Complex Sine : For $z \in \mathbb{C}$, $\sin z = \frac{1}{2i} (e^{iz} - e^{-iz})$.	Complex Cosine : For $z \in \mathbb{C}$, $\cos z = \frac{1}{2}(e^{iz} + e^{-iz})$.
Roots of Unity (Properties) : For $n \ge 2$, $\sum_{j=1}^{n} \zeta_{j}^{(n)} = 0$ and $\prod_{j=1}^{n} \zeta_{j}^{(n)} = (-1)^{n+1}$. All roots also lie on the unit circle, such that $ \zeta_{j}^{(n)} = 1$ for $1 \le j \le n$.	Euclid's Algorithm (1) : Given $a \in \mathbb{Z}$ and $b \in \mathbb{N}$, there exist q_1 and r_1 such that $a = q_1b + r_1$ and $0 \le r_1 < b$. If $r_1 = 0$, then $gcd(a, b) = b$. Otherwise,
Solving Congruence Equations (1) : To solve $ax \equiv b \pmod{m}$, find $d = \gcd(a, m)$. If $d \nmid b$, there are no solutions. Otherwise, write $b = b'd$ and $d = sa + tm$.	Solving Congruence Equations (2): A single solution is $x = sb'$; let $m' = m/d$. All numbers congruent to sb' (mod m') comprise the full solution set.
Binomial Theorem: $(x+y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j}$	Binomial Coefficient : $\binom{n}{j} = \frac{n!}{j!(n-j)!}$
$\mathbf{STP}: \begin{pmatrix} t_1 \\ t_2 \\ t_3 \end{pmatrix} \cdot \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} \times \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \det \begin{pmatrix} t_1 & t_2 & t_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{pmatrix}$	Parametric Line : An equation of a line can be written as $x = p_1 + tv_1$, $y = p_2 + tv_2$, and $z = p_3 + tv_3$, for $t \in \mathbb{R}$. (p_1, p_2, p_3) are the coordinates of a point on the line, and (v_1, v_2, v_3) denotes the direction of the line.
Plane Equations : The position vector of an arbitrary point X in the plane is $\underline{x} = \underline{p} + s\underline{u} + t\underline{v}$ for $s, t \in \mathbb{R}$, where \underline{u} and \underline{v} are parallel to the plane, and P is a plane point.	Intersection of Line and Plane : Write the line and plane in parametric form, equate each component, and solve for s , r , and t .
Point-to-Plane : The distance from a point A to a plane is $ (\underline{p} - \underline{a}) \cdot \underline{n} / \underline{n} $, where \underline{n} is the normal vector, and P is a known point in the plane.	Matrix Multiplication : If $A \in \mathbb{F}^{m \times n}$ and $B \in \mathbb{F}^{n \times p}$, then the product AB is such that $(AB)_{ik} = \sum_{j=1}^{n} A_{ij}B_{jk}$. (For our purposes, the field \mathbb{F} is the set of reals \mathbb{R} .)
Echelon Forms (1 and 2): $\begin{pmatrix} \star & \Box & \Box \\ 0 & \star & \Box \\ 0 & 0 & \star \end{pmatrix} \begin{pmatrix} \star & \Box & \Box \\ 0 & \star & \Box \\ 0 & 0 & 0 \end{pmatrix}$	Echelon Forms (3 and 4): $\begin{pmatrix} \star & \Box & \Box \\ 0 & 0 & \star \\ 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} \star & \Box & \Box \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$
Systems of Linear Equations : Construct the <i>aug-</i> <i>mented matrix</i> , use row operations to transform it into an Echelon form, reinterpret as a system of linear equations, and solve for each component in terms of the parameter.	Inverse (2x2) : $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $A^{-1} = \frac{1}{\det A} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$
Computing an Eigensystem (1) : For the <i>eigenvalues</i> of a matrix A , solve det $(A - \lambda I_n) = 0$ for λ (the eigenvalues), where I_n is the identity matrix in $\mathbb{F}^{n \times n}$.	Computing an Eigensystem (2) : For each eigenvalue λ_0 , the corresponding <i>eigenvector</i> \underline{v}_0/C_0 is such that $(A - \lambda_0 I_n)\underline{v}_0 = \underline{0}$, where $C_0 \in \mathbb{F}$ is a nonzero constant.
Eigendiagonalisation (2) : If the columns of a matrix M are given by the eigenvectors of A , then $AM = M\Lambda$, and $\Lambda = M^{-1}AM$.	Eigendiagonalisation (3) : If we have $A = M\Lambda M^{-1}$ with matrices M invertible and Λ diagonal, then $A^n = (M\Lambda M^{-1})(M\Lambda M^{-1})\dots(M\Lambda M^{-1}) = M\Lambda^n M^{-1}$.
	Roots of Unity (Properties): For $n \ge 2$, $\sum_{j=1}^{n} \zeta_{j}^{(n)} = 0$ and $\prod_{j=1}^{n} \zeta_{j}^{(n)} = (-1)^{n+1}$. All roots also lie on the unit circle, such that $ \zeta_{j}^{(n)} = 1$ for $1 \le j \le n$. Solving Congruence Equations (1): To solve $ax \equiv b \pmod{m}$, find $d = \gcd(a, m)$. If $d \nmid b$, there are no solutions. Otherwise, write $b = b'd$ and $d = sa + tm$. Binomial Theorem: $(x + y)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j}$ STP: $\binom{t_1}{t_2} \cdot \left[\binom{u_1}{u_2} \times \binom{v_1}{v_2} \right] = \det \binom{t_1 \ t_2 \ t_3}{u_1 \ u_2 \ u_3}$ Plane Equations: The position vector of an arbitrary point X in the plane is $\underline{x} = \underline{p} + s\underline{u} + t\underline{v}$ for $s, t \in \mathbb{R}$, where \underline{u} and \underline{v} are parallel to the plane, and P is a plane point. Point-to-Plane: The distance from a point A to a plane is $ (\underline{p} - \underline{a}) \cdot \underline{n} / \underline{n} $, where \underline{n} is the normal vector, and P is a known point in the plane. Echelon Forms (1 and 2): $\begin{pmatrix} \star \Box \Box \\ 0 \ \star \Box \\ 0 \ 0 \ \star \end{pmatrix} \begin{pmatrix} \star \Box \Box \\ 0 \ \star \Box \\ 0 \ 0 \ \star \end{pmatrix}$ Systems of Linear Equations: Construct the <i>augmented matrix</i> , use row operations to transform it into an Echelon form, reinterpret as a system of linear equations, and solve for each component in terms of the parameter. Computing an Eigensystem (1): For the <i>eigenvalues</i> of a matrix A, solve det $(A - \lambda I_n) = 0$ for λ (the eigenvalues of a matrix A, solve det $(A - \lambda I_n) = 0$ for λ (the eigenvalues of a matrix A, solve det $(A - \lambda I_n) = 0$ for λ , then $AM = M\Lambda$,

Note: Unless specified otherwise, an arbitrary point X (uppercase Latin character) in *n*-space has position vector $\underline{x} \in \mathbb{F}^n$, where $\underline{x} = (x_1, x_2, \dots, x_n)$.

Norm of Matrix : For a matrix $A \in \mathbb{R}^{n \times n}$, its Euclidean norm is defined as $ A = \max_{ \underline{v} \le 1} A\underline{v} $, where $ \underline{v} $ is the Euclidean norm of \underline{v} in \mathbb{R}^n .	Exponential of a Matrix: For some $A \in \mathbb{R}^{n \times n}$, exp $A = \sum_{k=0}^{\infty} A^k / k!$. This sum is convergent, such that $\ \exp A\ = \exp \ A\ $. If $\underline{\dot{x}} = A\underline{x}$, then the general solution is given by $\underline{x}(t) = \exp(tA)\underline{v}$.	$\mathbf{CODEs:} \dots \underline{x}(t) = e^{tA} \underline{v} = M \begin{pmatrix} e^{\lambda_1 t} & 0 & \dots \\ 0 & e^{\lambda_2 t} & \dots \\ \dots & \dots & e^{\lambda_n t} \end{pmatrix} M^{-1} \underline{v}$
Real Symmetric Matrices : Let $A \in \mathbb{R}^{n \times n}$ with $A^T = A$. Then, the eigenvalues of A are real, and distinct eigenvectors are orthogonal. A is symmetric if $A^T = A$.	Orthogonal Matrices : A square matrix $M \in \mathbb{F}^{n \times n}$ sat- isfying $M^T M = I_n$ is an <i>orthogonal</i> matrix. The columns of such a matrix are mutually orthonormal vectors.	Row Reduction Methods : When finding the Echelon form, we can multiply rows by non-zero scalar constants, take the sum of two rows, and interchange rows.
Coupled ODEs (1) : Let A be the matrix of coefficients given in the coupled linear system of ODEs. M and Λ are such that $M^{-1}AM = \Lambda$: M is the composed eigenvector matrix and Λ is the diagonal matrix of eigenvalues.	Coupled ODEs (2): Note that $(x', y') = M^{-1}(x, y)$. Then, $d(x', y')/dt = \Lambda(x', y')$. Expand $\Lambda(x', y')$ and solve (component-wise) for the first-order ODEs $x'(t)$ and $y'(t)$. [Recall that $u'(x) = cu(x) \implies u(x) = Ae^{cx}$.]	The Remainder Theorem: Let p and q be an n - and m -degree complex polynomials respectively, with $m \leq n$. There exists polynomials s and r of degrees $n - m$ and $k < m$ s.t. $p(x) = q(x)s(x) + r(x)$.
Cofactors/Minors: For each pair ij , the cofactor c_{ij} of $A \in \mathbb{F}^{n \times n}$ is s.t. $c_{ij} = (-1)^{i+j} \det(A_{ij})$, where A_{ij} is the minor of A (obtained by removing row i and column j).	Adjoint and Inverse (3x3) : The <i>adjoint</i> matrix of A is adj $A = C^T$, where $C = [c_{ij}]$. For a matrix A, the <i>inverse</i> is $A^{-1} = \operatorname{adj} A/\operatorname{det} A$.	Linear Independence : Vectors $\underline{v}_1, \ldots, \underline{v}_m \in \mathbb{F}^n$ are <i>linearly independent</i> if and only if $\alpha_1 \underline{v}_1, \ldots, \alpha_m \underline{v}_m = \underline{0}$ is solved by $\alpha_1 = \ldots = \alpha_m = 0$, for $\alpha_1, \ldots, \alpha_m \in \mathbb{F}$.

An amusing collection of mathematical poetry ...

https://people.math.harvard.edu/~knill/poetry/

^{...} some of which involves Linear-Algebraic themes: