawText (int x, int y, const char * text);

This function is a wrapper for the Allegro al draw text routine. The string given by “text”
is rendered to the left of the point specified by (x, y), using the font colour specified by the
GFX SetColour function.

— GFX HideCursor
void GFX HideCursor (void);

This function is a one-to-one wrapper for the al hide mouse cursor native Allegro routine.
There is no function within York Graphics to perform the opposite operation, so the native
al show mouse cursor must be called, passing the internal global variable pointing to the
active Allegro display as the only argument.

— GFX IsEventWaiting
void GFX IsEventWaiting (void);

This function enables non-blocking access to the event queue. If events are pending on the
internal queue, one is returned; otherwise zero. This is a thin wrapper for the native Allegro
al is event queue empty routine.

— GFX WaitForEvent
void GFX WaitForEvent (void);

This is the blocking variant of GFX IsEventWaiting, such that the function will hang the
calling thread until an event arrives and can be inspected. This routine is a one-to-one wrapper
on the Allegro al wait for event native function.

— GFX IsEventCloseDisplay
int GFX IsEventCloseDisplay (void);

This function checks the latest loaded event; if the display should be closed, one is returned.
Otherwise, zero is returned. (ALLEGRO EVENT DISPLAY CLOSE)

— GFX IsEventIsMouseMoved
int GFX IsEventIsMouseMoved (void);

This function checks the latest loaded event; if the mouse is reporting a new position, one is
returned. Otherwise, zero is returned. Use the GFX GetMouseCoordinates routine to retrieve
the exact axes values. (ALLEGRO EVENT MOUSE AXES)

— GFX IsEventMouseButton
int GFX IsEventMouseButton (void);

This function checks the latest loaded event; if a mouse button has been pressed, one is
returned. Otherwise, zero is returned. (ALLEGRO EVENT MOUSE BUTTON DOWN)

Oliver Dixon <od641@york.ac.uk> Compiled March 7, 2022. Page 5

mailto:od641@york.ac.uk

York Graphics Reference Manual Warning: do not use this library.

— GFX IsEventKeyDown
int GFX IsEventKeyDown (void);

This function checks the latest loaded event; if a key was pressed and not released, one is
returned. Otherwise, zero is returned. (ALLEGRO EVENT KEY DOWN)

— GFX IsEventKeyUp
int GFX IsEventKeyUp (void);

This function checks the latest loaded event; if a key was released, one is returned. Otherwise,
zero is returned. (ALLEGRO EVENT KEY UP)

— GFX GetMouseCoordinates
int GFX GetMouseCoordinates (int * x ptr, int * y ptr);

If the mouse is reporting new coordinates, this function returns one and stores the horizontal
and vertical positions in the integers referenced by “x ptr” and “y ptr” respectively. If no
new coordinates have been reported, zero is returned and the referenced values are unchanged.

— GFX GetMouseButton
int GFX GetMouseButton (int * button ptr);

If the latest event indicates a button has been pressed, this function returns one and stores
the Allegro code of the corresponding button in the value referenced by “button ptr”. If the
latest event did not indicate a button press, zero is returned.

— GFX GetKeyPress
int GFX GetKeyPress (int * keypress ptr);

If the latest event indicates a keyboard button has been pressed, and potentially released, this
function returns one and stores the corresponding Allegro keycode in the value referenced by
“keypress ptr”. If there is no appropriate event on the queue, zero is returned.

— GFX InitMouse
void GFX InitMouse (void);

This function attempts to initialise the Allegro mouse interface; this routine must be in-
voked before any mouse activity is expected. On failure, an error is printed to stdout, and
the process is killed with a status code indicating success. This function is a thin wrap-
per for the al install mouse native Allegro routine, and should always be destroyed with
GFX CloseMouse.

— GFX InitKeyboard
void GFX InitKeyboard (void);

This function attempts to initialise the Allegro keyboard interface; this routine must be invoked
before any keyboard/keycode activity is expected. On failure, an error is printed to stdout,
and the process is killed with a status code indicating success. This function is a thin wrapper
for the al install keyboard native Allegro routine, and should always be destroyed with
GFX CloseKeyboard.

— GFX CloseMouse
void GFX CloseMouse (void);

This function destructs the Allegro mouse interface; it is a one-to-one wrapper to the native
al uninstall mouse routine, and should be used to clean up GFX InitMouse invocations.

Oliver Dixon <od641@york.ac.uk> Compiled March 7, 2022. Page 6

mailto:od641@york.ac.uk

York Graphics Reference Manual Warning: do not use this library.

— GFX CloseKeyboard
void GFX CloseKeyboard (void);

This function destructs the Allegro keyboard/keycode interface; it is a one-to-one wrapper to
the native al uninstall keyboard routine, and should be used to clean up GFX InitKeyboard

invocations.

— GFX InitBitmap
BITMAP GFX InitBitmap (void);

This function initialises and returns a BITMAP type for later use, which happens to be an
inconvenient typedef from ALLEGRO BITMAP *. (The only thing worse than typedeffing is a
struct is typedeffing a pointer type to a non-pointer type!) The client programmer must
maintain the return value of this routine himself; it is not stored as an internal global.

— GFX LoadBitmap
BITMAP GFX LoadBitmap (char * name);

This function is a one-to-one wrapper to the native al load bitmap routine. A bitmap image
from the path specified by “name” is loaded into an ALLEGRO BITMAP structure, and its pointer
is returned. On failure, NULL is returned.

— GFX MakeImageBGTransparent
void GFX MakeImageBGTransparent (BITMAP image, int red, int green,

int blue);

This function is a one-to-one wrapper to the native al convert mask to alpha Allegro rou-
tine. Given an “image” and colour (r, g, b), this function replaces all matching pixels with
transparency. This can be occasionally useful for removing backgrounds at runtime, however
it is rather expensive, and in most cases could be easily obviated by linking a pre-processed
partially transparent image at compile-time. This function returns no value; any changes are
written back to “image”.

— GFX DrawBitmap
void GFX DrawBitmap (BITMAP image, int x, int y);

This routine is an indirect wrapper for the native Allegro al draw bitmap function, among
others. Given an “image” and point (x, y), this function writes the bitmap pixel data to the
display buffer, with the image centred at the given point.

— GFX FreeBitmap
void GFX FreeBitmap (BITMAP image);

This function destructs a bitmap; it is a one-to-one wrapper for the al destroy bitmap native
Allegro routine, and should be used for any instantiated BITMAP objects before the program
ends.

NEVER USE THIS LIBRARY.

Oliver Dixon <od641@york.ac.uk> Compiled March 7, 2022. Page 7

mailto:od641@york.ac.uk

