
Week 6

The first two tasks were trivial; the third and final one was much harder. We are constrained to only consider two-
dimensional input vectors with orders from zero to four; hence the polynomial basis transform of ,
parameterised by the order, is the following:

Order Expression # of Terms

1

3 (1+2)

6 (3+3)

10 (6+4)

15 (10+5)

Note that the number of terms follows the sequence of the triangular numbers (OEIS A000217). Now we can
allocate an array for the feature-transformed data:

output_feature_count = math.comb(input_feature_count + order, order)

transformed = np.empty(shape=(output_feature_count, 1))

Now we must construct the transformed array, noting that the first element is always . Let be an index set such
that where is the target order. Then, for any , the following product combinations of

 components should be added to the transformed array in the given order; notice that these are all combinations
that induce a polynomial term of order :

 (trivial)

 (trivial)

This is easy to implement:

for current_order in range(1, order + 1):

 for exp in range(current_order, -1, -1):

 transformed[transformed_idx][0] = (data[0][0] ** exp) *

=x [x ​,x ​]1 2

0 1[]

1 1,x ​,x ​[1 2]

2 … ,x ​,x ​x ​,x ​[1
2

1 2 2
2]

3 … ,x ​,x ​x ​,x ​x ​,x ​[1
3

1
2

2 1 2
2

2
3]

4 … ,x ​,x ​x ​,x ​x ​,x ​x ​,x ​[1
4

1
3

2 1
2

2
2

1 2
3

2
4]

1 O

O = 0,D ⊂[] Z D d ∈ O

x

d

x ​1
d

x ​x ​1
d−1

2

x ​x ​1
d−2

2
2

⋮

x ​x ​1
2

2
d−2

x ​x ​1 2
d−1

x ​2
d

 (data[1][0] ** (current_order - exp))

 transformed_idx += 1

We can verify the full implementation with the SciKit-Learn polynomial library:

import numpy as np

from math import comb as binomial_coeff

import sklearn.preprocessing as sklp

def transform_polynomial_basis(data, order):

 """ Transforms the provided two-dimensional vector with its polynomial basis of the specified order

 :param data: A two-dimensional vector, i.e. a NumPy vector of shape (2, 1)

 :param order: The integral order to which the polynomial transform basis should be computed

 :return: The feature-transformed array in the (2, 1) input shape

 """

 (input_feature_count, sample_count) = data.shape

 if input_feature_count != 2 or sample_count != 1:

 raise ValueError("The given data is of an invalid dimension")

 output_feature_count = binomial_coeff(input_feature_count + order, order)

 transformed = np.empty(shape=(output_feature_count, 1))

 transformed_idx = 0

 transformed[transformed_idx] = 1

 transformed_idx += 1

 # We can construct the transformed array (known to consist of the precomputed number of output features) by

 # counting up to the target order, adding the relevant polynomial terms at each stage. For each step in the

order,

 # we must generate (in the following order): x_1^d, x_1^{d-1}x_2, ..., x_1x_2^{d-1}, x_2^d.

 for current_order in range(1, order + 1):

 for exp in range(current_order, -1, -1):

 transformed[transformed_idx][0] = (data[0][0] ** exp) * (data[1][0] ** (current_order - exp))

 transformed_idx += 1

 return transformed

TEST_DATA = np.array([[5], [10]])

TEST_ORDER = 3

result = transform_polynomial_basis(TEST_DATA, TEST_ORDER).flatten()

print(result) # Transformer test

np.testing.assert_array_equal(sklp.PolynomialFeatures(TEST_ORDER).fit_transform(TEST_DATA.reshape((1, 2)))[0],

 result) # Correctness check

print("\nAll OK")

This could be generalised further to work with vectors from an -dimensional input space; see the Multinomial
Theorem for determining exponents of feature product combinations.

N

