L'Hôpital's Rule : If f and g are differentiable functions at x_0 , $f(x_0) = g(x_0) = 0$, and $g'(x_0) \neq 0$, then $\lim_{x\to x_0} f(x)/g(x) = \lim_{x\to x_0} f'(x)/g'(x)$.	The IVT : Suppose $a < b$ and f is continuous on $[a, b]$. Then, for every y such that $\min(f(a), f(b)) < y < \max(f(a), f(b))$, there exist $x_0 \in (a, b)$ s.t. $f(x_0) = y$.	The Chain Rule : If g is differentiable at x and f is differentiable at $g(x)$, then $f \circ g$ is differentiable at x, and $(f \circ g)'(x) = f'(g(x))g'(x)$.
The IFT: If $f: I \to \mathbb{R}$ is continuous and strictly monotonic, then $f^{-1}: J \to I$ is also continuous, where $J = f(I)$ and $f^{-1}(f(x)) = x$ and $f(f^{-1}(y)) = y$.	The MVT : If $f: [a, b] \to \mathbb{R}$ is continuous and differentiable on (a, b) , then there exist $x_0 \in (a, b)$ such that $f'(x_0) = [f(b) - f(a)]/(b-a)$.	Classifying CPs: If $f: [a, b] \to \mathbb{R}$, f' , and f'' are sensibly defined, and $x_0 \in (a, b)$ s.t. $f'(x_0) = 0$, then $f''(x_0) > 0$ means local min., and $f''(x_0) < 0$ means local max.
Taylor's Theorem (1): If $f \in C^{N+1}(I)$ and $x \in I$, then $f(x) = \sum_{n=0}^{N} \left[f^{(n)}(x_0)(x-x_0)^n \right] / n! + 1/N! \int_{x_0}^{x} (x-t)^N f^{(N+1)}(t) dt$.	Taylor's Theorem (2) : The terms under the summation are the <i>Taylor polynomial</i> of f at x_0 , of order N . The integral term is known as the <i>error in integral form</i> .	Taylor's Theorem (3) : The Lagrange form of the error is $R_N(x) = \left[(x - x_0)^{N+1} f^{(N+1)(c)} \right] / (N+1)!$, for some c between x_0 and x.
Diff. Eq. (1) : If $u'(x) = cu(x)$, where $c \in \mathbb{R} \setminus \{0\}$ and A is an arbitrary constant, then $u(x) = Ae^{cx}$.	Diff. Eq. (2) : If $u''(x) = -c^2 u(x)$, then $A \cos(cx) + B \sin(cx)$, where A and B are arbitrary constants.	Diff. Eq. (3) : If $u''(x) = c^2 u(x)$, then $u(x) = Ae^{cx} + Be^{-cx} = C \cosh(cx) + D \sinh(cx)$, for arb. constants C, D .
Simple Diff. Eqs. : A simple differential equation has the form $y'(x) = f(x)$, and has solutions $y = \int f(x) dx + C$, for some arbitrary constant C.	Separable Diff. Eqs. : A separable differential equation has the form $y'(x) = f(x)/g(y)$. It has solutions $G(y) = F(x) + C$, where $F' = f$ and $G' = g$.	Integrating Factors (1): A first-order ODE is <i>linear</i> if it has the form $a(x)y'(x) + b(x)y + c(x) = 0$. In standard form, this is $y'(x) + P(x)y + Q(x) = 0$
Integrating Factors (2): This can be solved to give $y = -\left[\int Q(x)F(x) dx + C\right]/F(x)$, where $F(x) = \exp \int P(x) dx$ is the <i>integrating factor</i> .	Derivative of Arc Sine : $\frac{\mathrm{d}}{\mathrm{d}x} \arcsin(x) = \frac{1}{\sqrt{1-x^2}}$	Derivative of Arc Cosine : $\frac{\mathrm{d}}{\mathrm{d}x} \arccos(x) = \frac{-1}{\sqrt{1-x^2}}$
Derivative of Arc Tangent : $\frac{\mathrm{d}}{\mathrm{d}x} \arctan(x) = \frac{1}{1+x^2}$	Radian Measure (1) : If $(x, y) \in \mathbb{R}^2$ with $(x, y) \neq (0, 0)$, then there is a unique solution to $x = r \cos \theta$ and $y = r \sin \theta$ for $\theta \in (-\pi, \pi]$ and $r > 0$.	Radian Measure (2) : If $x > 0$, then $\theta = \arctan(y/x)$. If $x = 0$, $\theta = \operatorname{sgn}(y)\pi/2$. If $x < 0$, then $\theta = \arctan(y/x) + \pi$ if $y \ge 0$, or $\theta = \arctan(y/x) - \pi$ otherwise.
Complex Circular Trigonometric Functions: For $z \in \mathbb{C}$, $\sin(z) = (e^{iz} - e^{-iz})/(2i)$, and $\cos(z) = (e^{iz} + e^{-iz})/2$. Therefore, $\tan(z) = i(e^{-iz} - e^{iz})/(e^{-iz} + e^{iz})$.	Complex Hyperbolic Trigonometric Functions: For $z \in \mathbb{C}$, $\sinh(z) = (e^z - e^{-z})/2$, $\cosh(z) = (e^z + e^{-z})/2$, and $\tanh(z) = \sinh(z)/\cosh(z)$.	Trigonometric Identities (Hyperbolic Form) : For x and y , $\sinh(x+y) = \sinh(x)\cosh(y) + \cosh(x)\sinh(y)$, and $\cosh(x+y) = \cosh(x)\cosh(y) + \sinh(x)\sinh(y)$.
2nd-Order ODE (MD.1) : Consider $R(y'', y', x) = 0$. To solve for $y(x)$, we define a new dependent variable as the derivative of the old dependent variable.	(MD.2): We then solve the resulting first-order ODE, and integrate the solution. This works in cases of <i>missing dependent variables</i> .	2nd-Order ODE (MI.1) : Consider $R(y'', y', y) = 0$. To solve this <i>autonomous ODE</i> , we first define a new independent variable as the old dependent variable.
(MI.2): Define a dependent variable as the derivative of the old dependent variable. Rewrite the expression in terms of these new variables, and solve.	(MI.3): Rewrite the solution in terms of the original variables, and solve the resulting first-order differential equation.	2nd-Order ODE (HC.1) : Consider a homogeneous linear ODE in $y(x)$ with constant coeffs. Take an ansatz of $e^{\lambda x}$, substitute this into the auxiliary equation, and solve.
(HC.2): If $\lambda \in \mathbb{R}$ is a root of the aux. eq., then $e^{\lambda x}$ is a solution to the ODE. If $\alpha \pm i\beta \in \mathbb{C}$ are roots, then $e^{\alpha x} \cos \beta x$ and $e^{\alpha x} \sin \beta x$ are ODE solutions.	(HC.3): If λ is an <i>m</i> -times repeated root of the aux. eq., with $m \leq n$, then multiplying these solutions by powers of x , up to x^{m-1} , gives more solutions.	(HC.4): The general solution of the ODE is an arbitrary linear combination of these real and complex solutions.
2nd-Order ODE (IL.1) : For an <i>inhomogeneous linear ODE</i> , first find the general solution of the corresponding homogeneous equation.	(IL.2): Find one solution of the inhomogeneous ODE, and sum it with the solution to the homogeneous ODE for the general solution.	2nd-Order ODE (IC.1) : For an <i>inhomogeneous linear ODE with constant coeffs.</i> , take an ansatz which is of the same type as the RHS, with undetermined coeffs.
(IC.2): If this ansatz "overlaps" with the general solution of the homogeneous ODE, multiply that part of the guess by x .	(IC.3): Insert this into the ODE and determine the coeffs. Substitute these values into the ansatz, and take the sum of the particular and general solution.	2nd-Order ODE (CP.1) : For a system of coupled ODEs in $x(t)$ and $y(t)$, find \ddot{x} and \dot{y} . Use \dot{y} to eliminate \dot{y} , and use \dot{x} to eliminate y in the ODE.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Basic FS: The Fourier Series for $f: [-\pi, \pi] \to \mathbb{R}$ is $S(x) = a_0/2 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$, with $a_n = \int_{-\pi}^{\pi} f(x) \cos nx dx/\pi$ and $b_n = \int_{-\pi}^{\pi} f(x) \sin nx dx/\pi$.	Tangent Lines to Curves : If \underline{r}_0 is lying on the level curve $f(x, y) = c$, then $\nabla f(\underline{r}_0) \cdot (\underline{r} - \underline{r}_0)$. In three variables, this also applies to three-space planes.
Periodic Extensions: If $f: [-\pi, \pi) \to \mathbb{R}$, then its <i>periodic extension</i> $\tilde{f}: \mathbb{R} \to \mathbb{R}$ is defined by $\tilde{f}(x+2\pi k) \coloneqq f(x)$ for $k \in \mathbb{Z}$ and $-\pi \leq x < \pi$.	FCT (1): If $f: [-\pi, \pi] \to \mathbb{R}$ is a PWCD [†] function, and $\tilde{f}: \mathbb{R} \to \mathbb{R}$ is its 2π -PE, then at $x \in \mathbb{R}$, the FS of f converges to $\lim_{N\to\infty} S_N(x) = S(x) = [\tilde{f}(x^+) + \tilde{f}(x^-)]/2$.	FCT (2) : If \tilde{f} is continuous at x , then $S(x) = \tilde{f}(x)$. [[†] Piecewise continuously differentiable function]
PT : If $f: [-\pi, \pi] \to \mathbb{R}$ is a PWCD with Fourier coefficients a_0, a_n , and b_n for $n \in \mathbb{N}$, then $\int_{-\pi}^{\pi} f^2(x) \mathrm{d}x/\pi \equiv a_0^2/2 + \sum_{n=1}^{\infty} (a_n^2 + b_n^2).$	Half-Range Series: For $f: [0, \pi] \to \mathbb{R}$, $S_c(x) = a_0/2 + \sum_{n=1}^{\infty} a_n \cos nx$, and $S_s(x) = \sum_{n=1}^{\infty} b_n \sin nx$, where $a_n = 2 \int_0^{\pi} f(x) \cos nx dx/\pi$ and $b_n = 2 \int_0^{\pi} f(x) \sin nx dx/\pi$.	Complex Exponential Series : For complex-valued co- efficients $c_n \in \mathbb{C}$, $S(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}$, where $c_n = \int_{-\pi}^{\pi} f(x) e^{-inx} dx/(2\pi)$ and $\overline{c_n} = c_{-n}$ with $n \in \mathbb{N} \cup \{0\}$.
FS on Other Intervals (1): For a function over $[-L/2, L/2], S(x) = a_0/2 + \sum_{n=1}^{\infty} [a_n \cos(2n\pi x/L) + b_n \sin(2n\pi x/L)],$ where	FS on Other Intervals (2): the cosine coefficients are $a_n = 2 \int_{-L/2}^{L/2} f(x) \cos(2n\pi x/L) dx/L$, and the sine co- efficients are $b_n = 2 \int_{-L/2}^{L/2} f(x) \sin(2n\pi x/L) dx/L$.	Clairaut's Theorem: If $f(x, y)$ and f_x , f_y , f_{xy} , and f_{yx} are defined throughout an open region containing (a, b) , and they are all cont. at (a, b) , then $f_{xy}(a, b) = f_{yx}(a, b)$.
GCL : If $f(x, y)$ is a CDF, and $\underline{r}(t) = [x(t), y(t)]$ is a pair of diff. functions, then $F'(t) = x'(t)f_x[x(t), y(t)] + y'(t)f_y[x(t), y(t)]$, where $F(t) = f[\underline{r}(t)]$.	Gradient: For some $f(x, y, z)$, $\nabla f \coloneqq \partial f / \partial x \underline{i} + \partial f / \partial y \underline{j} + \partial f / \partial z \underline{k}$. If \underline{r}_0 is a point, and \underline{u} is a unit vector then the DD of f is $D_{\underline{u}} f(\underline{r}_0) \coloneqq \lim_{h \to 0} [f(\underline{r}_0 + h\underline{u}) - f(\underline{r}_0)]/h$.	Level Surface: A <i>level set</i> of a three-variable function $F(x, y, z)$ is defined to be $\{(x, y, z) \in \mathbb{R}^3 F(x, y, z) = c\}$, for some constant $c \in \mathbb{R}$.
Tangent Vector : Let S be the level surface of $F : \mathbb{R}^3 \to \mathbb{R}$ passing through \underline{r}_0 . If \underline{u} is a vector tangent to S at \underline{r}_0 , then $0 = \underline{u} \cdot \nabla F(\underline{r}_0)$.	Imp. Diff. : If $y(x)$ is defined implicitly by $f(x,y) = c$ then $dy/dx = -f_x(x,y)/f_y(x,y)$. For $F(x,y,z) = c$, then $(\partial z/\partial x)_y = -F_x/F_z$ and $(\partial z/\partial y)_x = -F_y/F_z$.	Laplacian: The Laplacian of $f(x, y)$ is $\Delta f \equiv \nabla^2 f = \partial^2 f / \partial x^2 + \partial^2 f / \partial y^2$. If $F(r, \theta) = f(r \cos \theta, r \sin \theta)$, then $\Delta f \equiv \nabla^2 f = \partial^2 F / \partial r^2 + (\partial F / \partial r) / r + (\partial^2 F / \partial \theta^2) / r^2$.
Types of Regions : Type-One Region: $R_1 = \{(x, y) \in \mathbb{R}^2 \mid a \leq x \leq b, \varphi_1(x) \leq y \leq \varphi_2(x)\};$ Type-Two Region: $R_2 = \{(x, y) \in \mathbb{R}^2 \mid c \leq y \leq d, \psi_1(y) \leq x \leq \psi_2(y)\}.$	Fubini's Theorem: Let $f: R \to \mathbb{R}$ be cont., with $R \subset \mathbb{R}^2$. If R is T1, then $\iint_R f dA = \int_a^b \int_{\varphi_1(x)}^{\varphi_2(x)} f(x, y) dy dx$. If R is T2, then $\iint_R f dA = \int_c^d \int_{\psi_1(y)}^{\psi_2(y)} f(x, y) dx dy$.	Centroid : The <i>centroid</i> of $R \subset \mathbb{R}^2$ is the point $(\overline{x}, \overline{y})$ such that $\overline{x} = \iint_R x dA/\mathcal{A}(R)$ and $\overline{y} = \iint_R y dA/\mathcal{A}(R)$, where $\mathcal{A}(R)$ is the area of R .
The Jacobian : $J \coloneqq \det \begin{pmatrix} \partial x / \partial u & \partial x / \partial v \\ \partial y / \partial u & \partial y / \partial v \end{pmatrix}$	Double Integral Transform (1) : If $x(u, v)$ and $y(u, v)$ are CDFs, $f(x, y)$ is cont., $R \subset \mathbb{R}^2$, and S is in the (u, v) -plane that maps one-to-one with R , then	Double Integral Transform (2): change of variables can be achieved with the double integral result:: $\iint_R f(x, y) dx dy = \iint_S f[x(u, v), y(u, v)] J(u, v) du dv.$
Local Extrema: A function $f : \mathbb{R}^2 \to \mathbb{R}$ has a <i>local mini-</i> mum at (x_0, y_0) if $f(x_0, y_0) \leq f(x, y)$ for all (x, y) in some disc centered at (x_0, y_0) .	Stationary and Saddle Points : If $\nabla f(x_0, y_0) = 0$, then (x_0, y_0) is a stationary point. If (x_0, y_0) is a stationary point, but not an extremum, then it is a saddle point.	
Classifying Stationary Points (1) : Let $f(x, y)$ be a cont. twice-diff. function, and suppose that it has a stationary point at (x_0, y_0) with discriminant $\Delta = \Delta(x_0, y_0)$	Classifying Stationary Points (2) : If $\Delta > 0$, then $f_{xx}(x_0, y_0) > 0$: local min. at (x_0, y_0) , and $f_{xx}(x_0, y_0) < 0$: local max. Alternatively, $\Delta < 0$ implies a saddle point.	CS Points: A point $(x_0, y_0) \in C$ is a constrained station- ary point of f if $D_{\underline{u}}f(x_0, y_0) = \underline{u} \cdot \nabla f(x_0, y_0) = 0$ holds for all vectors \underline{u} tangent to C at (x_0, y_0) .
Rewriting the Derivative : $\frac{d^2}{dx^2} = \frac{du}{dx} = u\frac{du}{dy}$	Vector Fields (Condition): If a CD vector field $\underline{f} = (u, v)$ is a gradient, i.e. $\underline{f} = \nabla \varphi$ for some SF $\varphi(x, y)$, then its components satisfy $\overline{\partial v}/\partial x = \partial u/\partial y$.	Vector Fields (Identification) : We want to find an SF φ s.t. $\partial \varphi / \partial x = u$. Integrate up, and substitute to find a closed form for the constant of integration $g(y)$.
Arc Length: If γ is s.t. $\gamma: [a,b] \to \mathbb{R}^2$, where $\gamma(t) = (x(t), y(t))$ and x, y are continuous differentiable, $L(\gamma) = \int_a^b \sqrt{x'(t)^2 + y'(t)^2} dt$.	FTC (1): If $f: [a, b] \to \mathbb{C}$ is a continuous function, then $d/dx \left[\int_a^x f(y)dy\right] = f(y)$, where $F: [a, b] \to \mathbb{R}$ is such that $F(x) = \int_a^x f$.	FTC (2) : If f is differentiable on $[a, b]$ and f' is continuous on $[a, b]$, then $\int_a^b f' = f(b) - f(a)$.