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L’Hôpital’s Rule: If f and g are differentiable func-
tions at x0, f(x0) = g(x0) = 0, and g′(x0) 6= 0, then
limx→x0

f(x)/g(x) = limx→x0
f ′(x)/g′(x).

The IVT: Suppose a < b and f is continuous on [a, b].
Then, for every y such that min(f(a), f(b)) < y <
max(f(a), f(b)), there exist x0 ∈ (a, b) s.t. f(x0) = y.

The Chain Rule: If g is differentiable at x and f is
differentiable at g(x), then f ◦ g is differentiable at x, and
(f ◦ g)′(x) = f ′(g(x))g′(x).

The IFT: If f : I → R is continuous and strictly mono-
tonic, then f−1 : J → I is also continuous, where J = f(I)
and f−1(f(x)) = x and f(f−1(y)) = y.

The MVT: If f : [a, b] → R is continuous and differ-
entiable on (a, b), then there exist x0 ∈ (a, b) such that
f ′(x0) = [f(b)− f(a)] /(b− a).

Classifying CPs: If f : [a, b] → R, f ′, and f ′′ are sensibly
defined, and x0 ∈ (a, b) s.t. f ′(x0) = 0, then f ′′(x0) > 0
means local min., and f ′′(x0) < 0 means local max.

Taylor’s Theorem (1): If f ∈ CN+1(I) and x ∈ I,

then f(x) =
∑N
n=0

[

f (n)(x0)(x− x0)
n
]

/n!+1/N !
∫ x

x0

(x−
t)Nf (N+1)(t) dt.

Taylor’s Theorem (2): The terms under the summation
are the Taylor polynomial of f at x0, of order N . The
integral term is known as the error in integral form.

Taylor’s Theorem (3): The Lagrange form of the error
is RN (x) =

[

(x− x0)
N+1f (N+1)(c)

]

/(N + 1)!, for some c
between x0 and x.

Diff. Eq. (1): If u′(x) = cu(x), where c ∈ R \ {0} and
A is an arbitrary constant, then u(x) = Aecx.

Diff. Eq. (2): If u′′(x) = −c2u(x), then A cos(cx) +
B sin(cx), where A and B are arbitrary constants.

Diff. Eq. (3): If u′′(x) = c2u(x), then u(x) = Aecx +
Be−cx = C cosh(cx)+D sinh(cx), for arb. constants C,D.

Simple Diff. Eqs.: A simple differential equation has
the form y′(x) = f(x), and has solutions y =

∫

f(x) dx+
C, for some arbitrary constant C.

Separable Diff. Eqs.: A separable differential equation

has the form y′(x) = f(x)/g(y). It has solutions G(y) =
F (x) + C, where F ′ = f and G′ = g.

Integrating Factors (1): A first-order ODE is linear if
it has the form a(x)y′(x) + b(x)y + c(x) = 0. In standard

form, this is y′(x) + P (x)y +Q(x) = 0 . . .

Integrating Factors (2): . . . This can be solved to
give y = −

[∫

Q(x)F (x) dx+ C
]

/F (x), where F (x) =
exp

∫

P (x) dx is the integrating factor.
Derivative of Arc Sine:

d

dx
arcsin(x) =

1√
1− x2

Derivative of Arc Cosine:
d

dx
arccos(x) =

−1√
1− x2

Derivative of Arc Tangent:
d

dx
arctan(x) =

1

1 + x2

Radian Measure (1): If (x, y) ∈ R
2 with (x, y) 6= (0, 0),

then there is a unique solution to x = r cos θ and y =
r sin θ for θ ∈ (−π, π] and r > 0.

Radian Measure (2): If x > 0, then θ = arctan(y/x). If
x = 0, θ = sgn(y)π/2. If x < 0, then θ = arctan(y/x) + π
if y ≥ 0, or θ = arctan(y/x)− π otherwise.

Complex Circular Trigonometric Functions: For
z ∈ C, sin(z) = (eiz − e−iz)/(2i), and cos(z) = (eiz +
e−iz)/2. Therefore, tan(z) = i(e−iz − eiz)/(e−iz + eiz).

Complex Hyperbolic Trigonometric Functions: For
z ∈ C, sinh(z) = (ez − e−z)/2, cosh(z) = (ez + e−z)/2,
and tanh(z) = sinh(z)/ cosh(z).

Trigonometric Identities (Hyperbolic Form): For x
and y, sinh(x+y) = sinh(x) cosh(y)+cosh(x) sinh(y), and
cosh(x+ y) = cosh(x) cosh(y) + sinh(x) sinh(y).

2nd-Order ODE (MD.1): Consider R(y′′, y′, x) = 0.
To solve for y(x), we define a new dependent variable as
the derivative of the old dependent variable.

. . . (MD.2): We then solve the resulting first-order
ODE, and integrate the solution. This works in cases of
missing dependent variables.

2nd-Order ODE (MI.1): Consider R(y′′, y′, y) = 0. To
solve this autonomous ODE, we first define a new inde-
pendent variable as the old dependent variable.

. . . (MI.2): Define a dependent variable as the derivative
of the old dependent variable. Rewrite the expression in
terms of these new variables, and solve.

. . . (MI.3): Rewrite the solution in terms of the original
variables, and solve the resulting first-order differential
equation.

2nd-Order ODE (HC.1): Consider a homogeneous lin-

ear ODE in y(x) with constant coeffs. Take an ansatz of
eλx, substitute this into the auxiliary equation, and solve.

. . . (HC.2): If λ ∈ R is a root of the aux. eq., then eλx

is a solution to the ODE. If α ± iβ ∈ C are roots, then
eαx cosβx and eαx sinβx are ODE solutions.

. . . (HC.3): If λ is an m-times repeated root of the
aux. eq., with m ≤ n, then multiplying these solutions by
powers of x, up to xm−1, gives more solutions.

. . . (HC.4): The general solution of the ODE is an ar-
bitrary linear combination of these real and complex so-
lutions.

2nd-Order ODE (IL.1): For an inhomogeneous linear

ODE, first find the general solution of the corresponding
homogeneous equation.

. . . (IL.2): Find one solution of the inhomogeneous
ODE, and sum it with the solution to the homogeneous
ODE for the general solution.

2nd-Order ODE (IC.1): For an inhomogeneous linear

ODE with constant coeffs., take an ansatz which is of the
same type as the RHS, with undetermined coeffs.

. . . (IC.2): If this ansatz “overlaps” with the general
solution of the homogeneous ODE, multiply that part of
the guess by x.

. . . (IC.3): Insert this into the ODE and determine the
coeffs. Substitute these values into the ansatz, and take
the sum of the particular and general solution.

2nd-Order ODE (CP.1): For a system of coupled
ODEs in x(t) and y(t), find ẍ and ẏ. Use ẏ to elimi-
nate ẏ, and use ẋ to eliminate y in the ODE.
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. . . (CP.2): Find the general solution of the resulting
ODE for x(t), and compute ẋ(t). Use ẋ to write y in x
and ẋ, and compute y(t) from the general solution of x(t).

Basic FS: The Fourier Series for f : [−π, π] → R is
S(x) = a0/2 +

∑∞
n=1(an cosnx + bn sinnx), with an =

∫ π

−π
f(x) cosnx dx/π and bn =

∫ π

−π
f(x) sinnx dx/π.

Tangent Lines to Curves: If r0 is lying on the level
curve f(x, y) = c, then∇f(r0)·(r−r0). In three variables,
this also applies to three-space planes.

Periodic Extensions: If f : [−π, π) → R, then its peri-

odic extension f̃ : R → R is defined by f̃(x+2πk) := f(x)
for k ∈ Z and −π ≤ x < π.

FCT (1): If f : [−π, π] → R is a PWCD† function, and
f̃ : R → R is its 2π-PE, then at x ∈ R, the FS of f
converges to limN→∞ SN (x) = S(x) = [f̃(x+)+ f̃(x−)]/2.

FCT (2): If f̃ is continuous at x, then S(x) = f̃(x).
[† Piecewise continuously differentiable function]

PT: If f : [−π, π] → R is a PWCD with Fourier coeffi-
cients a0, an, and bn for n ∈ N, then

∫ π

−π
f2(x) dx/π ≡

a20/2 +
∑∞
n=1(a

2
n + b2n).

Half-Range Series: For f : [0, π] → R, Sc(x) = a0/2 +
∑∞
n=1 an cosnx, and Ss(x) =

∑∞
n=1 bn sinnx, where an =

2
∫ π

0
f(x) cosnx dx/π and bn = 2

∫ π

0
f(x) sinnx dx/π.

Complex Exponential Series: For complex-valued co-
efficients cn ∈ C, S(x) =

∑∞
n=−∞ cne

inx, where cn =
∫ π

−π
f(x)e−inx dx/(2π) and cn = c−n with n ∈ N ∪ {0}.

FS on Other Intervals (1): For a function over
[−L/2, L/2], S(x) = a0/2 +

∑∞
n=1[an cos(2nπx/L) +

bn sin(2nπx/L)], where . . .

FS on Other Intervals (2): . . . the cosine coefficients

are an = 2
∫ L/2

−L/2
f(x) cos(2nπx/L) dx/L, and the sine co-

efficients are bn = 2
∫ L/2

−L/2
f(x) sin(2nπx/L) dx/L.

Clairaut’s Theorem: If f(x, y) and fx, fy, fxy, and fyx
are defined throughout an open region containing (a, b),
and they are all cont. at (a, b), then fxy(a, b) = fyx(a, b).

GCL: If f(x, y) is a CDF, and r(t) = [x(t), y(t)] is a
pair of diff. functions, then F ′(t) = x′(t)fx[x(t), y(t)] +
y′(t)fy[x(t), y(t)], where F (t) = f [r(t)].

Gradient: For some f(x, y, z),∇f := ∂f/∂x i+∂f/∂y j+
∂f/∂z k. If r0 is a point, and u is a unit vector then the
DD of f is Duf(r0) := limh→0[f(r0 + hu)− f(r0)]/h.

Level Surface: A level set of a three-variable function
F (x, y, z) is defined to be {(x, y, z) ∈ R

3 |F (x, y, z) = c},
for some constant c ∈ R.

Tangent Vector: Let S be the level surface of F : R3 →
R passing through r0. If u is a vector tangent to S at r0,
then 0 = u · ∇F (r0).

Imp. Diff.: If y(x) is defined implicitly by f(x, y) = c
then dy/dx = −fx(x, y)/fy(x, y). For F (x, y, z) = c, then
(∂z/∂x)y = −Fx/Fz and (∂z/∂y)x = −Fy/Fz.

Laplacian: The Laplacian of f(x, y) is ∆f ≡ ∇2f =
∂2f/∂x2 + ∂2f/∂y2. If F (r, θ) = f(r cos θ, r sin θ), then
∆f ≡ ∇2f = ∂2F/∂r2 + (∂F/∂r)/r + (∂2F/∂θ2)/r2.

Types of Regions: Type-One Region: R1 = {(x, y) ∈
R

2 | a ≤ x ≤ b, ϕ1(x) ≤ y ≤ ϕ2(x)}; Type-Two Region:
R2 = {(x, y) ∈ R

2 | c ≤ y ≤ d, ψ1(y) ≤ x ≤ ψ2(y)}.

Fubini’s Theorem: Let f : R → R be cont., with R ⊂
R

2. If R is T1, then
∫∫

R
f dA =

∫ b

a

∫ ϕ2(x)

ϕ1(x)
f(x, y) dy dx.

If R is T2, then
∫∫

R
f dA =

∫ d

c

∫ ψ2(y)

ψ1(y)
f(x, y) dx dy.

Centroid: The centroid of R ⊂ R
2 is the point (x, y)

such that x =
∫∫

R
x dA/A(R) and y =

∫∫

R
y dA/A(R),

where A(R) is the area of R.

The Jacobian: J := det

(

∂x/∂u ∂x/∂v

∂y/∂u ∂y/∂v

)

Double Integral Transform (1): If x(u, v) and y(u, v)
are CDFs, f(x, y) is cont., R ⊂ R

2, and S is in the (u, v)-
plane that maps one-to-one with R, then . . .

Double Integral Transform (2): . . . change of vari-
ables can be achieved with the double integral result::
∫∫

R
f(x, y) dx dy =

∫∫

S
f [x(u, v), y(u, v)] |J(u, v)| du dv.

Local Extrema: A function f : R2 → R has a local mini-

mum at (x0, y0) if f(x0, y0) ≤ f(x, y) for all (x, y) in some
disc centered at (x0, y0).

Stationary and Saddle Points: If∇f(x0, y0) = 0, then
(x0, y0) is a stationary point. If (x0, y0) is a stationary
point, but not an extremum, then it is a saddle point.

Hessian: |H(x, y)| :=
∣

∣

∣

∣

∣

(

fxx(x, y) fxy(x, y)

fyx(x, y) fyy(x, y)

)∣

∣

∣

∣

∣

=: ∆

Classifying Stationary Points (1): Let f(x, y) be a
cont. twice-diff. function, and suppose that it has a sta-
tionary point at (x0, y0) with discriminant ∆ = ∆(x0, y0)

Classifying Stationary Points (2): If ∆ > 0, then
fxx(x0, y0) > 0: local min. at (x0, y0), and fxx(x0, y0) <
0: local max. Alternatively, ∆ < 0 implies a saddle point.

CS Points: A point (x0, y0) ∈ C is a constrained station-

ary point of f if Duf(x0, y0) = u · ∇f(x0, y0) = 0 holds
for all vectors u tangent to C at (x0, y0).

Rewriting the Derivative:
d2

dx2
=

du

dx
= u

du

dy

Vector Fields (Condition): If a CD vector field f =
(u, v) is a gradient, i.e. f = ∇ϕ for some SF ϕ(x, y), then
its components satisfy ∂v/∂x = ∂u/∂y.

Vector Fields (Identification): We want to find an SF
ϕ s.t. ∂ϕ/∂x = u. Integrate up, and subsitute to find a
closed form for the constant of integration g(y).

Arc Length: If γ is s.t. γ : [a, b] → R
2, where γ(t) =

(x(t), y(t)) and x, y are continuous differentiable, L(γ) =
∫ b

a

√

x′(t)2 + y′(t)2dt.

FTC (1): If f : [a, b] → C is a continuous function, then
d/dx

[∫ x

a
f(y)dy

]

= f(y), where F : [a, b] → R is such that

F (x) =
∫ x

a
f .

FTC (2): If f is differentiable on [a, b] and f ′ is contin-

uous on [a, b], then
∫ b

a
f ′ = f(b)− f(a).
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