
furakutaru

A Hardware-Accelerated System for Rendering

Fractals by means of Automatic Calculation

Oliver Dixon

under the supervision of

David Clapham

This report is presented as partial fulfilment of
the AQA A-Level Computer Science qualification.

Department of A-Levels
Wakefield College
United Kingdom

Summer, 2019–Spring, 2020

Dedicated to the Gamma Function
and Related Articles

Γ(z) =

∫
∞

0

x
z−1

e
−xdx <(z) > 0

= (z − 1)! (for z ∈ Z
+)

A High-Precision Fractal Iterating from Γ(zn)

Contents

I Analysis 1

1 Introduction to Fractals 2
1.1 Mathematical Overview: The Mandelbrot Set 3
1.2 Mathematical Overview: The Julia Set . 3
1.3 The Mathematical and Visual Connection Between the Mandelbrot and

Julia Sets . 3
1.4 “Multi-Brot” and “Multi-Julia” Sets . 4

2 Rendering Solutions 5
2.1 Analysis of Current Solution . 5
2.2 Proposed Alternative Solution: furakutaru . 5

2.2.1 Identification of End-Users . 5
2.2.2 Requirements of the Software . 6
2.2.3 Acceptable Limitations of the Software . 6
2.2.4 Data Sources and Destinations . 6
2.2.5 Data Volumes . 7
2.2.6 Data Dictionaries . 7
2.2.7 Use-Cases . 7
2.2.8 Objectives . 8
2.2.9 Potential Solutions . 9

Appendices 10
A Syntax Specifications for Configuration Files 10

A.1 Fractal Configuration Syntax . 10
B E-Mail Correspondence Regarding Objective Approval and Client Ques-

tionnaire . 11
B.1 Initial Meeting and Questionnaire . 11
B.2 Conclusive E-Mail . 12

C MIT Licence . 13

II Design 14

3 Overall System Design 15
3.1 Overview of the System . 15
3.2 User-Interaction with the System and HCI Rationale 16

3.2.1 The Command-Line Interface . 16
3.2.2 Feedback from the Renderer . 17
3.2.3 Input Validation and Sanitisation . 17

4 Plotting and Colouring Algorithms 20
4.1 The Mandelbrot Set: The Escape-Time Algorithm 20
4.2 The Julia Set: The Extended Escape-Time Algorithm 20
4.3 Methods of Colouring . 21

4.3.1 Histogram Colouring . 21
4.3.2 Re-Normalisation and Linear Interpolation 22

5 Noteworthy Auxiliary Algorithms 25

5.1 PPM Loader . 25
5.2 Pixel-Retrieval . 25
5.3 The Processing of Command-Line Arguments 25
5.4 Finding Suitable Directories . 27

III Technical Solution 29

6 CPU Code-Listing and Commentary 30
6.1 Common Data Structures . 30
6.2 General Initialisation and Clean-Up . 31

6.2.1 Initialisation Status Codes . 31
6.2.2 The Initialisation Assistant: init assistant 32
6.2.3 XCB Initialisation: init xcb . 32
6.2.4 Find an Appropriate X Screen: find xcb screen 33
6.2.5 OpenGL Initialisation: init OpenGL . 33
6.2.6 Locating an Appropriate Frame-Buffer: find valid fb 34
6.2.7 Creating the Colour-Mapping: create colourmap 35
6.2.8 Creating the Main Window: create window 37
6.2.9 Binding the XCB Window to an OpenGL Subsystem: init glx 37
6.2.10 Preventing Memory Leaks with Memory-Management: clean all 37

6.3 Initialisation of the GLSL Shaders . 37
6.3.1 Initialising and Linking the Shader Programs: init shaders 37
6.3.2 Loading the Auxiliary Files into a Buffer: populate buffer 38
6.3.3 Compiling the Shader: setup shader . 39
6.3.4 Debugging the Compile-Link Procedure: print gl log 39
6.3.5 Retrieving the Vertex Shader Position: get vertex attribute 41

6.4 Processing the PPM Colour File . 41
6.4.1 PPM Common Status Codes and Parsers: parse ppm error 41
6.4.2 Loading the Texture: load texture . 42
6.4.3 Loading the Image from the File: load image 42
6.4.4 Parsing the PPM Header Section: read hdr 42
6.4.5 Parsing Assistant and Loading: parse assist 43
6.4.6 Reading Pixel Data: UNPACK DATA and read px data 45

6.5 Argument-Processing and User-Engagement 45
6.5.1 Common Enumerators and Helpers: Bit-by-Bit Management and Common

Error Codes . 46
6.5.2 Common Argument Error Status Code Parser: parse args error 46
6.5.3 The Primary Argument-Processor: process args 46
6.5.4 The Argument Sub-Processor: arg subprocessor 47
6.5.5 Shared Auxiliary Operand-Parsing Wrapper Functions 48
6.5.6 User-Engagement: Greeting . 51
6.5.7 User-Engagement: Argument Listing . 52

6.6 The General furakutaru Runtime . 52
6.6.1 Default System Values: set system defaults 52
6.6.2 Respecting the Input Configuration File: setup init vals 53
6.6.3 The OS Entry-Point: int main (int argc, char ** argv) 53
6.6.4 Controlling the Rotation: set rotation matrix 55
6.6.5 The Blocking Event Loop: ev wait . 55
6.6.6 Reset the Renderer to its Initial State: reset render state 56
6.6.7 Uniform-Setter Wrapper Functions: 1i, 1f, and 2f 56
6.6.8 The Generic Key-Code Handler: keycode handle gen 56
6.6.9 Julia Set-Specific Key-Handling: keycode handle julia 58
6.6.10 Ensuring the Health of the Render State: degree change 58
6.6.11 Extra-Verbose Reporting: verbose report 60
6.6.12 Printing Information On-Request: print info 61
6.6.13 The Render Update: update . 61

6.7 Saving, Importing, and Exporting Fractals 62
6.7.1 The Common Status Interface for Long-Term Storage Actions with Related

Parsers: export status and parse export status 62

6.7.2 Exporting an image as a furakutaru CSV: csv export 62
6.7.3 Constructing a Pseudo-Random Path: construct export path 62
6.7.4 Saving a Render to an Image File: image export 63
6.7.5 Importing a Render from a furakutaru-Specific CSV: import csv 65
6.7.6 Loading a File into the CSV Buffer: load csv buffer 65
6.7.7 Parsing the CSV Buffer: import subprocessor 65

Appendices 68
D Source Code Listing . 68

IV Testing and Appraisal 69

7 System Testing under Normal Conditions 70
7.1 Rendering of the Mandelbrot Set to an Arbitrary Degree 70
7.2 Rendering of the Julia Set to an Arbitrary Degree and Seed 71
7.3 Exporting and Important a Fractal to Permanent Storage as Comma-

Separated Values . 71
7.4 Exporting a Fractal as a TGA Image . 72
7.5 Loading a Custom Colour Profile . 72
7.6 Providing an On-Demand Information-Dump 72

8 System Testing under Erroneous Conditions 75
8.1 Memory-Management . 75
8.2 Initialisation . 75

8.2.1 No Valid X Display . 75
8.2.2 OpenGL is Unsupported by the X Server . 76
8.2.3 A GLSL Shader Could not be Compiled . 77
8.2.4 The GLSL Version is Unsupported . 77

8.3 File System Restrictions . 77
8.3.1 Attempting to Write to a Forbidden Directory 77
8.3.2 Attempting to Load a Configuration from a Forbidden Directory 78

8.4 Argument-Processing Errors . 78
8.4.1 An Argument Double-Definition . 78
8.4.2 Missing Operands . 79
8.4.3 Invalid Operands . 79
8.4.4 Unrecognised Argument/Op-Code . 79

9 Appraisal and Client-Feedback 80

Cited Works 81

Stage I

Analysis

Release Copy Page 1

Stage I: Analysis furakutaru Oliver Dixon

Section 1

Introduction to Fractals

From the layman’s perspective, a fractal is a beautiful reflection of nature [Man82] which can
be subject to an infinite zoom, revealing intricate and somewhat mysterious patterns. The most
popular of these is known as a “Mandelbrot Set”, visualised below.

(a) The Initial View (b) Slightly Zoomed (c) Recurrence of (a)

Figure 1.1: The Mandelbrot Set at Three Levels of Zoom

From a mathematicians viewpoint however, fractals are far more impressive and beautiful subsets
of the Euclidean space which possess the property of self-similarity [Hut81], hence creating the
colloquially named effect of “infinite zoom”. The systematic study of these irregular and complex
shapes was pioneered by Douady and Hubbard in 1981 to 1985, naming their “Mandelbrot Set” after
Benoit Mandelbrot, who had included an image of the shape in his 1980 chapter [Man80]. However,
the very first visualisation of what is now known as the Mandelbrot Set was published in 1978 by
Brooks and Matelski, whom were considering related sets.

The images were plotted using only the functions available to the phototypesetter. The Mandel-
brot Set is plotted within the bounds of −2 ≤ <(C) ≤ 1

4 ; these are the intersection points with the
real axis [Met94]. The Julia Set is plotted with the constant C = 1

10 + 3
5 i. These ideas and concepts

will be covered in detail throughout the later sections.

(a) The Mandelbrot Set: “The set of C 's such

that f(z) = z2 + C has a stable periodic orbit.”
(b) The Julia Set: “The set E for f(z) = z2 + C

with C = 0.1 + 0.6i.”

Figure 1.2: The Mandelbrot and Julia Sets with their original captions [BM81].

The formal definition of a generic fractal is beyond the scope of this computing project, however
it would be advantageous to have a semi-formal understanding of the more specific fractals which
furakutaru deals with: the Julia and Mandelbrot Sets.

15th March, 2020 Release Copy Page 2

Stage I: Analysis furakutaru Oliver Dixon

1.1 Mathematical Overview: The Mandelbrot Set

When formally defining the Mandelbrot Set, consider the iterative function

zn+1 = (zn)
2

+ c c ∈ C (1.1)

where c is every point to be coloured on the complex plane and z is initialised to 0 (i.e. z0 = 0)
[Dou86]. Defining M to be the Mandelbrot Set, the point c is in the set if, and only if, |zn| remains
bounded for ∀n ∈ N. This can be formally described as

c ∈ M ⇐⇒ lim sup
n→∞

|zn+1| ≤ d (1.2)

where d = 2. In an effort to move towards iterative function composition, now consider the function

Pc(z) = z2 + c c ∈ C (1.3)

and let P n

c
(z) denote Pc(z) applied to itself n times, where n ∈ N.

Additionally, let d be the boundary condition, which can be thought of as the “cut-off” radius
for which a point c no longer belongs to M. The Mandelbrot Set can now be formally defined using
set notation [Lei90].

M = {c ∈ C : ∃d ∈ R
+, ∀n ∈ N, |P c

n
(z0)| ≤ d} (1.4)

d = 2 is selected as the radius, and any value exceeding this will tend to infinity [Ava09]. This
generates the shapes seen in Figure 1.1, hence simplifying the general definition at Equation 1.4.

M = {c ∈ C : ∀n ∈ C, |P c

n
(0)| ≤ 2} (1.5)

With regards to computer graphics, in the event that c ∈ M, it is convention that it is coloured
black, however any distinct colour would be valid. If the inverse is true, the colour of the pixel is
determined by the rate at which it tends to infinity. This achieved by counting the iterations which
are required to determine that the sequence tends to infinity; the algorithm must therefore define
a maximum number of iterations, in the interests of avoiding an infinite loop. If this maximum
is reached and the converge test is inconclusive (i.e. the subsequent points do not have a modulus
less than or equal to d), it is assumed that c ∈ M, and hence is coloured black. The algorithmic
implementation and optimisations, of which there are many, shall be discussed in-detail during a
later section.

1.2 Mathematical Overview: The Julia Set

The Julia Set (and Fatou Set) are sets defined by functions that act regularly and chaotically
respectively. As with the general fractal, a rigorous understanding of the Sets and the terms “regular”
and “chaotic” is out-of-scope for this project [Fel12], however it is important to be aware of the Julia
Set due to its intrinsic relationship to the Mandelbrot Set.

The most popular and visually appealing system of Julia Sets is given by the infinite collection
of complex polynomials1 of the second degree. These behave very similarly to the Mandelbrot Set
and hence form a beautiful connection, to the extent which they have the same iterative function
and colouring methods (see Equation 1.1 in § 1.1). As opposed to the Mandelbrot Set however, c

is an arbitrary complex constant and each point on the complex plane is taken, in-turn, to be the
initial condition of z0.

Due to the freedom provided by the constant c, a wide variety of unique shapes can be created
using the same set of algorithms.

1.3 The Mathematical and Visual Connection Between the

Mandelbrot and Julia Sets

These sets are very much interrelated, to the point which they can share certain patterns in
certain locations on the plane. Recall that the Mandelbrot Set selects the initial condition, z0, to be
zero, while it allows c to be any point on the complex plane. Simultaneously, the Julia Set is quite

1A complex polynomial is a polynomial in which the coefficients and variables are complex.

15th March, 2020 Release Copy Page 3

Stage I: Analysis furakutaru Oliver Dixon

the inverse, such that it allows c to be set to a constant, while stating that z0 must be any point on
the complex plane.

Suppose that once a point is chosen for the Mandelbrot Set, a Julia Set is rendered using the
point for the constant c; this can be referred to as the “seed” of the Julia Set. Overall, the two
shapes are incredibly distinct, however localised regions exhibit very similar visual elements [Lei90];
some fractal-rendering tools such as G.N.U. XaoS2 even enable the user to render a real-time Julia
Set in correspondence with the selection point of the Mandelbrot.

(a) The Mandelbrot Set, centred
at 0.346 + 0.06i

(b) The Julia Set, using the
“seed” c = 0.346 + 0.06i

Figure 1.3: The Mandelbrot and Julia Sets focused upon the same point

1.4 “Multi-Brot” and “Multi-Julia” Sets

Equation 1.1 in § 1.1 stated that the iterative function for a Mandelbrot Set, and by extension
Julia Set, was a quadratic. While this is the most well-known type, “multi-Brot” and “multi-Julia”
sets also exist, such that an arbitrary degree p is used3. “Multi-Brot” sets can be denoted as Mp

[Jun02].
zn+1 = (zn)

p
+ c c ∈ C, p ∈ Z≥ 2 (1.6)

Upon plotting these sets on the complex plane, it can be seen that the value of p denotes the
number of “branches”. More formally, this is the statement that Mp has a rotational symmetry of
p − 1-fold [Sch99].

(a) p = 3 (b) p = 4 (c) p = 5

Figure 1.4: The sets Mp∈{3,4,5} exhibiting rotational symmetry of p − 1

Aside from the general iterative formula (Equation 1.6), “multi-Brot” and “multi-Julia” sets are
subject to identical mathematics as their “p = 2”-counterparts. Rendering algorithms prove to be
slightly different in the general case, however high-quality implementations should be built with the
knowledge of arbitrary degrees.

2G.N.U. XaoS is a popular fractal-rendering software package: http://matek.hu/xaos/doku.php
3It is possible to have p ∈ R cases, however fractional and negative degrees are beyond the scope of this essay.

furakutaru should, however, have the ability to render fractals of a negative degree.

15th March, 2020 Release Copy Page 4

http://matek.hu/xaos/doku.php

Stage I: Analysis furakutaru Oliver Dixon

Section 2

Rendering Solutions

2.1 Analysis of Current Solution

Due to their extreme popularity amongst mathematicians and non-mathematicians alike, many
software packages for generating fractals currently exist. The current and most prevalent software
package is Ultra Fractal, and although fully featured, is not accessible for Linux users1, nor people
who do not wish to pay 99 Euros [Dev18]. This immediately excludes many amateurs and educational
institutions. Additionally, it could be argued that Ultra Fractal does not support the advancement
of the software development industry and fractal education due to its proprietary and commercial
licensing, which further mandates the creation of a small, flexible, free, and open-source alternative.

There are many alternative packages to Ultra Fractal, however they all suffer from various weak-
nesses which would hinder access of the products to large groups of people, whether that be via high
costs or platform-exclusivity. Such Windows-exclusive packages include Apophysis, QuickMAN,
ChaosPro, Chaoscope, and Sterling2, and commercial packages include Frax and Fraksl.

2.2 Proposed Alternative Solution: furakutaru

As mentioned in § 2.1, the various shortcomings of existing packages such as Ultra Fractal
mandate the creation of a lightweight alternative.

2.2.1 Identification of End-Users

The primary end-user of the product is the School of Computing, Creative Technologies, and
Engineering at [redacted] 2 When a lecturer on the Computing course personally expressed his desire
to teach the methods of rendering fractals, he also stated that there existed no all-round software
package that was easy to use, met the requirements of platform-non-exclusivity, and preferably
available at no cost. As the lecturers have a small amount of experience with fractal rendering,
furakutaru should allow high level of flexibility in terms of customisation for those who are capable,
but simultaneously possess basic ease-of-use principles in order to avoid the alienation of people less
familiar. This will be achieved by providing a large range of pre-defined Julia Set configurations,
while also building functionality to handle custom/user-entered parameters.

With regards to the level of interface-familiarity that the lecturers shall experience with furaku-
taru, although it is a rather unfamiliar interface, access to basic functionality will be extremely
simplistic, such that they are presented with a canvas and a plethora of interactive keyboard short-
cuts. Users will also be able to use the built-in command-line help interface when they cannot
trivially find a method of performing the desired operation.

Additionally, as the software is primarily designed for a teaching environment, students must
also be able to use the functionality with relative ease. The goal of furakutaru is to allow users to
focus upon the content with which they are viewing and interacting. Many similar software packages
mandate the exact opposite, forcing the user to concentrate on the potentially convoluted technical
issues which arise as the result of a badly designed and possibly untested interface.

In addition to the very specific case of [redacted], furakutaru also bears the advantage of being
released under an extremely permissive licence: the MIT Licence (see Appendix C), allowing for
the use of the software in any situation by anybody who desires its functionality, without any legal
restrictions. Due to this permissive nature, furakutaru has an incredibly wide potential end-user
group. In recognition of this extremely large and potentially inexperienced user-base, furakutaru
shall provide extensive opportunities for assistance.

1Only Windows and MacOS X are currently supported.
2Further information on the aforementioned School and University can be found at [redacted].

15th March, 2020 Release Copy Page 5

Stage I: Analysis furakutaru Oliver Dixon

2.2.2 Requirements of the Software

Keeping a constant outline of requirements is incredibly important when developing software, as
in a 2002 study, it was shown that approximately 52% of 46 software developers stated requirements
were “rarely updated” in the documentation when a change was made to the software [FL02]. Below
is an exhaustive list of the requirements as defined by the primary client, which not only considers
the needs of the lecturers but also the needs of the less-experienced students.

(i) Generate the Mandelbrot Set to an arbitrary degree, this should be entered interactively but
also have an initial value which can be entered as a command-line parameter;

(ii) Generate the Julia Set to an arbitrary degree, using an arbitrary constant c (see § 1.2 for more
information);

(iii) Allow interactivity with the generated renders, such that the user is able to pan, rotate, and
zoom;

(iv) Provide a range of “pre-sets” for items (i), (ii), and (v), allowing inexperienced students to
explore basic renders;

(v) Include features allowing the user to edit the colouring of the renders, providing the ability to
manually enter colour values.

(vi) Include a feature to save the current render as an image to permanent storage, such as a local
hard-disk or network file-system.

(vii) Provide features to load and save fractal configurations from portable text files, allowing lec-
turers to distribute a single configuration to many students.

2.2.3 Acceptable Limitations of the Software

In addition to the explicit requirements outlined in § 2.2.2, the customer has stated a number of
features which they explicitly do not require.

(i) There is no requirement to save an animation of a render to disk3;

(ii) There is no requirement to create a “pseudo-three-dimensional” effect, as this is irrelevant in
the mathematics of fractals4;

(iii) Additionally, it is not a requirement that users are able to switch between projection planes;
the standard µ projection is completely adequate.

2.2.4 Data Sources and Destinations

Due to the nature of the program, furakutaru deals with very little permanent data (i.e. data
that is not stored in R.A.M.). Most of the current systems mentioned in § 2.1 are very similar,
however furakutaru aims to increase the autonomy and ease of loading and saving fractals in various
states, rather than the user having to manually save formulas to a text file. furakutaru will also
offer a wide variety of settings for elements of the program which are not directly related to the
fractal-rendering process.

furakutaru will store its configuration files in the home directory of the user as “dot-files” [War14]
on UNIX-like systems in the basic CSV 5 format, chosen due to its extreme simplicity and human-
readability [Nur+09]; the exact syntax shall be examined further in the context of furakutaru in
later sections. Below is a list of configuration file-types which should be saved and interpreted. In
the interest of user-friendliness and general usability, it is also a requirement that the user is able to
specify a directory to and from which files should be saved and loaded.

3Additionally, this superfluous functionality would be impractical from a developer’s perspective due to the com-
plexity of video formats.

4This refers to rotating a render around the real or imaginary axis, creating a “pseudo-three-dimensional” effect
[Nor89]. The pseudo nature of this render is due to the rendering process by which the fractal is rendered in two
dimensions, then is artificially projected onto a three-dimensional plane using some parameter, such as the colour, for
the z positing.

5CSV is the “Comma-Separated Value” Format, wherein raw values are separated by the comma delimiter.

15th March, 2020 Release Copy Page 6

Stage I: Analysis furakutaru Oliver Dixon

(i) Fractal Configuration: this is the most immediately obvious type of configuration file. It
originates from users saving fractals from within furakutaru, and can be opened at a later date
to restore the exact state. This fractal can then be interacted with in the same fashion as any
other render;

(ii) Colour Palette: this originates from users defining their own colours from outside of the appli-
cation, as the format proves to be so simplistic that users can directly input red-green-blue-
encoded colours. Alpha values will not be supported. Colours will be stored using the PPM
format in a one-dimensional format: 2nx1 dimensions.

Additionally, non-text binary information can be exported from furakutaru, such as the images
of rendered fractals.

2.2.5 Data Volumes

As the main data is human-readable text, furakutaru will create an extremely small data-footprint
on the user’s storage medium, unless they were to create an absurdly unrealistic amount of data.
Although a reasonable computer will be required to run the rendering processes, the application
will be incredibly undemanding with regards to permanent data, and only may be strenuous to any
modern storage medium if the user exports multiple-thousand images.

2.2.6 Data Dictionaries

The basic fractal-configuration file will consist of the data required by furakutaru, and no other
metadata. If a user provides any file under the claim it is a valid furakutaru CSV, it will be assumed
as such until an error is found in parsing.

Colour files should consist of the standard PPM header, followed by the pixel data. This is shown
in Figure 2.1. The specifics of parsing a PPM file are discussed in the Design section.

The P.P.M. Format

Signature/Magic Number: "P6"

Whitespace

A.S.C.I.I.-Formatted Width

Whitespace

A.S.C.I.I.-Formatted Height

Whitespace

A.S.C.I.I.-Formatted Colour Depth

Whitespace, Singular

Pixel/Raster Data

Figure 2.1: The PPM format, retrieved from [The16]. The pixel stream is uncompressed.

2.2.7 Use-Cases

Use-cases are a list of steps in which the actions between an “actor” and a system are described.
The actor is typically representative of the user [Coc00], while the system refers to the software. Be-
low, three goals are defined, and the required interaction between the actor and system is described.

• Rendering a custom Julia Set and save the configuration to a storage medium.

(i) The actor initialises the system;

(ii) The actor selects the “Julia Set” option;

(iii) The system allows the actor the option to enter a focus point/“seed” and degree. The
system initially provides the user with defaults;

(iv) The actor confirms their choice of parameters;

(v) The system renders the fractal to the screen;

15th March, 2020 Release Copy Page 7

Stage I: Analysis furakutaru Oliver Dixon

(vi) The actor selects the appropriate option to save the current fractal configuration to a
storage medium;

(vii) The actor enters a file path and confirms their intention to save;

(viii) The system takes the current parameters and writes a fractal configuration file at the
specified path.

• Interactively rotating a pre-existing fractal configuration, followed by saving an image to a
storage medium.

(i) The actor initialises the system;

(ii) The actor selects the appropriate option to load an existing fractal configuration;

(iii) The system loads the fractal configuration and displays the appropriate on-screen render;

(iv) The actor selects the appropriate option to rotate the fractal, and enters an appropriate
degree of rotation;

(v) The system re-renders the fractal with the specified rotation applied;

(vi) The actor locates the option to save the current render as an image, and enters a file path
for the new image;

(vii) The system saves the current buffer contents to the specified path as an image.

• Plotting a “multi-Brot” (§ 1.4) set.

(i) The actor initialises the system;

(ii) The system presents the actor with a set of rendering options

(iii) The actor selects a Mandelbrot Set and specifies the degree of the rendering polynomial;

(iv) The system interprets the parameters and renders the fractal to the screen.

2.2.8 Objectives

The following S.M.A.R.T. targets6 outline the specific objectives that must be completed in
order to satisfy the user, whose basic requirements were outlined in § 2.2.2. Objectives are placed
into three categories:

• System Objectives

(i) The system shall have the functionality to dump information concerning the render. This
should include common elements such as the type of set, degree, zoom level, and rotation
amount;

(ii) The rendering system shall provide “pre-sets” for colour palettes and popular fractal
configurations;

(iii) Include the functionality to save fractal configurations in their exact state to be shared
and opened.

• Processing Objectives

(i) Render both the Mandelbrot and Julia Sets;

(ii) Correctly read and interpret the configuration files outlined in § 2.2.6;

(iii) Respond correctly to external events sent by the Desktop Environment, such as an inval-
idation through the user resizing or moving the window.

• User Objectives

(i) Provide the user with the option to save the current render as an image;

(ii) Allow the user to pan, rotate, and zoom into the render;

(iii) Allow the user to enter an arbitrary degree for the render function.

See Appendix B for the client’s approval of these objectives and a questionnaire conducted to
solidify the aims.

6S.M.A.R.T. targets are a way of setting high-quality targets to maximise their chance of achievement. The
acronym S.M.A.R.T. stands in-place of “specific, measurable, attainable/achievable, relevant/realistic, and time-
bound” [HG00].

15th March, 2020 Release Copy Page 8

Stage I: Analysis furakutaru Oliver Dixon

2.2.9 Potential Solutions

There are a countless amount of technology stacks which enable a graphical user-interface, how-
ever it is incredibly important to select the correct option. As furakutaru aims to be as platform-
independent and high-performance as possible, it was known from the outset of the development
that a device-independent method of direct hardware access must be utilised.

This creates a slight contradiction however, as low-level access does not commonly allow for
platform-non-exclusivity, while high-level access often severely hinders performance due to the over-
abundance of abstraction layers. This gap has become less prevalent in recent years however, as
languages running under virtual machines have seen significant developments with respect to perfor-
mance. In a 2003 paper, research into the execution times of Java versus C and Fortran showed that
compiled languages held negligible advantages over the V.M. candidate [Bul+03]. Simultaneously, a
2005 paper found that Python, while somewhat viable for parallel-processing scientific applications,
is only optimal when combined with other languages for the high-intensity computations [CLM05].

In addition to the language, considerations also need to be made with regards to the programming
interface. Lower-level languages such as C do not contain any sort of graphical abilities in its
standard library, whereas the aforementioned higher-level languages such as Java and Python ship
with G.U.I. capabilities much closer to the core language — Java uses A.W.T. (Abstract Window
Toolkit) and Swing [Loy+02] while Python uses Tkinter [Lut01].

Due to the computationally intensive nature of furakutaru, a layer for high-performance rendering
is also required. The Simple DirectMedia Layer, commonly known as S.D.L., is a popular candidate
due to its lightweight footprint in addition to its simple programming interface [Mit13]. A more basic
approach is the XCB interfacing library for the X windowing system, which provides extremely low-
level access to a client-server windowing environment [JR93], however this approach is generally
infeasible due to time constraints and the amount of code required to have a fully functioning
application. This can be somewhat mitigated by OpenGL (Open Graphics Library), as it is a layer
that resides on a windowing interface, allowing direct manipulation of the hardware. As a fractal’s
pixels are rendered independently, hardware acceleration is a requirement due to its ability to execute
the colouring algorithms in parallel — this is especially true on modern graphics-processing units
[YHL11].

Below is a consolidation of the discussed approaches in order to conclude the advantages and
disadvantages.

• Python and OpenGL. This approach would provide a portable and timely software solution,
as the Python virtual machine has the capability to run on any modern, mainstream operat-
ing system. While OpenGL would also provide a fast hardware-interfacing layer, the severe
performance issues of Python renders this to be an unlikely candidate due to the nature of the
application and its explicit focus on speed;

• Java and OpenGL in addition to a standard windowing library. Similar to the
previous solution, a Java-based solution would provide an extremely portable solution which
would possess the advantage of having the ability to execute on anything for which the Java
virtual machine can be compiled. Such a solution would also provide useful features such
as garbage collection and an object-orientated approach, allowing for the clean structuring
of complex programs. Unfortunately, this proposal suffers from the issue of the heavyweight
nature of the Java virtual machine, such that furakutaru should not be recourse-intensive;

• C and The Simple DirectMedia Layer. A minimalist and lightweight approach, using the
Simple DirectMedia Layer on a C base would allow for extremely low-level and fast access to
rendering. Additionally, the Simple DirectMedia Layer is designed, by nature, to leave a very
small footprint. The limitations suffered from this approach include the inability for S.D.L. to
directly access and manipulate the hardware without additional layers, hence disallowing all
hardware-accelerated parallelisation;

• C and XCB with OpenGL. A similar approach to the previous description, a C -based ap-
proach utilising the X11 window manager via XCB allows for the lowest amount of abstraction
possible. This minimalistic approach enables the maximum performance, and also provides
direct hooks for the OpenGL subsystem.

From the candidates outlined above, C and XCB with OpenGL has been selected as the most
suitable contender for developing the application. Its lightweight nature allows the possibility for a
near-zero footprint on modern systems, in addition to its low levels of abstraction enabling maximum
performance via hardware acceleration and parallelisation while incurring minimal overhead.

15th March, 2020 Release Copy Page 9

Stage I: Analysis furakutaru Oliver Dixon

Appendix A

Syntax Specifications for Configuration
Files

A.1 Fractal Configuration Syntax

• Angle of Rotation. The angle of rotation field denotes the number of degrees, in the range
of zero to three-hundred-and-sixty, the amount to which a fractal is rotated past the positive
x-axis. The initial value is zero, and the actual value can be floating point.

• Degree of Polynomial. The degree of polynomial field stores the greatest exponent of z in
the generator-polynomial (see Equation 1.6 and § 1.4). This holds an initial value of two and
otherwise must be any integer other than -1, 0, or 1.

• Maximum Iterations. Maximum iterations denotes the number of iterations must be used
for determining the membership of a point in the set (set § 1.1). Initially holding a value of
1000, the field is an unsigned natural number, excluding zero.

• Fractal Style. The fractal style field is for storing the type of fractal, whether that be a Julia
or Mandelbrot Set. This is stored as a nullable string-enumerator, such that valid values are
MANDELBROT (‘m’) and JULIA (‘j’).

• Constant/Seed. Only applicable for Julia Sets, the constant field stores the seed from which
to generate the Julia Set. See § 1.2 for more information. This is stored as a complex number
with a default value of zero. Complex numbers will be stored as an separate values of their
real and imaginary parts, as the CSV format does not have any regard for complex numbers:
[<(z), =(z)]. A lack of complex number support is common in even more comprehensive
formats, such as J.S.O.N. and X.M.L. [Dro19].

• Lower-Left-Most and Upper-Right-Most Points. Stored as complex numbers, these two
fields store the lower-left-most and upper-right-most points. This allows the canvas state to
be saved and restored while maintaining the correct viewpoint. The fields have initial values
of − 5

2 − 3
2 i and 1

2 + 3
2 i respectively.

• Zoom Factor. Applicable for all renders, this value determines the extent to which the fractal
has been zoomed. It is a single floating-point real number with the initial value of 2.2.

15th March, 2020 Release Copy Page 10

Stage I: Analysis furakutaru Oliver Dixon

Appendix B

E-Mail Correspondence Regarding
Objective Approval and Client

Questionnaire

B.1 Initial Meeting and Questionnaire

The following is an exchange between myself and the Client, in which the Client completed an
initial questionnaire regarding their desires for furakutaru. The included document is a transcription
of the questionnaire question-and-response sheet.

(Q.) On which platforms and/or operating systems do you require the

Fractal-Rendering Systems?

(A.) "Our labs mainly make use of Linux, and other UNIX-like systems, primarily

used for teaching the programming and security modules. Support for Mac

OS X would be somewhat-desirable, as the Media Labs are Mac-exclusive,

however the support for Linux and other P.O.S.I.X.-compliant systems is

the first priority."

(Q.) As with all mathematical and visual calculations, fractal-computation can

be intensive. What sort of hardware should the System target?

(A.) "Many of our labs have recently received dedicated graphics-processing

units to facilitate the Games-Programming modules. Programming with

Mathematics shall also be taught in these labs, so whilst the System

should be as lightweight as possible, it should also take advantage of

the high-spec hardware available to the University."

(Q.) Is it of significant importance that users are able to save and re-load

fractal configurations to and fro permanent storage?

(A.) "Our modules are generally taught over long periods of time. In addition

to the ability to have pre-sets, it would be incredibly advantageous if

a user was capable of saving a fractal configuration for later

interactions. It would also be of great value if the System was capable

of exporting renders to a common image format, such as P.N.G."

(Q.) You mention the concept of a user interacting with a fractal. What

operations do you desire in this regard?

(A.) "Basic exploration is a must, including panning and zooming. Other

facilities are highly appreciated and will surely prove useful, however

the two integral elements of interaction are most important to our

use-case. The System must also allow a user to request information

regarding the current fractal, which consists of a data-dump displaying

the various properties of the current render. Users should also be

allowed to dynamically change the maximum iteration count."

(Q.) The Mandelbrot and Julia Sets are the most common in the fractal

communities. Should the System possess the ability to generate any

additional fractal configurations, such as a Newton Fractal or

Sierpinski Triangle?

(A.) "The Mandelbrot and Julia Sets are completely adequate for our use-cases

at the University. However, it would be interesting and

potentially useful if the System was capable of rendering the

aforementioned fractals in differing degrees, including both negative

and positive integer exponents."

(Q.) Are there any additional features which the System should include?

(A.) "Colouring always struck me as an important feature of fractals. In

addition to providing a higher aesthetic value, I see colour as a

15th March, 2020 Release Copy Page 11

Stage I: Analysis furakutaru Oliver Dixon

convenient method of teaching the concept of indexing into a

one-dimensional texture. A single colour configuration would be

satisfactory, however it would be well-received if the System was able

to load various colour configurations without requiring a

re-compilation."

B.2 Conclusive E-Mail

The following verbatim text was taken from an e-mail conversation between myself and the Client
on 11th July, 2019, confirming the validity of the objectives that had been defined. This exchange
was drafted as a summary of the above questionnaire.

From: DIX18002469 - Oliver Dixon

Sent: 11 July 2019 05:52

To: [REDACTED]

Subject: Regarding the *furakutaru* Objectives

Dear [REDACTED];

Please see below for the list of objectives that have been outlined for your fractal-

rendering software.

-- The system shall have a "status" overlay, displaying information regarding the render;

-- The rendering system shall provide "pre-sets" for colour palettes and popular fractal

configurations;

-- Include the functionality to save fractal configurations in their exact state to be

shared and opened;

-- Render both the Mandelbrot and Julia sets;

-- Correctly read and interpret the configuration files;

-- Possess the ability to use custom and externally defined colour palettes;

-- Provide the user with the option to save the current render as an image;

-- Allow the user to pan, rotate, and zoom into the render;

-- Allow the user to enter an arbitrary degree for the render function.

It would be helpful to know whether the objectives are to your and the University’s

satisfaction.

I thank you in advance and look forward to your response.

Yours Sincerely,

Oliver Dixon.

From: [REDACTED]

Sent: 11 July 2019 13:53

To: DIX18002469 - Oliver Dixon

Subject: RE: Regarding the *furakutaru* Objectives

Dear Oliver, thank you for the listed objectives. I confirm these are to the satisfaction

of myself and the University. Additionally, I should mention that while the rendering

of only the Mandelbrot and Julia sets are entirely satisfactory, the inclusion of

supplementary fractal presets is welcomed.

Yours Sincerely,

[REDACTED]

15th March, 2020 Release Copy Page 12

Stage I: Analysis furakutaru Oliver Dixon

Appendix C

MIT Licence
The following licence text was imported, in-verbatim, from the furakutaru LICENSE file.

MIT License

Copyright (c) 2019 Oliver Dixon

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all

copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

SOFTWARE.

. . . and don’t be evil . . .

15th March, 2020 Release Copy Page 13

Stage II

Design

Release Copy Page 14

Stage II: Design furakutaru Oliver Dixon

Section 3

Overall System Design

3.1 Overview of the System

The furakutaru System should interface with the user using primarily visual means, as it is an
aesthetically focused application; command-line arguments should also be interpreted to provide an
initial state of the render and interface. The System will be comprised of a front-end rendering view,
in which the visual representation of the Set is presented, and the OpenGL processes which execute,
in parallel, on the dedicated Graphics-Processing Unit cores. Upon application instantiation, a user-
customisable render is displayed, and once the loading is complete, the user is allowed to zoom, pan,
and rotate the render using their keyboard. Figure 3.1 visualises the ways in which the furakutaru
system interprets input from various sources, and subsequently distributes the load of calculation to
the various GPU cores.

Multi-threading was considered, such that the user would be able to interact with the previous
render whilst other operations were being performed on another thread, however this was ultimately
abandoned due to its ineffectiveness, as software-implemented multi-threading is mostly emulated
on the CPU, and thus offers little actual performance gain. By design, OpenGL pixel-independent
operations are performed on separate GPU cores due to the design of the OpenGL implementa-
tion [Vas10]; this renders the application, although not multi-threaded in a traditional sense, capable
of parallel-processing nonetheless.

The Set-rendering and colouring algorithms, described in Appendix 4, are to be implemented
using the OpenGL Shader Language, commonly abbreviated GLSL The C-like language, in addition
to natively supporting mass-parallel execution across all available GPU cores, effectively enables
the programmer to write a modularised, and thus easily maintainable, code-base, such that the
rendering and application-control algorithms are kept entirely separate.1

OpenGL Subsystem

Pre-Defined

Configurations
User Input

furakutaru

Core #1 Core #2 Core #4Core #3

Multi-Core

Graphics-Processing

Unit #1

Core #1 Core #2 Core #4Core #3

Multi-Core

Graphics-Processing

Unit #2

Figure 3.1: A Hierarchical Diagram demonstrating the ways in which both the configuration files
and the user interact with furakutaru, and how that is subsequently distributed to the various GPU
cores. In reality, thousands of cores would exist on a single GPU [ND10].

1As C is a procedural language, and thus has no concept of object-orientation or a class-model, good programming
practices are integral to ensure maintainability of the code. An example of this is assuming a function which takes a
pointer to a structure to be a method and class respectively.

15th March, 2020 Release Copy Page 15

Stage II: Design furakutaru Oliver Dixon

3.2 User-Interaction with the System and HCI Rationale

As briefly mentioned in the Analysis, furakutaru should support, at a minimum, the ability for
users to rotate, pan, zoom, create fractals, and load fractals. The ability to export fractals as images
is a desirable feature for the aesthetic value, however as furakutaru is primarily designed as an
educational tool, the such an ability is not a priority. Figure 3.2 summaries the methods in which a
user can interact with the System, and a non-comprehensive list of the possible actions.

Rotate

Pan

Zoom

Create

Load

Command-Line

Arguments

Rendering Area via

Keyboard Shortcuts

Rendering

Manager/Daemon

Input

Manager/Daemon

Figure 3.2: A representation of the relationships between an end-user, the furakutaru daemons, and
the rendering system.

As furakutaru attempts to be minimal, it does not use a standard user-interface design library or
framework, such as the C# WinForms or Java Swing. This creates the dilemma of the user-interface,
as it all must be manually implemented in a non-standard fashion, which is likely irrespective of
the windowing manager under which it is being executed. Minimalistic window managers such
as i3—the windowing manager of the test system—or something as heavy as GNOME have very
different methods of displaying various form-like elements, such as windows, combo boxes, and
buttons. In order to mitigate the discrepancies between window managers, much of the furakutaru
human-computer interaction will be performed through keyboard shortcuts, activated by the user
when focused on the main rendering area.

This design principle of keyboard-exclusivity has been adopted throughout many applications
[LR98] due to the additional speed it offers, in addition to the fact that many UNIX users—the
primary target group of furakutaru—are accustomed to using terminal-only applications, in which
the keyboard is ubiquitous.

It is because of this that an extensive range of command-line options and switches should be
implemented, which allows the user to specify the initial state of the application, in addition to
controlling specific options.

3.2.1 The Command-Line Interface

A well-documented and flexible command-line interface allows users to unambiguously control
the furakutaru system, but also incorporate its usage into automatic tasks, such as shell scripts.
Figure 3.3 presents a simple command-line invocation over a remote connection, demonstrating the
usefulness of a strong command-line interface for a UNIX-like environment.

$ ssh name@workstation

$ export DISPLAY=:0

$./furakutaru --type mandelbrot --degree 5 --lock

Figure 3.3: A simple command-line invocation of furakutaru on an X server via a Secure Shell
connection, instructing the render to place a Mandelbrot Set of the fifth degree, and lock it from
receiving any sort of input to pan, rotate, or zoom the image.

15th March, 2020 Release Copy Page 16

Stage II: Design furakutaru Oliver Dixon

The details of the command-line interface, including a comprehensive listing of the options and
their respective uses and implementations, will be discussed in the Technical Implementation stage.
Figure 3.5 shows the way in which the System can be initiated to a specific state, and then controlled
with keyboard triggers.

For features which require some level of interaction, such as the input of a file path from which to
load a fractal configuration, can also be entered via the command-line in the default input buffer—
stdin. Although not making use of a full graphical user-interface, this method of input is a reliable
and universal method of accepting input from the user, it does not require an X server to be running
on the machine issuing commands, as shown in Figure 3.3. This allows for a remote machine to
continue controlling the operations of furakutaru not just for its invocation, but also throughout its
execution.

3.2.2 Feedback from the Renderer

The HCI philosophy of furakutaru also mandates that the user must be constantly able to retrieve
information regarding the current state of the render. Figure 3.6 shows an example of a user using
a pre-defined keyboard shortcut to request feedback. In practice, the feedback should be far more
comprehensive, showing any additional information that may be useful, such as the configuration file
from which the current fractal originates. If verbosity was requested upon command-line invocation,
information should be printed to feedback buffer whenever a change to the render is made due to a
keyboard shortcut, such as a rotate or zoom—c.f. Figure 3.7.

This design philosophy is heavily inspired by that of the UNIX Set of Principles, originally
described in 1974 [MPT74].

1. Make each program do one thing well. To do a new job, build afresh rather than
complicate old programs by adding new “features”;

2. Expect the output of every program to become the input to another, as yet unknown,
program. Don’t clutter output with extraneous information. Avoid stringently colum-
nar or binary input formats. Don’t insist on interactive input;

3. Design and build software, even operating systems, to be tried early, ideally within
weeks. Don’t hesitate to throw away the clumsy parts and rebuild them;

4. Use tools in preference to unskilled help to lighten a programming task, even if you
have to detour to build the tools and expect to throw some of them out after you’ve
finished using them.

Most importantly, however, is a further comment made in 1994, in which the significance of a
‘universal interface’ is described, allowing I./O. congruency between otherwise-unrelated applications
[Sal94].

“This is the UNIX philosophy: Write programs that do one thing and do it well. Write programs
to work together. Write programs to handle text streams, because that is a universal
interface.”

3.2.3 Input Validation and Sanitisation

When a user invokes an action requiring additional interaction, such as the input of a file path,
it is integral that the data provided is checked for validity; this is to ensure the integrity of the state
of furakutaru at all times. Attempting to read from files that do not exist, or even memory which is
disallowed, could lead to a segmentation fault and subsequent complete crash of the System2.

Below is a list of both valid and erroneous inputs to various prompts, and the ways in which
they should be handled by the System. An example of the latter can be seen in Figure 3.4.

2An unexpected shutdown, such as one due to a SIGSEGV (segmentation fault/violation), could lead to subsequent
issues on older operating systems with inferior memory management. Although modern systems typically clean up
memory after a process exits, by any means, some archaic or embedded systems do not clean the leakage [Dhu+03].

15th March, 2020 Release Copy Page 17

Stage II: Design furakutaru Oliver Dixon

• “Enter the path from which to load the fractal configuration: /home/user/myfractal.frac”.
This is a valid input, providing the file exists and the user under which furakutaru is running
has read permissions. The System should proceed to open, load, interpret, and close the file.

• “Enter a fractal type; (m)andelbrot or (j)ulia: yes”. This is an erroneous response, as the
choice of ‘M’ or ‘J’ was clearly given in the prompt. In this event, either a default should be
assumed, or an error message should be issued and the interactive operation halted.

• “Enter a positive integer for the fractal degree: 2.5”. This is another erroneous response, as
the given data is not of the request data-type. An error should be issued, in addition to a
system-issued error thrown by a standard string-to-integer function.

$./furakutaru

Enter a positive integer for the fractal degree:

2.5

Error: invalid data-type, ‘2.5’.

Enter a positive integer for the fractal degree: awaiting input

Figure 3.4: An example error message caused by a user’s inability to enter a positive integer.

15th March, 2020 Release Copy Page 18

Stage II: Design furakutaru Oliver Dixon

furakutaru Design Mock-Up

State A State B State C

Command-Line

Arguments

State A

Keyboard

Shortcut A

Keyboard

Shortcut B

Figure 3.5: A simple interaction between the furakutaru system and the various methods of input.
The command-line arguments resulted in State A, and subsequent user-inputted keyboard shortcuts
are used to switch between the State B and State C.

furakutaru Design Mock-Up

State AState A

User Requests

Feedback

$./furakutaru

[feedback requested]

TYPE: MANDELBROT

DEGREE: 5

COLOURS: DEFAULT

Figure 3.6: In this example, ‘State A’ represents a Mandelbrot Set of the fifth degree, rendered with
the default colour scheme. Upon requesting feedback from the renderer, a concise, human-readable
report is output to the console—usually, on UNIX-like systems, this is stdout.

furakutaru Design Mock-Up

$./furakutaru

[state change]

NEW STATE: JULIA

DEGREE: 4

State B

$./furakutaru

[state change]

NEW STATE: JULIA

DEGREE: 7

State CState A
state-changing

keystroke

Figure 3.7: With the flag of verbosity, furakutaru should report every change to the current render.
During development, this could include time to render frames, and any other debugging messages.

15th March, 2020 Release Copy Page 19

Stage II: Design furakutaru Oliver Dixon

Section 4

Plotting and Colouring Algorithms

4.1 The Mandelbrot Set: The Escape-Time Algorithm

The Escape-Time algorithm, or E.T.A., is the most popular method of fractal rendering due to
its inherent simplicity. Described in the analysis, the algorithm uses a threshold and a maximum
iteration count to determine the convergent or divergent nature of any particular point. Algorithm 1
describes a basic, unoptimised implementation of the Escape-Time algorithm.

Algorithm 1 The basic Escape-Time algorithm mapping to an R
2 plane. Values should be

normalised in the ranges x : [−2.5, 1] and y : [−1, 1], represented by minx,y and maxx,y. The
draw(x, y, c) pseudo-function draws a pixel of colour c to the position (x, y). The constant t can be
assumed to be equal to ‘2’ in most cases, as this draws the standard Mandelbrot set.

Require: Maximum number of iterations: N ∈ N
1

Require: Threshold for which P ∈M: t ∈ R
+

Require: The number of colours in the palette: C ∈ N>1

Require: A colour palette of size C: palette
1 for all P (x, yi) in the viewport do
2 x0 ← (<(P)−min(x)) / (max(x)−min(x))
3 y0 ← (=(P)−min(y)) / (max(y)−min(y))
4 x← 0
5 y ← 0
6 n← 0
7 while x2 + y2 ≤ t2 and n < N do
8 xtemp ← x2 − y2 + x0

9 y ← 2xy + y0

10 x← xtemp

11 n← n + 1
12 end while
13 draw(x, y, palette[n mod C])
14 end for

This can be further optimised to reduce the number of instructions, specifically multiplications,
inside the inner while loop [HH95]. Other variations of the E.T.A. have been formulated, none of
which are direct optimisations, but rather speed-quality trade-offs, unsuitable for a general-purpose
application [Liu+15].

Algorithm 2 A trivially optimised E.T.A., using the fact that (x + yi)2 = x2 + 2xyi− y2 to reduce
the number of multiplications in the inner loop. For conciseness, the Require statements from
Algorithm 1 have been implicitly inherited here, and only the inner loop and surrounding lines are
shown.

1 while x + y ≤ t2 and n < N do
2 xtemp ← x− y + x0

3 y ← (2xy + y0)2

4 x← (xtemp)2

5 n← n + 1
6 end while

4.2 The Julia Set: The Extended Escape-Time Algorithm

An analogue to the Escape-Time algorithm can be used for rendering the Julia set; this is
attributable to the fact that the Mandelbrot and Julia sets are very similar in their mathematical

15th March, 2020 Release Copy Page 20

Stage II: Design furakutaru Oliver Dixon

nature, sharing many geometric properties which can be reflected by their methods of rendering.
Unlike the basic Escape-Time algorithm, the Extended variant suffers from the need of elementary
trigonometric functions: sine, cosine, and the arc-tangent.

This method of rendering is commonly grouped as an Iterated Function System [HPS91].

Algorithm 3 The pseudocode for rendering the Julia Set to an arbitrary degree n, from an initial
constant c, in which c ∈ M, where M represents the Mandelbrot Set. Complex analysis operators
<, =, and Arg are used respectively to denote the real part, imaginary part, and argument of a
complex number.

Require: Maximum number of iterations: N ∈ N
1

Require: The escape radius, R > 0
Require: The number of colours in the palette: C ∈ N>1

Require: A colour palette of size C: palette
1 for all P (x, yi) in the viewport do
2 x← (<(P) + R) /2R
3 y ← (=(P) + R) /2R
4 n← 0
5 while x2 + y2 < R2 and n < N do
6 xtemp ← (x2 + y2)n/2 cos(nArg(P)) + <(c)
7 y ← (x2 + y2)n/2 sin(nArg(P)) + =(c)
8 x← xtemp

9 n← n + 1
10 end while
11 draw(x, y, palette[n mod C])
12 end for

4.3 Methods of Colouring

In Algorithm 1 and Algorithm 3, the draw function is assumed, such that draw(x, y, colour)

colours the pixel (x, y) with colour, where colour is the dereferenced index of a pre-defined colour
palette, with the element being dependent on the number of iterations performed.

Figure 4.1 presents an extreme exemplar of the severe aliasing which basic colouring can ensue.
Because of this, a variety of aesthetically pleasing methods have colouring have been devised, allowing
a larger colour palette than the basic divergence algorithm would permit [YH04]. Each of the
following algorithms index into a palette to determine the colour of the pixel, however obtain the
index with more novel and unique means than calculating the modulus of the final iteration with
the maximum iterations.

(a) Maximum Iterations → 1000 (b) Maximum Iterations → 100 (c) Maximum Iterations → 10

Figure 4.1: Severe Aliasing caused by the Basic Divergence Colouring Method

4.3.1 Histogram Colouring

Whilst still suffering from the effect of aliasing, Histogram Colouring renders the “banding” as far
less visually significant. This method of colouring also causes the render to become independent of

15th March, 2020 Release Copy Page 21

Stage II: Design furakutaru Oliver Dixon

the maximum iterations chosen. Figure 4.2 shows the same histogram-coloured fractal with differing
iteration limits. This quad-pass nature of the method creates issues for low-performance computers
attempting to render for large viewports, however, as three out of the four passes must iterate
through every pixel.

(a) Maximum Iterations → 10000 (b) Maximum Iterations → 1000 (c) Maximum Iterations → 100

Figure 4.2: The Effect of Histogram Colouring on Identical Plots

The algorithm concerns creating an array map to hold the number of iterations which each pixel
endured before escaping the radius: an array of size n x m, where n and m are the width and height
of the viewport, in pixels. Upon each iteration, as shown in Algorithm 2, the appropriate member
in the two-dimensional array should be populated with the bail-out time.

After the two-dimensional array has been fully populated and the viewport entirely traversed,
the histogram is generated, as shown in the various phases of Algorithm 4 (see overleaf); this involves
taking a summation of the distribution values and creating a normalised value to be used as the
colour palette index.

4.3.2 Re-Normalisation and Linear Interpolation

The very obvious aliasing on differing colours can be visually unappealing. It is possible for
linear interpolation, using a very large bail-out radius—in the order of 28—can be used to create a
smoothened effect [Gar+00], considered to be of greater aesthetic value. The significant difference
is shown in Figure 4.3.

(a) A scene rendered using the
E.T.A. with Histogram Colouring,
as described in § 4.3.1.

(b) The same scene rendered using
the method of Linear Interpolation
to “smooth” the colour changes.

Figure 4.3: The Removal of Aliasing using the Continued Linear Interpolation Method

15th March, 2020 Release Copy Page 22

Stage II: Design furakutaru Oliver Dixon

Algorithm 4 Collate the collected iteration counts for each pixel in a histogram-like structure: the
iteration distribution.

Require: The width and height of the viewport
Require: Maximum number of iterations: N ∈ N

1

Require: A two-dimensional array containing the iteration counts for each pixel

Pass 1 Collate the iteration counts into a basic distribution.

1 x← 0
2 y ← 0
3 repeat
4 repeat
5 c← counts[x][y]
6 dist[c]← dist[c] + 1
7 y ← y + 1
8 until y > height
9 x← x + 1

10 until x > width

Pass 2 Take the summation of all elements in the distribution.

1 sum← 0
2 n← 0
3 repeat
4 sum← sum + dist[c]
5 n← n + 1
6 until n > N

Pass 3 Index the distribution array and normalise the values by the total.

1 x← 0
2 y ← 0
3 repeat
4 repeat
5 i← 0
6 c← counts[x][y]
7 repeat
8 counts[x][y]← counts[x][y] + dist[i]/sum
9 i← i + 1

10 until i > c
11 y ← y + 1
12 until y > height
13 x← x + 1
14 until x > width

15th March, 2020 Release Copy Page 23

Stage II: Design furakutaru Oliver Dixon

The colouring algorithm is based upon the Potential Function; an integral property describing
the relationship between the Mandelbrot and Julia sets—the details of which are beyond the scope
of this project report. The function, denoted as φ(z), is defined as follows, where P is the power
to which the set has been raised, and k is the iteration cardinal. The following series of equations
is the summary of a long derivation; the latter result was derived by selecting a very large bailout
radius, N = 10100, to evaluate the limit [Kim15; Bri88].

φ(z) = lim
k→∞

log |zk|

P k
(4.1)

µ(z) = k − logP

(

log |zk|

log(N)

)

(4.2)

log |zk|

P k
=

log(N)

P µ(z)
(4.3)

Algorithm 5 presents a modified Escape-Time Algorithm, as first shown in Algorithm 1 using
the above results.

Algorithm 5 Pseudocode for rendering a Mandelbrot Set with Smoothened Colouring, adapted
from the Escape-Time Algorithm. The frac function provides the fractional part of a floating-point
number. The interpolate function in a standard linear interpolation, with the purpose of blending
R.G.B. components.

Require: Maximum number of iterations: N ∈ N
1

Require: The bailout radius, t
Require: A colour palette: palette

1 for all P (x, yi) in the viewport do
2 x0 ← (<(P)−min(x)) / (max(x)−min(x))
3 y0 ← (=(P)−min(y)) / (max(y)−min(y))
4 x← 0
5 y ← 0
6 n← 0
7 while x2 + y2 ≤ t2 and n < N do
8 xtemp ← x2 − y2 + x0

9 y ← 2xy + y0

10 x← xtemp

11 n← n + 1
12 end while
13 if n < N then
14 lg ← log(x2 + y2)
15 exp← log(lg/ log(2))/ log(2)
16 n← n + 1− exp
17 end if
18 plot(<(P),=(P), interpolate(palette[floor(n)], palette[floor(n) + 1]), frac(n))
19 end for

Side-Definition The linear interpolation method, interpolate

1 function interpolate(a, b, c)
2 return (1− c)a + cb
3 end function

15th March, 2020 Release Copy Page 24

Stage II: Design furakutaru Oliver Dixon

Section 5

Noteworthy Auxiliary Algorithms
The following sections describe furakutaru algorithms which are mere auxiliary helpers, and do

not serve directly to the rendering of the fractal. These are to be executed exclusively on the CPU,
and thus implemented in C.

5.1 PPM Loader

As mentioned in the Analysis section, colours palettes are to be saved as a one-dimensional
PPM file. As PPM files are capable of storing headers and comments, it is important that the
furakutaru loader is capable of reading them correctly, as an error in parsing could lead to erroneous
rendering, or the more likely situation of complete absence thereof. Algorithm 6 provides a simplified
algorithm for extracting non-comment and non-white-space data from the file, provided it resides in
an in-R.A.M. buffer.

Algorithm 6 Pseudocode for parsing the header of a PPM file. This algorithm overwrites the
original buffer with a parsed one, saving memory.

Require: A null-terminated buffer containing the PPM data: buf.
Require: A constant storing the comment marker. Usually a hash, ‘#’, this is represented by the

constant C CHAR .
1 count← 0
2 char ← 0
3 while ch is valid do
4 ch← next character from buf
5 if ch is not white-space then
6 if ch = C CHAR then
7 while ch is valid and ch is not a new-line character do
8 ch← next character from buf
9 end while

10 end if
11 Next position in buf ← ch
12 count← count + 1
13 end if
14 end while

5.2 Pixel-Retrieval

Similar to Algorithm 6, Algorithm 7 uses a pre-populated buffer to retrieve the pixels from the
data-stream section of the one-dimensional image. This algorithm assumes that all the necessary
safety checks have been performed, and the data in the buffer is valid and of the correct size, as
indicated by the header values.

Algorithm 7 assumes little-endian, however a big-endian implementation would simply need to
perform the bitwise equation in the opposite direction, shifting the blue value by the highest amount,
followed by the green, followed by the red—the latter of which is not shifted.

5.3 The Processing of Command-Line Arguments

As one of the more intricate elements of program-design, the handling of arbitrary, user-entered
strings must be performed with care to ensure robustness and validity. The employment and heavy
reliance of command-line arguments by furakutaru renders the processing of such as an integral factor
which requires the greatest amount of attention. Figure 5.1 displays a flowchart for the top-most
argument-processor, and Figure 5.2 details the argument sub-processor.

15th March, 2020 Release Copy Page 25

Stage II: Design furakutaru Oliver Dixon

Algorithm 7 Assuming little-endian, pack the data from the PPM buffer into a separate pixel array
consisting of R.G.B. values.

Require: A height and width of the buffer. This is assumed to be an accurate representation of
the amount of data in the buffer: height and width respectively.

Require: A pre-populated buffer of pixel data, with the first element of the buffer being the first
byte of pixel data: buf.

Require: A pixel array of the appropriate size to store all loaded pixels: pixels.
1 px count ← width ∗ height
2 red ← -1
3 green ← -1
4 blue ← -1
5 count ← 0
6 for count < px count do
7 red ← buf [count]
8 green ← buf [count + 1]
9 blue ← buf [count + 2]

10 pixels[count] ← ((red & 0xFF) � 16) | ((green & 0xFF) � 8) | (blue & 0xFF)
11 count ← count + 1
12 end for

No

Yes

No

Yes

No

Yes

Yes

No

Report the

Appropriate Error
End

Are there any more

Arguments?

Start

Did the

Sub-Processor

Report an Error?

Get the Next

Argument

Are the Potential

Strings Exhausted?

Propose an Argument

Identifier String

Does the Loaded

Argument Match the

Proposed String?

Call the

Sub-Processor

Figure 5.1: A flowchart demonstrating the top-most argument-processor. See Figure 5.2 for the
sub-processor.

15th March, 2020 Release Copy Page 26

Stage II: Design furakutaru Oliver Dixon

Is the provided

Action valid?

Start
Report the

Appropriate Error
End

No

Call the Appropriate

Auxiliary Function

Does the Auxiliary

Function Report an

Error?

Has the Action

been Encountered?

Yes

Yes

No

Yes

Set the Original Value

Using the Retrun Value

of the Auxiliary Function

No

Figure 5.2: A flowchart demonstrating the sub-processor, responsible for the setting of values using
auxiliary helper functions to set the various data-types, such as floats and integers in a specified
range.

5.4 Finding Suitable Directories

As mentioned throughout the Analysis, it is a client-defined requirement of furakutaru that the
System is capable of outputting multiple types of files to permanent storage. Namely, this includes
a fractal configuration CSV, and a TGA export. The algorithm shown in Figure 5.3 generates a
path to which the System can write, using a predefined ATTEMPT LIMIT constant. In practice, this
can be a reasonably low integer: less than ten.

The algorithm uses a built-in pseudorandom number generator, seeded once using the current
time, to generate random numbers to append to a variable prefix and base directory, suffixed by a
variable extension. This process is repeated until a non-existent path is found, or ATTEMPT LIMIT is
exceeded.

15th March, 2020 Release Copy Page 27

Stage II: Design furakutaru Oliver Dixon

Start

End

Seed the Pseudorandom

Number-Generator with

with the Current Time

Is the R.N.G.

Seeded?

No

Yes

Set the Attempt-Count

to Zero

Has the Attempt

Limit been Exeeced?

Yes Report the

Appropriate Error

No

Propose a Path with

a Random Number

Does the Proposed

Path Exist?

Return the

Path

No

Increment the

Attempt-Count

Yes

Figure 5.3: A flowchart demonstrating the furakutaru algorithm used to generate a pseudorandom
path.

15th March, 2020 Release Copy Page 28

Stage III

Technical Solution

Release Copy Page 29

Stage III: Technical Solution furakutaru Oliver Dixon

Section 6

CPU Code-Listing and Commentary
The code of furakutaru in its entirety is placed in the Appendices at the end of this Stage.

The following Sections provide a commentary of the integral elements of the Source. This chapter
concerns the C code, which is ultimately executed on the CPU, and does not concern direct execution
on the graphics device.

Every function in the presented Source is preceded with summary briefly describing its function,
arguments, return value, and any additional notes or warnings, such as instructions to the caller.

Due to the inherent issues of global variables in medium-to-large projects, the use of global
variables on the stack has been entirely mitigated; furakutaru attempts to retain as manageable
and modular as possible, and global variables do not support, but instead hinder, that effort. The
only exception is granted to the very rare occasion in which OpenGL requires constant access to
an original array of points. Globally defined symbols are restricted to pre-processor declarations,
largely consisting of plain #define statements.

Other common symbols are exclusively signatory, and do not effect execution of the program at
run-time—this includes function prototypes, structures, and enumerator type definitions.

6.1 Common Data Structures

furakutaru utilises various common data structures as a method of managing grouped values.
The most prevalent concerns the state of the general renderer at some point in time, whether that
be the initial state, or a current representation.

Many of the members are obvious, and are discussed at length during the Analysis, such as
the maximum iterations, the centre co-ordinate, and the seed. These values are used extensively
throughout furakutaru as a means of maintaining an asynchronous relationship with the GLSL
Shaders.

Also included are the x disp inf and x fb inf structures, used primarily for the initialisation
and destruction of the OpenGL and X contexts. Source-Code Listing 1 lists these structures.

1 /* struct x_fb_inf: information regarding the visual and frame buffer.
2 * a_pos_addr is the address of the ’a_pos’ input variable in the Vertex Shader. */
3

4 struct x_fb_inf {
5 int v_id;
6 GLXFBConfig fbuf_config;
7 xcb_colormap_t colourmap;
8 GLXDrawable glx_draw;
9 GLXWindow glx_win;
10 GLXContext glx_ctx;
11 GLint a_pos_addr;
12 };
13

14 /* Currently, the only supported fractals are the Mandelbrot and Julia sets. */
15 #define FRACTAL_COUNT (2)
16

17 enum fractal_type {
18 FRAC_UNDEFINED = −1,
19 FRAC_MANDELBROT = 0,
20 FRAC_JULIA = 1
21 };
22

23 /* struct render_state: a bridge between C and the G.L.S.L.\ Shaders; stores the
24 * state of the render at some point in time. */
25

26 struct render_state {
27 GLint max_iterations, degree, angle;
28 GLfloat scale, centre_x, centre_y, seed_x, seed_y;
29 int verbosity, locking;
30 enum fractal_type type;
31 GLuint program;
32 char * colour_path, * out_dir;
33 GLfloat rot_matrix [16]; /* 4x4 matrix */
34 };
35

Source-Code Listing 1: The common data structures used for grouping common attributes through-
out furakutaru.

15th March, 2020 Release Copy Page 30

Stage III: Technical Solution furakutaru Oliver Dixon

6.2 General Initialisation and Clean-Up

This section concerns the elements of furakutaru which control the initialisation of OpenGL and
the connection to the X server using the glX and XCB interfaces. The following list presents the
simplified order-of-operations which must occur to gain a valid OpenGL-accelerated 2-D. drawing
arena.

1. Open the X display and provide the connection to an XCB port;

2. Set XCB as the owner of the event queue—this allows direct event-driven programming through
the interface of XCB, entirely mitigating the need for Xlib post-initialisation;

3. Find and use the first valid frame-buffer configuration1;

4. Initialise a new OpenGL context using the A.P.I. provided by glX. This initialises the OpenGL
subsystem;

5. On some systems, a colour map must be manually created. This is to ensure the correct colour
space is used;

6. Create the X window under the command of XCB;

7. Interfacing with glX, create a drawable area occupying the window where the Set renders can
be drawn.

6.2.1 Initialisation Status Codes

In order to retain a common internal interface through which furakutaru functions can commu-
nicate, the vast majority of functions involved in the initialisation process return not an arbitrary
unnamed numerical value, but a value of type enum init status. As the large majority of error
potential lies in the initialisation of the complex OpenGL A.P.I. instance, Source-Code Listing 2
presents a unified set of known errors which various initialisation functions may return, based on
their status.

Regardless of the function, STATUS OK represents a successful operation, and any other code
indicates a failure, the latter indicating what is usually a fatal signal.

1 enum init_status {
2 STATUS_OK = 0,

3 STATUS_XDISP = −1, /* could not open X display */
4 STATUS_XCBCONN = −2, /* could not get X.C.B.\ connection */
5 STATUS_XCBSCREEN = −3, /* could not find an X.C.B.\ screen */
6 STATUS_FRAMEBUFF = −4, /* could not find any valid frame buffer
7 * configurations */
8 STATUS_OPENGLCTX = −5, /* could not create the OpenGL context */
9 STATUS_COLOURMAP = −6, /* could not create the colour map */
10 STATUS_WINDOW = −7, /* could not create the window: this could mean
11 * an error with xcb_create_window_checked, or
12 * an error with mapping it to the
13 * connection */
14 STATUS_OPENGLSUPP = −8, /* OpenGL is not supported by the X server */
15 STATUS_GLXWIN = −9, /* could not create the glX window */
16 STATUS_MALLOC = −10, /* malloc failed */
17 STATUS_FREAD = −11, /* fread did not read as much as expected */
18 STATUS_FOPEN = −12, /* fopen could not stat or open the file */
19 STATUS_SHLINK = −13, /* shader−program linking failed */
20 STATUS_SHCOMP = −14, /* shader compilation failed */
21 STATUS_OPENGLEXT = −15, /* required OpenGL extensions not supported */
22 STATUS_OPENGLPROG = −16, /* OpenGL ’program’ could not be created */
23 STATUS_VER_ATTR = −17 /* could not get a_pos from the V. shader */
24 };

Source-Code Listing 2: The unified Initialisation Status enumerator, designed to provide a common
interface through which internal furakutaru functions can communicate.

Similar enumerators are used throughout furakutaru for the purpose of grouping status codes for
a particular operation. Tightly coupled with the status enumerators are the functions which parse
the code and provide a user-friendly string which accurately describes the status. Source-Code
Listing 3 presents the first of such a function.

1With modern systems and video drivers, tens—sometimes hundreds—of display configurations are supported,
often differing in resolution and refresh rate. The RandR extension, interfaced with by the command-line utility
xrandr or the OpenGL A.P.I., is able to query the valid frame-buffer configurations on its host system.

15th March, 2020 Release Copy Page 31

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* parse_init_error: returns a human−readable description of an init_status
2 * code. */
3

4 static const char * parse_init_error (enum init_status status)
5 {
6 switch (status) {
7 case STATUS_XDISP: return "could not open X display";
8 case STATUS_XCBCONN: return "could not get X.C.B. connection";
9 case STATUS_XCBSCREEN: return "could not find an X.C.B. screen";
10 case STATUS_FRAMEBUFF: return "could not find any valid " \
11 "frame buffer configurations";
12 case STATUS_OPENGLCTX: return "could not create the " \
13 "OpenGL context";
14 case STATUS_COLOURMAP: return "could not create the colour map";
15 case STATUS_WINDOW: return "could not create the window";
16 case STATUS_OPENGLSUPP: return "OpenGL is not supported by " \
17 "the current X server";
18 case STATUS_GLXWIN: return "could not create the glX window";
19 case STATUS_MALLOC: return "could not allocate memory";
20 case STATUS_FREAD: return "fread did not read as much " \
21 "as expected";
22 case STATUS_FOPEN: return "fopen could not stat the file";
23 case STATUS_SHCOMP: return "the shader could not be " \
24 "compiled";
25 case STATUS_SHLINK: return "the shader could not be linked";
26 case STATUS_OPENGLEXT: return "the current OpenGL does not " \
27 "support the required "\
28 "extensions";
29 case STATUS_OPENGLPROG: return "the OpenGL ’program’ could " \
30 "not be created";
31 case STATUS_VER_ATTR: return "the vertex shader is invalid";
32 default: return "unknown error";
33 }
34 }
35

Source-Code Listing 3: The parser for a init status enumerator code, able to return a human-
readable string.

6.2.2 The Initialisation Assistant: init assistant

The vast majority of the initialisation code is placed in the init assistant function. This is
used to not only keep the entry-point function to a manageable size, but also to reduce the stack
size of the program during execution, as disposable, temporary variables used only for initialisation
can be discarded when they are no longer required2. Source-Code Listing 4 lists the sources for
the helper function. As it produces custom error messages directly to an output device—stdout

or stderr—it can only return a binary success-fail indicator, the latter acting as an indicator for a
fatal, unrecoverable status.

6.2.3 XCB Initialisation: init xcb

furakutaru prefers XCB to Xlib as an interface to the X Windowing System, as Xlib is archaic,
outdated, and bloated. Modern applications written in XCB enjoy a low-footprint and common
programming interface through which they can confer with the X Server implementation.

Unfortunately, the X11 -OpenGL bridge, glX, has a hard requirement of Xlib for the purposes
of initialisation, and a pure XCB solution would mandate a full re-write of glX, and possibly some
parts of OpenGL or the X System. Because of this, furakutaru employs the following stages for
initialisation, aimed at satisfying the ordinances of glX, whilst minimising the effect of Xlib.

The first function performed by the Initialisation Assistant creates a direct connection to the X
server by opening a Display, and handing the connection to the custody of XCB, allowing the latter
to manage the event queue. Source-Code Listing 5 lists the init xcb function.

This function can take an initialised or uninitialised structure as its argument, as all the mem-
bers are initially set to NULL3, or the appropriate equivalent for its datatype. The connection is
retrieved, and the XCB Event Manager is set to the owner of the general Server Event Queue—this
is achieved by the Xlib built-in XSetEventQueueOwner. This function conforms with the Common
Status Interface outlined in Source-Code Listing 2.

2This is important due to the heavy usage of the stack at other points during the initialisation, such as allocating
buffers of up to 4096 characters long.

3In every implementation of the standard library, NULL is defined to be zero cast to a void pointer: #define NULL

(void *)0.

15th March, 2020 Release Copy Page 32

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* [exposed] init_assistant: initialise all the auxiliary elements of the
2 * rendering system −−− X, OpenGL, Shaders, and the Texture. Returns −1 on
3 * error, zero on success. If an error is thrown, there is no need for callers
4 * to perform manual clean−ups. */
5

6 int init_assistant (struct x_disp_inf * disp_inf, struct x_fb_inf *
7 fb_inf, GLuint program_list [FRACTAL_COUNT],
8 const char * colour_path)
9 {
10 enum init_status status = STATUS_OK;
11 enum ppm_status ppm_stat = PPM_OK;
12

13 fb_inf−>a_pos_addr = −1;
14
15 /* initialise X.C.B.\ and OpenGL */
16 if ((status = init_xcb (disp_inf)) != STATUS_OK) {
17 fprintf (stderr, "X.C.B. initialisation error %d: %s\n",
18 status, parse_init_error (status));
19 return −1;
20 }
21

22 if ((status = init_opengl (disp_inf, fb_inf)) != STATUS_OK) {
23 XCloseDisplay (disp_inf−>disp);
24 fprintf (stderr, "OpenGL initialisation error %d: %s\n",
25 status, parse_init_error (status));
26 return −1;
27 }
28

29 /* initialise the OpenGL shaders and get access to the vertex
30 * position */
31 if ((status = init_shaders (program_list)) != STATUS_OK ||
32 (status = get_vertex_attribute (
33 *program_list,
34 & (fb_inf−>a_pos_addr)))
35 != STATUS_OK) {
36 fprintf (stderr, "Shader initialisation error %d: %s\n",
37 status, parse_init_error (status));
38 clean_all (disp_inf, fb_inf, program_list);
39 return −1;
40 }
41

42 /* load the colour texture */
43 if ((ppm_stat = load_texture ((colour_path) ? colour_path :
44 COLOUR_FILE_DEFAULT)) == −1) {
45 fprintf (stderr, "Texture error %d: %s\n", ppm_stat,
46 parse_ppm_error (ppm_stat));
47 clean_all (disp_inf, fb_inf, program_list);
48 return −1;
49 }
50

51 return 0;
52 }
53

Source-Code Listing 4: The general helper function for initialising the sub-components of the System,
including X, OpenGL, and the connection between them.

This function is very unlikely to fail, and would only usually return STATUS XDISP if it was
executed from a virtual teletypewriter (tty) or pseudo-terminal (pts) without the DISPLAY shell
variable appropriately set.

6.2.4 Find an Appropriate X Screen: find xcb screen

As with Xlib, XCB also mandates that an appropriate X screen is selected4. furakuraru auto-
matically assumes the first valid screen as the preference. Source-Code Listing 6 calculates the first
valid screen, from a list provided by Xlib, and provides XCB with its respective I.D.

This function returns -1 if there are no appropriate screens, or zero otherwise. In the Common
Status Interface, this correlates to the STATUS XCBSCREEN and STATUS OK codes respectively.

6.2.5 OpenGL Initialisation: init OpenGL

Assuming the success of the XCB initialisation, the initialisation assistant proceeds to create a
software-bridge between the X connection and the hardware-implemented OpenGL interface. This

4In the context of X Windows, a “screen” refers to a sub-instance of the X server, and not the common assumption
of a different monitor—an arbitrary number of monitors can run on a single screen, and it is very rare that a user
would run multiple screens simultaneously. Because of this, furakutaru regards the first valid screen as the rendering
target.

15th March, 2020 Release Copy Page 33

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* init_xcb: initialise the X.C.B.instance with the display from Xlib. Returns
2 * STATUS_OK on success, anything else is an error. */
3

4 static enum init_status init_xcb (struct x_disp_inf * disp_inf)
5 {
6 const char * disp_id = NULL;
7

8 disp_inf−>screen_id = −1;
9 disp_inf−>disp = NULL;

10 disp_inf−>xcb_screen = NULL;
11 disp_inf−>xcb_conn = NULL;
12

13 /* Open Xlib display. Although X.C.B.\ is preferred throughout, the
14 * initialisation process for OpenGL *requires* Xlib. */
15

16 if ((disp_inf−>disp = XOpenDisplay (disp_id)) == NULL)
17 return STATUS_XDISP;
18

19 /* Grab the X.C.B.\ connection from the Xlib display and set it as the
20 * owner of the event queue. */
21

22 if ((disp_inf−>xcb_conn = XGetXCBConnection (disp_inf−>disp))
23 == NULL) {
24 XCloseDisplay (disp_inf−>disp);
25 return STATUS_XCBCONN;
26 }
27

28 XSetEventQueueOwner (disp_inf−>disp, XCBOwnsEventQueue);
29 if (find_xcb_screen (disp_inf) == −1) {
30 XCloseDisplay (disp_inf−>disp);
31 return STATUS_XCBSCREEN;
32 }
33

34 return STATUS_OK;
35 }
36

Source-Code Listing 5: Establishes a connection between a new Xlib-X connection and the XCB
interface.

1 /* find_xcb_screen: finds and sets the X.C.B.\ screen from the Display,
2 * provided by Xlib. Returns −1 on error, 0 on success. */
3

4 static int find_xcb_screen (struct x_disp_inf * disp_inf)
5 {
6 int screen_id = DefaultScreen (disp_inf−>disp);
7 xcb_screen_iterator_t si =
8 xcb_setup_roots_iterator (
9 xcb_get_setup (disp_inf−>xcb_conn)

10);
11

12 /* iterate down the pool of potential screens */
13 while (si.rem && screen_id > 0) {
14 xcb_screen_next (&si);
15 screen_id−−;
16 }
17

18 disp_inf−>screen_id = screen_id;
19 disp_inf−>xcb_screen = si.data;
20

21 return (!si.data) ? −1 : 0;
22 }
23

Source-Code Listing 6: Detecting the first valid X screen, and providing its I.D. to the XCB instance.

includes querying the contenders for a plausible frame-buffer, and instantiating other appropriate
properties on the X window; this is shown in Source-Code Listing 7. The function also ensures
that the X server supports the OpenGL Extension, as older or non-accelerated Servers cannot be
assumed to have this capability.

6.2.6 Locating an Appropriate Frame-Buffer: find valid fb

As mentioned in the introduction, modern video cards, since the period of Cathode Ray-tube
monitors and T.V.s, have many different modes, many of which differ on resolution and refresh rate.
They often taking the limiting factor of the V.D.U. hardware itself, but also the cable over which the
signal is to be transmitted—for example, H.D.M.I. is incapable of transmitting 4K video in almost

15th March, 2020 Release Copy Page 34

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* init_opengl: initialises a window with the OpenGL context. Returns STATUS_OK on
2 * success, and something else on failure. */
3

4 static enum init_status init_opengl (struct x_disp_inf * disp_inf,
5 struct x_fb_inf * fb_inf)
6 {
7 enum init_status status = STATUS_OK;
8 int sup_dum = 0; /* dummy variable for querying OpenGL support from X */
9 fb_inf−>glx_ctx = 0;
10

11 if (find_valid_fb (disp_inf, fb_inf) == −1)
12 return STATUS_FRAMEBUFF;
13

14 /* Create the OpenGL context and colour map */
15

16 if (!glXQueryExtension (disp_inf−>disp, &sup_dum, &sup_dum))
17 return STATUS_OPENGLSUPP;
18

19 fb_inf−>glx_ctx = glXCreateNewContext (
20 disp_inf−>disp,
21 fb_inf−>fbuf_config,
22 GLX_RGBA_TYPE,
23 0, True
24);
25

26 if (!fb_inf−>glx_ctx)
27 return STATUS_OPENGLCTX;
28

29 if (create_colourmap (disp_inf, fb_inf) == −1) {
30 glXDestroyContext (disp_inf−>disp, fb_inf−>glx_ctx);
31 return STATUS_COLOURMAP;
32 }
33

34 /* Create the window and set up OpenGL */
35

36 if (create_window (disp_inf, fb_inf) == −1) {
37 xcb_free_colormap (disp_inf−>xcb_conn, fb_inf−>colourmap);
38 glXDestroyContext (disp_inf−>disp, fb_inf−>glx_ctx);
39 return STATUS_WINDOW;
40 }
41

42 if ((status = init_glx (disp_inf, fb_inf)) != STATUS_OK) {
43 xcb_destroy_window (disp_inf−>xcb_conn, disp_inf−>win);
44 xcb_free_colormap (disp_inf−>xcb_conn, fb_inf−>colourmap);
45 glXDestroyContext (disp_inf−>disp, fb_inf−>glx_ctx);
46

47 return status;
48 }
49

50 return STATUS_OK;
51 }
52

Source-Code Listing 7: Creates a bridge between the X connection and OpenGL.

all circumstances, however Display Ports are capable of transmitting up to an 8K signal.
It is therefore the role of any graphics application to query the X server to determine an appro-

priate frame-buffer mode on which to transmit. The first encountered is almost always the correct
choice, as it is the one which the X server is assuming, and transmitting on a different mode to the
Server can cause grave issues—C.R.T. V.D.U.s could even become permanently damaged.

Source-Code Listing 8 does not conform to the Common Status Interface used within furakutaru,
as its return value is a binary choice: success or failure. The status code STATUS FRAMEBUFF is
exclusively reserved for status-returning callers that wish to redirect an error to their respective
parent. If the search is successful, a v id, or ‘visual I.D.’, is placed in the x fb inf structure which
was passed as the second argument.

The final free call is included due to the fact that many run-time memory profilers will report an
potential leakage from the glXGetFBConfigs function, however the proprietary nature of NVIDIA’s
glX implementation means debuggers cannot step into its subsequent free call5.

6.2.7 Creating the Colour-Mapping: create colourmap

This function is not required for most systems, as OpenGL is able to provide hints to the glX
A.P.I. regarding the supported colour-spaces. However, it is good practice to ensure the manual cre-

5A call-stack analyser, such as callgrind, can detect and mitigate this risk. callgrind reports that
glXGetFBConfigs makes a call to XextCreateExtension—a part of the open-sourced X Server implementation—which
calls a malloc. From this, it can be seen that its clean-up counterpart, XextDestroyExtension, which calls a subsequent
XFree, is eventually called. See https://opensource.apple.com/source/X11/X11-0.40/xc/lib/Xext/extutil.c for
more information regarding the latter complaint.

15th March, 2020 Release Copy Page 35

https://opensource.apple.com/source/X11/X11-0.40/xc/lib/Xext/extutil.c

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* find_valid_fb: finds the first valid frame buffer configuration from the
2 * display in disp_inf and places it in fbuf_config. Returns 0 on success, −1 on
3 * failure. */
4

5 static int find_valid_fb (struct x_disp_inf * disp_inf,
6 struct x_fb_inf * fb_inf)
7 {
8 XVisualInfo * visual_inf = NULL;
9 int fbuf_config_count = 0;

10

11 fb_inf−>v_id = 0;
12 fb_inf−>fbuf_config = NULL;
13

14 /* find all frame buffer configurations from OpenGL */
15 GLXFBConfig * fbuf_configs = glXGetFBConfigs (
16 disp_inf−>disp,
17 disp_inf−>screen_id,
18 &fbuf_config_count);
19

20 if (!fbuf_configs || fbuf_config_count == 0)
21 return −1;
22

23 /* get the first valid frame buffer configuration; STATUS_FRAMEBUFF is
24 * returned if there does not exist such a configuration */
25

26 for (int i = 0; fb_inf−>v_id == 0 && i < fbuf_config_count; ++i) {
27 fb_inf−>fbuf_config = fbuf_configs[i];
28 if ((visual_inf = glXGetVisualFromFBConfig
29 (disp_inf−>disp,
30 fb_inf−>fbuf_config)) == NULL)
31 continue;
32 fb_inf−>v_id = visual_inf−>visualid;
33 XFree (visual_inf);
34 }
35

36 free (fbuf_configs);
37 return (fb_inf−>v_id == 0) ? −1 : 0;
38 }
39

Source-Code Listing 8: The find valid fb function querying the X server for various contenders
for the appropriate frame-buffer mode.

ation of a colour map, as it ensures complete portability across older devices and video-transmission
standards implementing older OpenGL versions [Fou09]. This function is listed in Source-Code
Listing 9.

1 /* create_colourmap: creates a colour map with the given X.C.B.\ connection and
2 * screen. Returns −1 on error, and 0 on success. The colour map is placed in
3 * fb_inf.colourmap. */
4

5 static int create_colourmap (struct x_disp_inf * disp_inf,
6 struct x_fb_inf * fb_inf)
7 {
8 fb_inf−>colourmap = xcb_generate_id (disp_inf−>xcb_conn);
9 xcb_generic_error_t * error = NULL;

10

11 error = xcb_request_check (disp_inf−>xcb_conn,
12 xcb_create_colormap_checked (
13 disp_inf−>xcb_conn,
14 XCB_COLORMAP_ALLOC_NONE,
15 fb_inf−>colourmap,
16 disp_inf−>xcb_screen−>root,
17 fb_inf−>v_id
18)
19);
20

21 if (error) {
22 free (error);
23 return −1;
24 }
25

26 return 0;
27 }
28

Source-Code Listing 9: Create a colour-mapping for the systems which cannot automatically create
one for the OpenGL context, namely those with less than sixteen-million colours.

15th March, 2020 Release Copy Page 36

Stage III: Technical Solution furakutaru Oliver Dixon

6.2.8 Creating the Main Window: create window

create window, as shown in Source-Code Listing 10, creates a window under XCB and subscribes
it to certain events, as specified in event mask. XCB provides twenty-five options to which a
window can subscribe; in this case, XCB EVENT MASK KEY PRESS and XCB EVENT MASK EXPOSURE, used
for detecting key-presses and window-invalidations respectively, are the only events required for a
keyboard-only application.

The function then provides basic hints to the Window Manager as the window is being created,
such as the title, ideal starting positions—half the available screen dimensions, for stacking and
similar W.M.s—, and dimensions. It then ensures that the window is visible, to mitigate the in-
competencies of some Window Managers, such as Gnome, which have severe difficulties managing
windows and ensuring their visibility.

6.2.9 Binding the XCB Window to an OpenGL Subsystem: init glx

The glX provides a bridge-like A.P.I. between the X Server and OpenGL subsystem. init glx,
shown in Source-Code Listing 11, provides a wrapper for the functions glXCreateWindow and
glXMakeContextCurrent, intended for OpenGL-window binding and context-setting respectively.

Throughout the source of furakutaru, functions prefixed with glX are exclusively referring to
the rendering context which has been bound to the X window, and do not directly concern the
relationship between the application and window manager. Similar to other wrapper/helper initial-
isation functions, this function does not conform to the Common Status Interface, as its success is
determined by a binary value; the code STATUS GLXWIN exists for the assistance of parent functions
which wish to report their own point of failure.

This function also instantiates and makes use of the OpenGL Extension-Wrangler Library, or
GLEW Serving to the robustness of furakutaru, this is used to query the local OpenGL Server
for support of various functionality, as the System is designed to be as backwardly compatible as
possible. The GLEW ARB vertex shader test ensures that the OpenGL implementation supports
Vertex Shaders—a point discussed in-depth later.

6.2.10 Preventing Memory Leaks with Memory-Management: clean all

The clean all function, listed in Source-Code Listing 12, frees all the memory used by the
initialisation process outlined above. It should be called immediately before the exit of furakutaru,
under the vast majority of circumstances—the notable exception being if the initialisation process
failed extremely early for unusual version, e.g. if the X server was not running.

6.3 Initialisation of the GLSL Shaders

As outlined in the Design section, Shader programs are C-like auxiliary programs used by OpenGL
for parallel execution across homogeneous GPU cores, causing a significant performance increase for
all platforms with a dedicated or integrated graphics unit. The various functions outlined in this
section share the Common Status Interface for the initialisation section, as the vast majority of the
operations are akin.

6.3.1 Initialising and Linking the Shader Programs: init shaders

The OpenGL shaders are divided into two primary categories: Fragment and Vertex Shaders.
Fragment Shaders perform the vast majority of the calculations, being responsible for the plotting
and colouring of the pixels. The Vertex Shader, on the other hand, generates an appropriate trans-
form matrix which is utilised by the Fragment Shader to determine the viewport in which to render
pixels.

Although a Vertex Shader is not strictly required, and OpenGL will use an implicit identity
matrix to perform no extraneous transformation, the rotation feature of furakutaru mandates a
basic transformation to be performed, using a standard four-by-four rotation matrix.

Because of this, the Vertex Shader requires linkage to each of the Fragment Shaders. In furaku-
taru, this implies linking the Mandelbrot Set Fragment Shader and Vertex Shader to one OpenGL
program, and the Julia Set Fragment Shader and Vertex Shader to another, where the Vertex Shader
is common throughout.

15th March, 2020 Release Copy Page 37

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* create_window: Creates the window using the OpenGL context. Returns −1 on
2 * error, zero on success. */
3

4 /* The window is subscribed to the following events:
5 * − XCB_EVENT_MASK_KEY_PRESS [key−press];
6 * − XCB_EVENT_MASK_EXPOSURE [needs to be re−drawn] */
7

8 static int create_window (struct x_disp_inf * disp_inf,
9 struct x_fb_inf * fb_inf)

10 {
11 const uint32_t event_mask = XCB_EVENT_MASK_KEY_PRESS |
12 XCB_EVENT_MASK_EXPOSURE;
13 const uint32_t values[] = { event_mask, fb_inf−>colourmap };
14 const uint32_t value_mask = XCB_CW_EVENT_MASK | XCB_CW_COLORMAP;
15 xcb_generic_error_t * error = NULL;
16

17 /* Create the window, settings its initial dimensions to half that of
18 * the screen. This will only have an effect with some windowing
19 * environments, such that the window size is not pre−determined (e.g.
20 * most stacking W.M.s). */
21

22 disp_inf−>win_width = disp_inf−>xcb_screen−>width_in_pixels / 2;
23 disp_inf−>win_height = disp_inf−>xcb_screen−>height_in_pixels / 2;
24

25 disp_inf−>win = xcb_generate_id (disp_inf−>xcb_conn);
26 error = xcb_request_check (disp_inf−>xcb_conn,
27 xcb_create_window_checked (
28 disp_inf−>xcb_conn,
29 XCB_COPY_FROM_PARENT,
30 disp_inf−>win,
31 disp_inf−>xcb_screen−>root,
32 WIN_STARTX, WIN_STARTY,
33 disp_inf−>win_width,
34 disp_inf−>win_height, 0,
35 XCB_WINDOW_CLASS_INPUT_OUTPUT,
36 fb_inf−>v_id,
37 value_mask,
38 values
39)
40);
41

42 /* set the window title to WIN_TITLE */
43 xcb_change_property (disp_inf−>xcb_conn, XCB_PROP_MODE_REPLACE,
44 disp_inf−>win, XCB_ATOM_WM_NAME, XCB_ATOM_STRING,
45 8, strlen (WIN_TITLE), WIN_TITLE);
46

47 if (error) {
48 free (error);
49 return −1;
50 }
51

52 /* ensure the window is visible */
53 error = xcb_request_check (
54 disp_inf−>xcb_conn,
55 xcb_map_window (
56 disp_inf−>xcb_conn,
57 disp_inf−>win
58)
59);
60

61 if (error) {
62 xcb_destroy_window (disp_inf−>xcb_conn, disp_inf−>win);
63 free (error);
64 return −1;
65 }
66

67 return 0;
68 }
69

Source-Code Listing 10: Creates an XCB window using the hints provided. This is not yet linked to
OpenGL, and is the standard routine for creating an XCB window when utilising the Xlib bridge.

The init shaders function, shown in Source-Code Listing 13, performs this elegantly, loading
the Vertex Shader once, and linking to each Fragment Shader as they are loaded sequentially.

6.3.2 Loading the Auxiliary Files into a Buffer: populate buffer

Loaded dynamically to facilitate the creation of custom fractals by advanced users, the function
populate buffer, as shown in Source-Code Listing 14, dynamically allocates a buffer and fills it
with the file specified file. As explained in the function description, the provided buffer is only
expected to be freed by the caller if the function succeeds, as populate buffer frees the buffer itself

15th March, 2020 Release Copy Page 38

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* init_glx: initialises the glX to a window and sets the OpenGL context.
2 * Returns −1 on error and 0 on success. */
3

4 static enum init_status init_glx (struct x_disp_inf * disp_inf,
5 struct x_fb_inf * fb_inf)
6 {
7 fb_inf−>glx_win = glXCreateWindow (disp_inf−>disp,
8 fb_inf−>fbuf_config,
9 disp_inf−>win, 0
10);
11

12 if (fb_inf−>glx_win == 0)
13 return −1;
14

15 fb_inf−>glx_draw = fb_inf−>glx_win;
16

17 if (glXMakeContextCurrent (disp_inf−>disp, fb_inf−>glx_draw,
18 fb_inf−>glx_draw, fb_inf−>glx_ctx) == False) {
19 glXDestroyWindow (disp_inf−>disp, fb_inf−>glx_win);
20 return STATUS_GLXWIN;
21 }
22

23 glewInit ();
24

25 if (!GLEW_ARB_vertex_shader) {
26 glXDestroyContext (disp_inf−>disp, fb_inf−>glx_ctx);
27 return STATUS_OPENGLEXT;
28 }
29

30 return STATUS_OK;
31 }
32

Source-Code Listing 11: The binding of an OpenGL drawing instance to the furakutaru window.

1 /* [exposed] clean_all: de−allocate all memory taken by the standard X and
2 * OpenGL functions */
3

4 void clean_all (struct x_disp_inf * disp_inf, struct x_fb_inf * fb_inf,
5 GLuint program_list [FRACTAL_COUNT])
6 {
7 if (program_list)
8 for (int i = 0; i < FRACTAL_COUNT; i++)
9 glDeleteProgram (program_list [i]);
10

11 glXDestroyWindow (disp_inf−>disp, fb_inf−>glx_win);
12 xcb_destroy_window (disp_inf−>xcb_conn, disp_inf−>win);
13 xcb_free_colormap (disp_inf−>xcb_conn, fb_inf−>colourmap);
14 glXDestroyContext (disp_inf−>disp, fb_inf−>glx_ctx);
15 XCloseDisplay (disp_inf−>disp);
16 }
17

Source-Code Listing 12: The complete clean-up of furakutaru, ensuring there are no memory leaks.
This has been verified extensively with valgrind’s memcheck utility.

if the loading fails, as it is expected the buffer contents will be of no further use.

6.3.3 Compiling the Shader: setup shader

As the shaders are loaded dynamically, they also mandate dynamic compilation. As shaders are
typically small, this is instantaneous on even the slowest of processors. Taking a buffer of shader
source and a destination shader I.D., the setup shader function, listed in Source-Code Listing 15,
attempts to compile the shader. This function conforms to the Common Status Interface, and thus
returns STATUS SHCOMP to indicate a shader-compilation error, or STATUS OK to indicate success.

6.3.4 Debugging the Compile-Link Procedure: print gl log

OpenGL provides a slightly unintuitive interface for checking the status. This can be done
globally, providing there is a valid instance, as OpenGL is a state- machine. In many cases, under
normal circumstances of operation, this function will never be called, however it is extraordinarily
useful for debugging and reporting an out-of-date OpenGL version to the user.

The print gl log function, shown in Source-Code Listing 16, directly prints the log to the
standard error output device. Through the use of function pointers, this function has been kept
relatively concise.

15th March, 2020 Release Copy Page 39

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* init_shaders: initialise FRACTAL_COUNT programs, each with their respective
2 * fragment shader, and a common vertex shader. Returns the appropriate
3 * init_status; prints the OpenGL logs if required, or if PRINT_FULL_GL_LOG is
4 * defined. */
5

6 static enum init_status init_shaders (GLuint program_list [FRACTAL_COUNT])
7 {
8 GLchar * frag_buf = NULL, * vert_buf = NULL;
9 GLuint frag_sdr_id = 0,
10 vert_sdr_id = glCreateShader (GL_VERTEX_SHADER);
11 enum init_status status = STATUS_OK;
12 const char * vert_shader_path = AUX_DIR "/shaders/vertex.glsl",
13 * frag_shader_paths [FRACTAL_COUNT] = {
14 AUX_DIR "/shaders/mandelbrot.glsl",
15 AUX_DIR "/shaders/julia.glsl"
16 };
17

18 /* load the common vertex shader */
19 if ((status = populate_buffer (&vert_buf, vert_shader_path))
20 != STATUS_OK ||
21 (status = setup_shader ((GLchar **)&vert_buf, &vert_sdr_id))
22 != STATUS_OK) {
23 glDeleteShader (vert_sdr_id);
24 free (vert_buf);
25 return status;
26 }
27

28 /* load all the fragment shaders, assigning a new program for each,
29 * whilst linking the common vertex shader to each one */
30

31 for (int i = 0; i < FRACTAL_COUNT; i++) {
32 program_list [i] = glCreateProgram ();
33 frag_sdr_id = glCreateShader (GL_FRAGMENT_SHADER);
34

35 if ((status = populate_buffer (&frag_buf,
36 frag_shader_paths [i]))
37 != STATUS_OK ||
38 (status = setup_shader ((GLchar **)&frag_buf,
39 &frag_sdr_id))
40 != STATUS_OK) {
41 glDetachShader (program_list [i], frag_sdr_id);
42 glDeleteShader (frag_sdr_id);
43 glDeleteShader (vert_sdr_id);
44

45 free (frag_buf);
46 free (vert_buf);
47 return status;
48 }
49

50 /* attach and link the fragment and vertex shader */
51 glAttachShader (program_list [i], vert_sdr_id);
52 glAttachShader (program_list [i], frag_sdr_id);
53 glLinkProgram (program_list [i]);
54

55 #ifdef PRINT_FULL_GL_LOG
56 if (print_gl_log (program_list [i],
57 GL_LINK_STATUS, 1) == −1) {
58 #else

59 if (print_gl_log (program_list [i],
60 GL_LINK_STATUS, 0) == −1) {
61 #endif

62 glDeleteShader (vert_sdr_id);
63

64 free (frag_buf);
65 free (vert_buf);
66 return STATUS_SHLINK;
67 }
68

69 glDetachShader (program_list [i], frag_sdr_id);
70 glDetachShader (program_list [i], vert_sdr_id);
71 glDeleteShader (frag_sdr_id);
72 free (frag_buf);
73 }
74

75 glDeleteShader (vert_sdr_id);
76 free (vert_buf);
77 return STATUS_OK;
78 }

Source-Code Listing 13: The initialisation of the Shaders, linking each Fragment Shader to a separate
OpenGL program, with a common Vertex Shader.

If the compile-time flag PRINT FULL GL LOG is enabled, all the warnings from OpenGL are dis-
played, even if it does not prevent compilation and normal usage.

15th March, 2020 Release Copy Page 40

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* populate_buffer: allocate some memory enough to store the entirety of the
2 * file referenced by ’path’, and then populate the buffer. Returns STATUS_OK on
3 * success, and either STATUS_MALLOC or STATUS_FREAD on error. If STATUS_OK is
4 * reported, ’buf’ is expected to be freed by the caller. */
5

6 static enum init_status populate_buffer (char ** buf, const char * path)
7 {
8 FILE * fp = NULL;
9 unsigned long size = 0;
10

11 if ((fp = fopen(path, "r")) == NULL)
12 return STATUS_FOPEN;
13

14 fseek (fp, 0, SEEK_END);
15 size = ftell (fp);
16 fseek (fp, 0, SEEK_SET);
17

18 if ((*buf = calloc (size + 1, sizeof (char))) == NULL) {
19 fclose (fp);
20 return STATUS_MALLOC;
21 }
22

23 if (fread (*buf, sizeof (char), size, fp) < size) {
24 fclose (fp);
25 free (*buf);
26

27 return STATUS_FREAD;
28 }
29

30 fclose (fp);
31 return STATUS_OK;
32 }
33

Source-Code Listing 14: Loads a shader into a dynamically allocated buffer.

1 /* setup_shader: sets up the shader, the characters of which are already loaded
2 * into data. The appropriate init_status is returned. This function frees and
3 * nulls its first argument. */
4

5 static enum init_status setup_shader (GLchar ** data, GLuint * sdr_id)
6 {
7 glShaderSource (*sdr_id, 1, (const GLchar * const *)data, NULL);
8 glCompileShader (*sdr_id);
9

10 free (*data);
11 *data = NULL;
12

13 return (print_gl_log (*sdr_id, GL_COMPILE_STATUS, 0) == −1) ?
14 STATUS_SHCOMP : STATUS_OK;
15 }
16

Source-Code Listing 15: Dynamically compiles a shader loaded from a file.

6.3.5 Retrieving the Vertex Shader Position: get vertex attribute

The function get vertex attribute, detailed in Source-Code Listing 17, is a robust mechanism
for retrieving the position of the a pos attribute in the Vertex Shader. It also serves as a method
of effectively defining the viewport to ensure no amount of rotation can clip the viewport. As π/4
radians, or 45 degrees is the most extreme level of deviation from zero, the usual vertices of the
viewport have been multiplied6 by the factor 1/ sin(π/4).

6.4 Processing the PPM Colour File

As mentioned in the Design section, the use of one-dimensional images as colour palettes are
used as customisable textures in furakutaru. PPM is an extremely simple image format for reading,
and can easily be created using many popular image-manipulation tools, such as The G.I.M.P.

6.4.1 PPM Common Status Codes and Parsers: parse ppm error

Similar to the initialisation status codes, the PPM loader makes similar use of enumerators. A
parser also exists to generate human-readable strings from the various error codes which can be

6This creates a rendering arena which is larger than the window, meaning that unless the user is rotated at π/4,
or equivalent, the renderer could be drawing pixels which are wasted. Modern OpenGL however, has the capability
to detect this and only draw pixels when within the window of which it the rendering area is a child.

15th March, 2020 Release Copy Page 41

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* print_gl_log: prints the OpenGL for the specified operation, ’target’. If
2 * this is not set to GL_COMPILE_STATUS or GL_LINK_STATUS, 1 is returned. If the
3 * specified operation failed, or ’force’ is set, the appropriate log is printed
4 * to stderr. In the case of ’force’ not being set but the operation failing, −1
5 * is returned. On success, zero is returned. */
6

7 static int print_gl_log (GLuint id, GLenum target, int force) {
8 GLint res = GL_FALSE;
9 GLsizei len = 0;
10 GLchar * log = NULL;
11

12 void (*metaquery_func) (GLuint, GLenum, GLint *) = NULL;
13 void (*query_func) (GLuint, GLsizei, GLsizei *, GLchar *) = NULL;
14

15 switch (target) {
16 case GL_COMPILE_STATUS:
17 metaquery_func = glGetShaderiv;
18 query_func = glGetShaderInfoLog;
19 break;
20 case GL_LINK_STATUS:
21 metaquery_func = glGetProgramiv;
22 query_func = glGetProgramInfoLog;
23 break;
24 default:
25 return 1;
26 }
27

28 metaquery_func (id, target, &res);
29

30 /* check the success of the operation */
31 if (res == GL_FALSE || force) {
32 metaquery_func (id, GL_INFO_LOG_LENGTH, &len);
33 if (len > 0 && (log = malloc (sizeof (char) *
34 (len + 1)))) {
35 /* print an appropriate log */
36 query_func (id, len, NULL, log);
37 log [len] = ’\0’;
38

39 fputs (log, stderr);
40 fputc (’\n’, stderr);
41 free (log);
42 }
43

44 return (force) ? ((res == GL_FALSE) ? −1 : 0) : −1;
45 }
46

47 return 0;
48 }
49

Source-Code Listing 16: A reporting mechanism from the OpenGL subsystem to the user.

thrown, as shown in Source-Code Listing 18.

6.4.2 Loading the Texture: load texture

The parent-most function, load texture, is instantiated by the Initialisation Assistant once
upon the initialisation of furakutaru. This loads the colour texture and sends it to the OpenGL
instance, for the length of program-execution. This function conforms to the Common PPM Status
Interface, shown previously in Source-Code Listing 18.

6.4.3 Loading the Image from the File: load image

The load image function, as shown in Source-Code Listing 20, wraps the various functions used
in order to load parse the header and pixel data from a PPM file. Also conforming to the Common
PPM Status Interface, this function passes the return value sent by one of its auxiliary functions,
or PPM OK on success.

load image also performs a basic check on the PPM file being passed, to ensure it is not corrupted
and is intended as a PPM file. This is achieved by checking the first two bytes of the file, ensuring
they match the expected values of P6, as defined by the PPM format specification [The16]. Unworthy
of its own heading, the function verify ppm sig is listed in Source-Code Listing 21.

6.4.4 Parsing the PPM Header Section: read hdr

Well-defined in [The16], the header is a simple-to-parse and unambiguous structure, the only
difficulty being posed by the inclusion of comments. The read hdr function, shown in Source-Code

15th March, 2020 Release Copy Page 42

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* A rotation of pi/4 is the most severe clipping that can occur */
2 #define CLIP_REDUCTION (1.414213562) /* 1 / sin (pi/4) */
3

4 /* viewport_vertices: the vertices of each "quad" in the viewport. This needs to
5 * be global, as OpenGL needs reliable and unprovoked access to it throughout
6 * the execution of the program. */
7

8 const GLfloat viewport_vertices [] = {
9 −1.0 * CLIP_REDUCTION, 1.0 * CLIP_REDUCTION,
10 −1.0 * CLIP_REDUCTION, −1.0 * CLIP_REDUCTION,
11 1.0 * CLIP_REDUCTION, 1.0 * CLIP_REDUCTION,
12 1.0 * CLIP_REDUCTION, −1.0 * CLIP_REDUCTION
13 };
14

15 /* get_vertex_attribute: obtains direct access to the ’a_pos’ variable in the
16 * vertex shader. Returns STATUS_OK on success, or STATUS_VER_ATTR on
17 * error. This function also provides the vertices of the viewport to the vertex
18 * shader. */
19

20 static enum init_status get_vertex_attribute (GLuint program, GLint * addr)
21 {
22 const char * var_name = "a_pos";
23

24 /* get direct access to the ’a_pos’ variable in the vertex shader */
25 if ((*addr = glGetAttribLocation (program, var_name)) == −1)
26 return STATUS_VER_ATTR;
27

28 glVertexAttribPointer (*addr, 2, GL_FLOAT, GL_FALSE, 0,
29 viewport_vertices);
30 return STATUS_OK;
31 }
32

Source-Code Listing 17: Retrieving the address of the variable a pos from the Vertex Shader on the
GPU, and setting a clip-aware viewport matrix.

1 enum ppm_status {
2 PPM_OK = 0,
3 PPM_FOPEN = −1, /* fopen could not open the specified file */
4 PPM_BADSIG = −2, /* the file signature was not as−expected */
5 PPM_MALLOC = −3, /* could not allocate memory for the image */
6 PPM_WIDTH = −4, /* invalid width */
7 PPM_HEIGHT = −5, /* invalid height */
8 PPM_MAXVAL = −6, /* bad maximum value */
9 PPM_EOF = −7, /* unexpected E.O.F.\ when reading pixel data */
10 PPM_INCHDR = −8 /* incomplete header */
11 };
12

13 /* [exposed] parse_ppm_error: returns a human−readable message from a
14 * ’ppm_status’ error code. */
15

16 const char * parse_ppm_error (enum ppm_status status)
17 {
18 switch (status) {
19 case PPM_FOPEN: return "fopen could not stat the file";
20 case PPM_BADSIG: return "the file signature was not as−expected";
21 case PPM_MALLOC: return "could not allocate memory for the " \
22 "image";
23 case PPM_WIDTH: return "invalid width";
24 case PPM_HEIGHT: return "invalid height";
25 case PPM_MAXVAL: return "unsupported maximum value";
26 case PPM_EOF: return "unexpected end−of−file";
27 case PPM_INCHDR: return "incomplete header";
28 default: return "unknown error";
29 }
30 }
31

Source-Code Listing 18: The PPM status codes and the related parser function, parse ppm error

Listing 22, reads directly from the provided file and populates the appropriate members in the
ppm data structure.

This function follows the Common PPM Status Interface, reporting PPM INCHDR, PPM WIDTH,
PPM HEIGHT, and PPM MAXVAL as appropriate.

6.4.5 Parsing Assistant and Loading: parse assist

As the PPM Format Specification mandates the allowance of comments, being defined as a single
line beginning with a hash ‘#’ character. This function, listed in Source-Code Listing 23, reads

15th March, 2020 Release Copy Page 43

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* load_texture: uses the P.P.M. helpers to load a colour texture */
2

3 static enum ppm_status load_texture (const char * path)
4 {
5 enum ppm_status status = PPM_OK;
6 uint32_t * image = NULL;
7

8 glBindTexture (GL_TEXTURE_1D, 1);
9 glTexParameteri (GL_TEXTURE_1D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
10 glTexParameteri (GL_TEXTURE_1D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
11 glTexParameteri (GL_TEXTURE_1D, GL_TEXTURE_WRAP_S, GL_REPEAT);
12

13 if ((status = load_image (path, &image)) != PPM_OK)
14 return status;
15

16 glTexImage1D (GL_TEXTURE_1D, 0, 4, 256, 0, GL_BGRA,
17 GL_UNSIGNED_BYTE, image);
18 glEnable (GL_TEXTURE_1D);
19

20 free (image);
21 return PPM_OK;
22 }
23

Source-Code Listing 19: Loading the texture from a file, passing to the OpenGL subsystem for
permanent use.

1 /* [exposed] load_image: loads the pixel data from P.P.M. file, located at
2 * path, into the array *data. If this function fails at any point, there is no
3 * need for the caller to free the array *data. */
4

5 enum ppm_status load_image (const char * path, uint32_t ** data)
6 {
7 enum ppm_status status = PPM_OK;
8 struct ppm_data image = {
9 .fp = NULL,

10 .width = −1, .height = −1,
11 .pixels = NULL
12 };
13

14 /* open the file and verify the signature */
15 if ((image.fp = fopen (path, "r")) == NULL)
16 return PPM_FOPEN;
17

18 if (verify_ppm_sig (image.fp) == −1) {
19 fclose (image.fp);
20 return PPM_BADSIG;
21 }
22

23 /* read the header and pixel data */
24 if ((status = read_hdr (&image)) != PPM_OK ||
25 (status = read_px_data (&image)) != PPM_OK) {
26 fclose (image.fp);
27 return status;
28 }
29

30 *data = image.pixels;
31 fclose (image.fp);
32 return PPM_OK;
33 }
34

Source-Code Listing 20: The wrapper function for parsing the PPM headers and pixel data-stream.

1 /* verify_ppm_sig: ensures that the file signature of ’fp’ matches the expected
2 * values. Returns −1 on failure, zero on success. THIS FUNCTION SETS THE FILE
3 * POINTER BACK TO THE START [+2]. */
4

5 static int verify_ppm_sig (FILE * fp)
6 {
7 /* http://netpbm.sourceforge.net/doc/ppm.html */
8 const char sig [] = { ’P’, ’6’ };
9

10 fseek (fp, 0, SEEK_SET);
11 return (fgetc (fp) != sig [0] ||
12 fgetc (fp) != sig [1]) ? −1 : 0;
13 }
14

Source-Code Listing 21: A method of ensuring the file provided is intended to be of the PPM format.
This is a near-instantaneous method of simple validation.

15th March, 2020 Release Copy Page 44

Stage III: Technical Solution furakutaru Oliver Dixon

1 #define BLOCK_SZ (64)
2 #define COMMENT_CHAR (’#’)
3 #define NEWLINE "\n\r"
4 #define MAX_VAL (255)
5

6 struct ppm_data {
7 FILE * fp;
8 size_t width, height;
9 uint32_t * pixels;
10 };
11

12 /* read_hdr: read the header of the P.P.M. file to determine the size (and
13 * length of required pixel array). This function populates the width and height
14 * fields of its argument. */
15

16 static enum ppm_status read_hdr (struct ppm_data * image)
17 {
18 char buffer [BLOCK_SZ];
19

20 fseek (image−>fp, 0, SEEK_SET);
21 parse_assist (image, buffer);
22

23 /* width */
24 if (!parse_assist (image, buffer))
25 return PPM_INCHDR;
26 if (!isdigit (*buffer))
27 return PPM_WIDTH;
28 image−>width = atoi (buffer);
29

30 /* height */
31 if (!parse_assist (image, buffer))
32 return PPM_INCHDR;
33 if (!isdigit (*buffer))
34 return PPM_HEIGHT;
35 image−>height = atoi (buffer);
36

37 /* ensure the maximum value is correct */
38 if (!parse_assist (image, buffer))
39 return PPM_INCHDR;
40 if (!isdigit (*buffer) || atoi (buffer) != MAX_VAL)
41 return PPM_MAXVAL;
42

43 return PPM_OK;
44 }
45

Source-Code Listing 22: The reading of the PPM header, populating the respective members of the
appropriate structure with well-defined error-reporting.

characters directly from the file and skips comment lines while trimming extraneous white-space.

6.4.6 Reading Pixel Data: UNPACK DATA and read px data

As with all data streams from potentially foreign lands, a mismatch in Endianness of the processor
and that of the file is catastrophic, as each bit is read backwards. Whilst Big Endian is reasonably
rare on modern processors, autonomous detection of Endianness has been included in furakutaru,
and is used to define the way in which data is unpacked as it is read from the file.

Using this, the function read px data, as shown in Source-Code Listing 24, loads data from the
pixel section (immediately succeeding the header), and places it in a buffer.

This function is compliant with the PPM Common Status Interface, and can return PPM MALLOC

or PPM EOF to report a particular error.

6.5 Argument-Processing and User-Engagement

As outlined in the Analysis and Design sections, furakutaru aims to be a text-based System,
vastly increasing its portability over a complex and unnecessary G.U.I. application. Because of this
goal, the standard UNIX method of passing command-line arguments is used. The following section
provides a commentary on the various methods and functions used to manage the command-line
arguments, with the goal of creating a robust and efficient command-line application.

As it is also necessary that users are readily aware of the various arguments, this section details
the ways in which furakutaru reports the argument documentation to the user.

15th March, 2020 Release Copy Page 45

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* parse_assist: populates the buffer whilst trimming white−space. White−space
2 * is defined as a true result from ctype/isspace, or any single character from
3 * NEWLINE. */
4

5 static int parse_assist (struct ppm_data * image, char * buffer)
6 {
7 int count = 0, ch = −1;
8

9 while ((ch = fgetc (image−>fp)) != −1 &&
10 !isspace (ch) && count < BLOCK_SZ − 1) {
11 if (ch == COMMENT_CHAR) {
12 /* encountered a comment;
13 * continue until something else is encountered */
14 while ((ch = fgetc (image−>fp)) != −1 &&
15 ch != NEWLINE [0] &&
16 ch != NEWLINE [1]);
17 ch = fgetc (image−>fp);
18 if (ch == NEWLINE [0] || ch == NEWLINE [1])
19 continue;
20 }
21

22 *buffer++ = ch;
23 count++;
24 }
25

26 /* return to original position and null−terminate the string
27 * in ’buffer’ */
28

29 /* trim additional white−space */
30 while ((ch = fgetc (image−>fp)) != −1 && isspace (ch));
31

32 *buffer = ’\0’;
33 ungetc (ch, image−>fp);
34

35 return count;
36 }
37

Source-Code Listing 23: The parser helper-function used for skipping comments and other undesir-
able elements which should not reside in the buffer for final processing.

6.5.1 Common Enumerators and Helpers: Bit-by-Bit Management and
Common Error Codes

As with the other substantial sections of the program, furakutaru defines a common interface
with which to deal with errors, whilst also providing informative human-readable strings which can
be output to the user. In addition to providing an informative error-interface, an enumerator type is
established to track the specified options. This not only facilitates the robustness of the argument-
processor, by disallowing multiple definitions of the same argument, but also mitigates the need for
individual boolean flags for each flag, as they are managed on a bit-by-bit basis inside a sixteen-bit
unsigned integer, defined as uint16 t.

Source-Code Listing 25 lists these enumerators and functions.

6.5.2 Common Argument Error Status Code Parser: parse args error

Source-Code Listing 26 lists the function which generates a human-readable string from the
respective arg status enumerator.

6.5.3 The Primary Argument-Processor: process args

Akin to many previously discussed functions, the function process args, listed in Source-Code
Listing 27, performs the string-matching on the received argument list, searching for an argument’s
full name, or its shorter counterpart. Upon finding a result, the power-of-two nature of the argument
position list, shown in Source-Code Listing 25, is used to efficiently calculate the argument position
based on the index of the string to which it matched.

As this function is intended as a direct descendent of the entry-point, it produces its own error
messages and merely reports a binary success/failure value to the caller, as an indication to continue
or abort execution.

15th March, 2020 Release Copy Page 46

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* Determine the endian−ness for systems without LITTLE_ENDIAN or BIG_ENDIAN
2 * defined by the standard library implementation. I got this great snippet from
3 * somewhere years ago, not sure where, but it was Public Domain and a
4 * reasonably standard check when dealing with files and (especially) network
5 * sockets.
6 *
7 * When the endian−ness is determined, an appropriate bitwise packing method is
8 * defined. */
9

10 #if !defined (LITTLE_ENDIAN) && !defined (BIG_ENDIAN)
11 #if defined(__i386__) || defined(__ia64__) || defined (WIN32) || \
12 (defined (__alpha__) || defined (__alpha)) || \
13 defined (__arm__) || \
14 (defined (__mips__) && defined (__MIPSEL__)) || \
15 defined (__SYMBIAN32__) || \
16 defined (__x86_64__) || \
17 defined (__LITTLE_ENDIAN__)
18 #define LITTLE_ENDIAN
19 #else

20 #define BIG_ENDIAN
21 #endif /* general endian−ness check */
22 #endif /* !defined (LITTLE_ENDIAN) && !defined (BIG_ENDIAN) */
23

24 #ifdef LITTLE_ENDIAN
25 #define UNPACK_DATA(r, g, b) (((r & 0xff) << 16) | \
26 ((g & 0xff) << 8) | (b & 0xff))
27 #else

28 #define UNPACK_DATA(r, g, b) (((b & 0xff) << 16) | \
29 ((g & 0xff) << 8) | (r & 0xff))
30 #endif

31

32 /* read_px_data: read the pixel data and place it into image−>pixels. It is the
33 * caller’s responsibility to free the allocated memory space. */
34

35 static enum ppm_status read_px_data (struct ppm_data * image)
36 {
37 size_t px_count = image−>width * image−>height;
38 int r = −1, g = −1, b = −1;
39

40 if ((image−>pixels = malloc (px_count *
41 sizeof (uint32_t))) == NULL)
42 return PPM_MALLOC;
43

44 for (size_t i = 0; i < px_count; i++) {
45 if ((r = fgetc (image−>fp)) == −1 ||
46 (g = fgetc (image−>fp)) == −1 ||
47 (b = fgetc (image−>fp)) == −1) {
48 free (image−>pixels);
49 return PPM_EOF;
50 }
51

52 image−>pixels [i] = UNPACK_DATA (r, g, b);
53 }
54

55 return PPM_OK;
56 }
57

Source-Code Listing 24: Reading the pixel data using the appropriate Endianness

6.5.4 The Argument Sub-Processor: arg subprocessor

In order to maintain the conciseness of the general string-matching argument-processor, the sub-
processor exists to provide an intermediary between the low-level string-matching and the consider-
ation of arguments on an individual basis. The arg subprocessor function, listed in Source-Code
Listing 28, has knowledge of each individual argument which furakutaru supports.

Using this, the sub-processor utilises function pointers to provide the correct auxiliary operand-
processing function to the argument. For example, as the ARG ITERATION and ARG DEGREE argu-
ments expect and integer, they are assigned the set int function, which will reject floating-point
or otherwise-invalid entries.

The degree sanitise function ensures that the render degree is not set to an invalid value,
which would cause the renderer to draw nothing. If this is the unfortunate case, the degree is set to
the default.

The argument sub-processor uses the Common Argument Status Interface, outlined in Source-
Code Listing 25, to report the accurate error to the primary processor.

15th March, 2020 Release Copy Page 47

Stage III: Technical Solution furakutaru Oliver Dixon

1 #define SET_BIT(val, n) (val |= n)
2 #define CHK_BIT(val, n) (val & n)
3

4 enum arg_positions {
5 ARG_UNKNOWN = 0,
6 ARG_VERBOSITY = 1,
7 ARG_LOCK = 2,
8 ARG_CENTRE_X = 4,
9 ARG_CENTRE_Y = 8,
10 ARG_SEED_X = 16,
11 ARG_SEED_Y = 32,
12 ARG_TYPE = 64,
13 ARG_ITERATION = 128,
14 ARG_SCALE = 256,
15 ARG_DEGREE = 512,
16 ARG_COLOUR = 1024,
17 ARG_OUTDIR = 2048,
18 ARG_CONFIG = 4096,
19 ARG_ASSUMECFG = 8192,
20 ARG_ROTATE = 16384,
21 ARG_SHOWHELP = 32768
22 };
23

24 enum arg_status {
25 ARG_S_HELP = 3, /* the help should be displayed */
26 ARG_S_OK_ACFG = 2, /* OK, −−assumeconfig */
27 ARG_S_OK = 1, /* OK */
28 ARG_S_OK_ADV = 0, /* OK, advance the argument */
29 ARG_S_ALONE = −1, /* argument expected an operand */
30 ARG_S_INVALID = −2, /* argument received an operand, but it was
31 * invalid */
32 ARG_S_RANGE = −3, /* operand was out−of−range */
33 ARG_S_UNKNOWN = −4, /* argument string was not recognised */
34 ARG_S_DDEFINE = −5, /* argument was doubly−defined */
35 ARG_S_TOOLONG = −6, /* path operand exceeds PATH_MAX */
36 ARG_S_ER_ACFG = −7 /* −−assumeconfig without −−config */
37 };
38

Source-Code Listing 25: The ways in which furakutaru manages arguments and the respective errors.
In arg pos, each value represents its position in a sixteen-bit unsigned binary integer, increasing in
binary exponents.

1 /* parse_args_error: takes an arg_status value and returns a human−readable
2 * string to be displayed to the user */
3

4 static const char * parse_args_error (enum arg_status status)
5 {
6 switch (status) {
7 case ARG_S_ALONE: return "Expected succeeding argument";
8 case ARG_S_INVALID: return "Argument operand was invalid";
9 case ARG_S_RANGE: return "Argument operand was out−of−range";
10 case ARG_S_UNKNOWN: return "Unrecognised argument";
11 case ARG_S_DDEFINE: return "Argument was doubly−defined";
12 case ARG_S_TOOLONG: return "Path exceeds maximum length";
13 case ARG_S_ER_ACFG: return "−−assumeconfig must succeed a " \
14 "valid −−config argument";
15 default: return "Unknown error";
16 }
17 }
18

Source-Code Listing 26: The function for parsing a arg status code to a string.

6.5.5 Shared Auxiliary Operand-Parsing Wrapper Functions

The following set of four functions are used throughout furakutaru to parse various data-types
originating from an untrusted source. The functions, set float, set int, and set path parse
operands in the forms of floating-point numbers, integers, render degrees, and file-paths respectively.
These functions are listed in Source-Code Listing 29.

The basic functions set int and set float, both return a success/failure to indicate their
success. The set path function is slightly more complex, however, as the function can fail at
multiple points, for multiple reasons. Because of this, the latter returns an arg status code.

15th March, 2020 Release Copy Page 48

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* [exposed] process_args: process the arguments in argv, and populated the
2 * ’rs’ structure appropriately. This function prints its own error messages.
3 * Zero is returned on success, otherwise −1. If the latter is returned, the
4 * caller should request an exit, and ’rs’ is incomplete. If the function
5 * succeeded but the user requested that the −−config file be assumed as the
6 * system defaults, 1 is returned. −2 is returned if the help information has
7 * been requested; the program should usually quit with a success code if this
8 * is the case. */
9

10 int process_args (int argc, char ** argv, struct render_state * rs,
11 char ** cfg)
12 {
13 char * arg = NULL;
14 enum arg_status status = ARG_S_OK;
15 enum arg_positions apos = ARG_UNKNOWN;
16 int assume_config = 0;
17

18 static const char * arg_str_full [] = {
19 "−−verbose", "−−lock", "−−px", "−−py", "−−cx", "−−cy", "−−type",
20 "−−iteration", "−−scale", "−−degree", "−−colour", "−−outdir",
21 "−−config", "−−assumeconfig", "−−rotate", "−−help"
22 }, * arg_str_short [] = {
23 "−v", "−l", NULL, NULL, NULL, NULL, "−t", "−i", "−s", "−d",
24 "−c", "−o", "−f", NULL, "−r", "−h"
25 };
26

27 const int full_arg_count = sizeof (arg_str_full) /
28 sizeof (*arg_str_full);
29

30 for (int i = 1; i < argc; i++) {
31 arg = argv [i];
32 apos = ARG_UNKNOWN;
33

34 /* if the corresponding arg_str_short value is NULL, there is no
35 * shortened counterpart against which to check */
36 for (int j = 0; j < full_arg_count; j++) {
37 if (strcmp (arg, arg_str_full [j]) == 0 ||
38 ((arg_str_short [j]) ?
39 (strcmp (arg,
40 arg_str_short [j])
41 == 0) : 0)) {
42 apos = 1 << j;
43 break;
44 }
45 }
46

47 if (apos == ARG_UNKNOWN) {
48 fprintf (stderr, "Argument error: \"%s\", %s\n",
49 arg,
50 parse_args_error (ARG_S_UNKNOWN));
51 return −1;
52 }
53

54 switch ((status = arg_subprocessor (
55 (argc − i == 1) ? NULL :
56 argv [i + 1],
57 apos, rs, cfg))) {
58 case ARG_S_OK:
59 continue;
60 case ARG_S_OK_ADV:
61 i++;
62 continue;
63 case ARG_S_OK_ACFG:
64 assume_config = 1;
65 continue;
66 case ARG_S_HELP:
67 return −2;
68 default:
69 fprintf (stderr, "Argument error: \"%s\", " \
70 "%s (%d)\n", arg,
71 parse_args_error (status),
72 status);
73 return −1;
74 }
75 }
76

77 degree_sanitise (& (rs−>degree));
78 return assume_config;

Source-Code Listing 27: The topmost function used in argument-processing, tasked with performing
the string-matching and calling of the sub-processor. This function produces its own error messages,
and merely returns a binary indicator to its caller, informing the System whether execution should
halt or continue. This file is truncated due to space limitations. For the full listing, see
the Appendices.

15th March, 2020 Release Copy Page 49

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* arg_subprocessor: sets/reports the appropriate values given in the argument
2 * list and returns the status. ARG_S_OK_ADV indicates that the succeeding
3 * argument has already been processed as an operand, and should be ignored by
4 * the caller. */
5

6 static enum arg_status arg_subprocessor (char * next, enum arg_positions arg,
7 struct render_state * rs, char ** cfg)
8 {
9 static uint16_t flags;

10 void * val_ptr = NULL;
11 int (*setter) (void *, const char *) = NULL;
12

13 if (CHK_BIT (flags, arg))
14 return ARG_S_DDEFINE;
15 SET_BIT (flags, arg);
16

17 switch (arg) {
18 case ARG_SHOWHELP:
19 print_help ();
20 return ARG_S_HELP;
21 case ARG_VERBOSITY:
22 rs−>verbosity = 1;
23 break;
24 case ARG_LOCK:
25 rs−>locking = 1;
26 break;
27 case ARG_TYPE:
28 if (!next)
29 return ARG_S_ALONE;
30

31 if (strcmp (next, "mandelbrot") == 0) {
32 rs−>type = FRAC_MANDELBROT;
33 } else if (strcmp (next, "julia") == 0) {
34 rs−>type = FRAC_JULIA;
35 } else {
36 return ARG_S_INVALID;
37 }
38

39 return ARG_S_OK_ADV;
40 case ARG_SCALE:
41 val_ptr = & (rs−>scale);
42 setter = set_float;
43 break;
44 case ARG_CENTRE_X:
45 val_ptr = & (rs−>centre_x);
46 setter = set_float;
47 break;
48 case ARG_CENTRE_Y:
49 val_ptr = & (rs−>centre_y);
50 setter = set_float;
51 break;
52 case ARG_SEED_X:
53 val_ptr = & (rs−>seed_x);
54 setter = set_float;
55 break;
56 case ARG_SEED_Y:
57 val_ptr = & (rs−>seed_y);
58 setter = set_float;
59 break;
60 case ARG_ITERATION:
61 val_ptr = & (rs−>max_iterations);
62 setter = set_int;
63 break;
64 case ARG_DEGREE:
65 val_ptr = & (rs−>degree);
66 setter = set_int;
67 break;
68 case ARG_ROTATE:
69 val_ptr = & (rs−>angle);
70 setter = set_int;
71 break;
72 case ARG_COLOUR:
73 return set_path (& (rs−>colour_path), next);
74 case ARG_OUTDIR:
75 return set_path (& (rs−>out_dir), next);
76 case ARG_CONFIG:
77 return set_path (cfg, next);
78 case ARG_ASSUMECFG:

Source-Code Listing 28: The sub-processor, used for dealing with arguments on an individual basis
and calling the appropriate subsequent functions for operand-verification. This function performs
no string-matching, aside from the sole exception of the processing of the ARG TYPE argument. This
file is truncated due to space limitations. For the full listing, see the Appendices.

15th March, 2020 Release Copy Page 50

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* [exposed] set_float: parses a GLfloat and stores its value in the value
2 * referred to by ’val’. Zero returned on success, −1 if ’str’ is NULL, and ’−2’
3 * if the parsing failed. */
4

5 int set_float (void * val, const char * str)
6 {
7 char * end_ptr = (char *) str;
8 GLfloat tmp;
9

10 errno = 0;
11

12 if (!str)
13 return −1;
14

15 tmp = strtof (str, &end_ptr);
16

17 if (errno || *end_ptr != ’\0’)
18 return −2;
19

20 * ((GLfloat *) val) = tmp;
21 return 0;
22 }
23

24 /* [exposed] set_int: see comments for set_float */
25

26 int set_int (void * val, const char * str)
27 {
28 char * end_ptr = (char *) str;
29 GLint tmp;
30

31 errno = 0;
32

33 if (!str)
34 return −1;
35

36 tmp = strtol (str, &end_ptr, 10);
37

38 if (errno || *end_ptr != ’\0’)
39 return −2;
40

41 * ((GLint *) val) = tmp;
42 return 0;
43 }
44

45 /* set_path: sets the next string to the location pointed to by ’val’.
46 * ARG_S_ALONE is returned is there is no next argument, or ARG_S_OK_ADV on
47 * success. ARG_S_TOOLONG is returned if the ’str’ is too long for a UNIX
48 * path. */
49

50 static enum arg_status set_path (char ** val, char * str)
51 {
52 if (!str)
53 return ARG_S_ALONE;
54

55 if (strlen (str) > PATH_MAX)
56 return ARG_S_TOOLONG;
57

58 *val = str;
59 return ARG_S_OK_ADV;
60 }
61

62

63 /* [exposed] degree_sanitise: ensure that the degree is in a correct range,
64 * otherwise set it to the default */
65

66 void degree_sanitise (GLint * val)
67 {
68 switch (*val) {
69 case −1:
70 case 0:
71 case 1:
72 *val = DEGREE_DEFAULT;
73 }
74 }
75

Source-Code Listing 29: Various helper functions for the parsing of untrusted data.

6.5.6 User-Engagement: Greeting

If verbosity is requested, then a loving, time-appropriate message is printed to the standard
output device. This function uses the system time to select a time-appropriate, English greeting
from a list of contenders. The function, print welcome, is listed in Source-Code Listing 30.

15th March, 2020 Release Copy Page 51

Stage III: Technical Solution furakutaru Oliver Dixon

1 #ifdef UNICODE_SUPPORTED
2 #define PROGRAM_TITLE "ãM−^CM−^UãM−^C©ãM−^B¯ãM−^B¿ãM−^C«"
3 #else

4 #define PROGRAM_TITLE "FURAKUTARU"
5 #endif /* UNICODE_SUPPORTED */
6

7 #define PROGRAM_VERSION "1.0"
8 #define PROGRAM_AUTHOR "Oliver Dixon"
9 #define PROGRAM_LICENCE "M.I.T. Licence"
10 #define PROGRAM_LICENCE_URL "https://mit−license.org/"
11

12 /* [exposed] print_welcome: makes the user feel special
13 * https://www.youtube.com/watch?v=3ymwOvzhwHs */
14

15 void print_welcome ()
16 {
17 time_t raw_time = −1;
18 struct tm * time_inf = NULL;
19

20 int idx = 0;
21 char * greeting [] = { "Hello", "Good morning", "Good afternoon",
22 "Good evening" };
23

24 if (time (&raw_time) != (time_t) −1 &&
25 (time_inf = localtime (&raw_time)) != NULL) {
26 if (time_inf−>tm_hour < 12) {
27 idx = 1;
28 } else if (time_inf−>tm_hour < 18) {
29 idx = 2;
30 } else {
31 idx = 3;
32 }
33 }
34

35 printf ("%s. This is %s version %s by %s.\n" \
36 "This software is licensed under the %s, a copy of\nwhich " \
37 "can be found at %s or in the\nprogram directory.\n\n",
38 greeting [idx], PROGRAM_TITLE, PROGRAM_VERSION,
39 PROGRAM_AUTHOR, PROGRAM_LICENCE, PROGRAM_LICENCE_URL);
40 }
41

Source-Code Listing 30: Welcomes the user to the furakutaru System

6.5.7 User-Engagement: Argument Listing

As indicated in the previous sections, it is integral that, due to furakutaru’s heavy reliance on
command-line arguments, that the user is well-versed in the options that the System accepts. By
passing the -h option to the program, it does nothing aside from print a list of each argument, its
operand (if applicable), and a brief description. The output is aligned to sixteen-column sectors,
allowing for a well-formatted and easy-to-read output; this is shown in the Testing section.

This allows the Clientele to use the Product effectively without having to search the source code,
as is the case with many ill-developed applications. The help function, print help, can be found in
Source-Code Listing 31.

6.6 The General furakutaru Runtime

The majority of the furakutaru code-base, including the operating system entry-point, is con-
tained within the Runtime. The following section will detail each Runtime function. Note that this
section does not define its own Common Status Interface, as the chances of erroneous behaviour
occurring once instantiation having completed is marginally low.

6.6.1 Default System Values: set system defaults

furakutaru does not require that a user specify any options, and thus has a responsibility to
provide sensible defaults to the renderer, assuming the likely case that some, or all, options have
not been explicitly specified by the user. These defaults, in addition to the helper function which
copies them to the initial render state, are listed in Source-Code Listing 32.

These defaults can be overwritten at any time, as set system defaults is only called once,
before any other function, such as the argument-processor or file-parser, has a chance to invalidate
the defaults.

15th March, 2020 Release Copy Page 52

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* [exposed] print_help: prints the command−line arguments and a description
2 * of each to the stdout device. */
3

4 void print_help ()
5 {
6 time_t raw_time = −1;
7 struct tm * time_inf = NULL;
8

9 if (time (&raw_time) != (time_t) −1 &&
10 (time_inf = localtime (&raw_time)) != NULL &&
11 (time_inf−>tm_hour == 0 && time_inf−>tm_min == 30))
12 puts ("\tgimme gimme gimme! (a manual page after " \
13 "midnight)\n");
14

15 /* oh my goodness
16 * https://www.youtube.com/watch?v=Qc23ryXcmME */
17 printf (PROGRAM_TITLE " v. " PROGRAM_VERSION ", by " PROGRAM_AUTHOR \
18 "\nCommand−Line Arguments Summary\n\n" \
19 "%−16s %−16s\n%−16s %−16s\n%−16s %−16s\n%−16s %−16s\n" \
20 "%−16s %−16s\n%−16s %−16s\n%−16s %−16s\n%−16s %−16s\n" \
21 "%−16s %−16s\n%−16s %−16s\n%−16s %−16s\n%−16s %−16s\n" \
22 "%−16s %−16s\n%−16s %−16s\n%−16s %−16s\n%−16s %−16s\n",
23 "−−verbose, −v", "Be overly−verbose.",
24 "−−lock, −l", "Ignore interactive input, aside from " \
25 "the ’quit’ and ’report’ commands.",
26 "−−px", "Specify the Real co−ordinate of the centre.",
27 "−−py", "Specify the Imaginary co−ordinate of the " \
28 "centre.",
29 "−−cx", "[Julia] Specify the Real co−ordinate of the" \
30 " seed.",
31 "−−cy", "[Julia] Specify the Imaginary co−ordinate" \
32 " of the seed.",
33 "−−type, −t", "Specify the type of Set: ’mandelbrot’" \
34 " or ’julia’ are permitted.",
35 "−−iteration, −i", "Specify the maximum iterations.",
36 "−−scale, −s", "Specify the scale to which the Set " \
37 "should be zoomed.",
38 "−−degree, −d", "Specify the degree to which the " \
39 "generating−polynomial should be " \
40 "raised.",
41 "−−colour, −c", "Loads the file containing the colour" \
42 " palette.",
43 "−−outdir, −o", "The directory to place output files.",
44 "−−config, −f", "A file from which to load the " \
45 "initial render state.",
46 "−−assumeconfig", "Assume the file specified by ’−f’" \
47 " as the default state.",
48 "−−rotate, −r", "Specify the angle by which to rotate" \
49 " the initial render.",
50 "−−help, −h", "Display this help message and quit.");
51 }
52

Source-Code Listing 31: Provides a simple, comprehensive, and authoritative source of information
to the user.

6.6.2 Respecting the Input Configuration File: setup init vals

This is largely a wrapper function to avoid the main entry-point from becoming convoluted and
unmanageable on an twenty-four-line terminal. Upon the successful completion of the argument-
processor, should it occur, the setup init vals function is called, to determine the precedence of
defaults. If the --assumeconfig option was passed on the command-line, this function causes the
default render state to become the configuration specified in the file. The function is specified in
Source-Code Listing 33.

In practice, this implies that the user’s request to reset the renderer to its default state, should
revert not to the system defaults described in Source-Code Listing 32, but those interpreted from
the configuration file.

6.6.3 The OS Entry-Point: int main (int argc, char ** argv)

The entry function, listed in Source-Code Listing 34, is the parent of all other functions discussed
in this document. Returning the UNIX standard EXIT SUCCESS or EXIT FAILURE on success or
failure respectively, this function takes the number of command line arguments, plus one7, for its
first argument, and the argument array as its second.

This function also maintains the majority of original copies of the variables used throughout the

7On the majority of systems, the program-invocation path is considered as argv [0].

15th March, 2020 Release Copy Page 53

Stage III: Technical Solution furakutaru Oliver Dixon

1 #define MAX_ITERATION_DEFAULT (1000)
2 #define SCALE_DEFAULT (2.2)
3 #define SEED_X_DEFAULT (0.0)
4 #define SEED_Y_DEFAULT (0.0)
5 #define DEGREE_DEFAULT (2)
6 #define CENTRE_X_DEFAULT (0.0)
7 #define CENTRE_Y_DEFAULT (0.0)
8 #define VERBOSITY_DEFAULT (0)
9 #define LOCKING_DEFAULT (0)
10 #define ROTATION_DEFAULT (0)
11

12 #ifndef AUX_DIR
13 #define AUX_DIR "src/aux/"
14 #endif

15

16 /* [exposed] set_system_defaults */
17

18 void set_system_defaults (struct render_state * rs)
19 {
20 rs−>max_iterations = MAX_ITERATION_DEFAULT;
21 rs−>scale = SCALE_DEFAULT;
22 rs−>seed_x = SEED_X_DEFAULT;
23 rs−>seed_y = SEED_Y_DEFAULT;
24 rs−>degree = DEGREE_DEFAULT;
25 rs−>centre_x = CENTRE_X_DEFAULT;
26 rs−>centre_y = CENTRE_Y_DEFAULT;
27 rs−>type = FRAC_MANDELBROT;
28 rs−>verbosity = VERBOSITY_DEFAULT;
29 rs−>locking = LOCKING_DEFAULT;
30 rs−>angle = ROTATION_DEFAULT;
31 rs−>colour_path = NULL;
32 rs−>out_dir = NULL;
33 }
34

35

Source-Code Listing 32: Defines, and sets, appropriate default values. Assuming these values, the
renderer draws a typical Mandelbrot Set of the second degree.

1 /* setup_init_vals: initiates the appropriate initial and current render
2 * structures. Also reports the status/failure of importing a file. On failure,
3 * this function returns −1, and zero on success. */
4

5 static int setup_init_vals (struct render_state * rs,
6 struct render_state * is, char * cfg, int assume_cfg)
7 {
8 enum export_status status = EXPORT_S_IMPORT_OK;
9

10 /* If −−assumeconfig was set, use the config file as the default render
11 * state. Otherwise, only use it as the initial state, and allow the
12 * initial state to remain as the command−line arguments mixed with
13 * the system defaults. */
14

15 if (cfg) {
16 fputs ("Importing ", stdout);
17 puts (cfg);
18

19 if ((status = csv_import (cfg, rs))
20 != EXPORT_S_IMPORT_OK) {
21 fputs (parse_export_status (status), stderr);
22 fputc (’\n’, stderr);
23 return −1;
24 }
25

26 puts (parse_export_status (EXPORT_S_IMPORT_OK));
27 if (assume_cfg)
28 memcpy (is, rs, sizeof (struct render_state));
29 }
30

31 return 0;
32 }
33

Source-Code Listing 33: Assume the file configuration to be the true default, overriding the system
defaults.

entire code-base, such as the current renderer state, rs, and the initial/default renderer state, is.
Information regarding the X connection is also maintained in x disp inf disp inf and x fb inf

fb inf.

Upon attaining all the argument values and initialising OpenGL, the entry-point function sets
the default program and instantiates an identity matrix to be used in the Vertex Shader.

15th March, 2020 Release Copy Page 54

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* [entry] main: main entry point, taking arguments. This function returns
2 * EXIT_SUCCESS on success, or EXIT_FAILURE on failure. */
3

4 int main (int argc, char ** argv)
5 {
6 struct x_disp_inf disp_inf;
7 struct x_fb_inf fb_inf;
8 GLuint program_list [FRACTAL_COUNT] = { 0 };
9 struct render_state rs, is;

10 int assume_cfg = 0;
11 char * cfg = NULL;
12

13 set_system_defaults (&is);
14

15 if ((assume_cfg = process_args (argc, argv, &is, &cfg)) == −1)
16 return EXIT_FAILURE;
17 if (assume_cfg == −2) /* help requested; nothing to do */
18 return EXIT_SUCCESS;
19

20 rs = is;
21 if (rs.verbosity)
22 print_welcome ();
23

24 if (setup_init_vals (&rs, &is, cfg, assume_cfg) == −1 ||
25 init_assistant (&disp_inf, &fb_inf, program_list,
26 is.colour_path) == −1)
27 return EXIT_FAILURE;
28

29 rs.program = program_list [rs.type];
30 glUseProgram (rs.program);
31

32 set_rotation_matrix (&rs, rs.angle);
33 reset_render_state (&rs, (cfg) ? &rs : &is);
34 glEnableVertexAttribArray (fb_inf.a_pos_addr);
35

36 while (1) {
37 switch (ev_wait (&disp_inf, &rs, program_list)) {
38 case −1:
39 /* −1 = (gracious) quit */
40 clean_all (&disp_inf, &fb_inf, program_list);
41 glDisableVertexAttribArray (
42 fb_inf.a_pos_addr);
43 if (rs.verbosity)
44 puts ("\nThank you for using " \
45 PROGRAM_TITLE);
46 return EXIT_SUCCESS;
47 case 1:
48 /* 1 = reset state and update */
49 reset_render_state (&rs, &is);
50 /* fall through */
51 case 0:
52 update (&disp_inf, &fb_inf);
53 }
54 }
55 }
56

Source-Code Listing 34: The main entry-point for the furakutaru System, returning and assuming
the expected values for a standard UNIX -like system.

6.6.4 Controlling the Rotation: set rotation matrix

As specified in the Analysis and Design sections, it is integral that furakutaru contains the
functionality to rotate the render. This is achieved using a Vertex Shader, which multiplies the
viewport vertices by a rotation matrix before passing control to the Fragment Shader. This way,
the Fragment Shaders do not have to have any acknowledgement or knowledge of the state, or even
ability, of rotation.

The set rotation matrix function is shown in Source-Code Listing 35.

Once the appropriate matrix has been created, this function also makes a copy of the local matrix
in the render state structure, rs. This is to appease the OpenGL subsystem, as it occasionally
mandates unpredictable access to original copies of the data stored on the GPU This function uses
the OpenGL-provided GLUniformMatrix4fv to pass the four-by-four matrix directly to the Vertex
Shader.

6.6.5 The Blocking Event Loop: ev wait

The event loop calls the XCB built-in xcb wait for event function, which blocks until the
window receives an event to which it is subscribed—this is explained fully in § 6.2.8. In the case of

15th March, 2020 Release Copy Page 55

Stage III: Technical Solution furakutaru Oliver Dixon

1 #define DEGRAD_MULTIPLIER (0.01745329252) /* ~pi/180 */
2

3 /* [exposed] set_rotation_matrix: sets the angle, given in degrees, by which
4 * to rotate the render. The matrix is created, locally and copied to the
5 * rs−>rot_matrix and the vertex shader, as it is a requirement that the
6 * original matrix values are accessible throughout execution of a scene. */
7

8 void set_rotation_matrix (struct render_state * rs, GLint new_angle)
9 {
10 GLint addr = glGetUniformLocation (rs−>program, "rot_matrix");
11 GLfloat rad = DEGRAD_MULTIPLIER;
12

13 if (addr == −1)
14 return;
15

16 new_angle %= 360; /* wrap on a full rotation */
17 rad *= new_angle;
18

19 GLfloat matrix [16] = {
20 cos (rad), − sin (rad), 0.0, 0.0,
21 sin (rad), cos (rad), 0.0, 0.0,
22 0.0, 0.0, 1.0, 0.0,
23 0.0, 0.0, 0.0, 1.0
24 };
25

26 rs−>angle = new_angle;
27 memcpy (rs−>rot_matrix, matrix, sizeof (GLfloat [16]));
28 glUniformMatrix4fv (addr, 1, GL_FALSE, matrix);
29 }
30

Source-Code Listing 35: Sets the rotation matrix based on an angle provided, in degrees, to be
passed to the Vertex Shader.

furakutaru, a window-invalidation, such as a resize of move, or a key-press whilst focus is placed on
the window, both cause this function to return the nature of the event in the xcb generic event t

structure.

This structure is then cast to the appropriate event structure, and its data is read. While some
specialised key-codes are handled in this function, the majority of key-presses are handled in a
separate handler, akin to the arg subprocessor function listed in Source-Code Listing 28.

The function, listed in Source-Code Listing 36, returns zero as a signal to update the rendering
area, -1 as a signal to gracefully quit, or +1 as a signal to reset the renderer to its initial state and
update the screen.

6.6.6 Reset the Renderer to its Initial State: reset render state

This function, listed in Source-Code Listing 37, resets the render state back to its initial state.
It is assumed that the first argument points to the currently active render, and the second argument
points to the initial state. set rotation matrix, detailed in Source-Code Listing 35, is called as a
consequence of this function, which does a deep copy of the rotation matrix from the initial state to
the current.

6.6.7 Uniform-Setter Wrapper Functions: 1i, 1f, and 2f

furakutaru defines functions, which it suggests the compiler in-lines, to provide a robust method
of accessing uniform variables in the Vertex and Fragment Shaders. As the GLSL source code
defines uniforms by name, it is necessary to perform a look-up when attempting to write data to
their location on the GPU The four functions, used to set a single integer, single float, or point, are
named set uniform1i, set uniform1f, and set uniform2f respectively.

The function set is listed in Source-Code Listing 38.

6.6.8 The Generic Key-Code Handler: keycode handle gen

As shown in Source-Code Listing 36, an additional function is called to handle the key-codes
on a key-by-key basis, setting appropriate auxiliary function handlers for each case. This function,
keycode handle gen, is outlined in Source-Code Listing 39.

This function is designed to work with the verbose report function for high-quality and precise
reporting for the clients enabling verbosity.

15th March, 2020 Release Copy Page 56

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* ev_wait: *blocking* event−checking loop. Waits for events, deals with
2 * them accordingly, and returns 0 on success, or −1 as a signal to exit. A
3 * return value of 1 indicates that the renderer should be reset. */
4

5 static int ev_wait (struct x_disp_inf * disp_inf, struct render_state * rs,
6 GLuint program_list [FRACTAL_COUNT])
7 {
8 xcb_generic_event_t * ev = NULL;
9 xcb_keycode_t key;
10 int ret = 0;
11

12 ev = xcb_wait_for_event (disp_inf−>xcb_conn);
13 switch (ev−>response_type & SYN_MASK) {
14 /* XCB_EXPOSE: update the window width and height values
15 * when it is resized */
16 case XCB_EXPOSE:
17 disp_inf−>win_width = ((xcb_expose_event_t *)ev)
18 −>width;
19 disp_inf−>win_height = ((xcb_expose_event_t *)ev)
20 −>height;
21 break;
22

23 /* XCB_KEY_PRESS: process the key−code sent */
24 case XCB_KEY_PRESS:
25 key = ((xcb_key_press_event_t *)ev)−>detail;
26

27 switch (key) {
28 case KEYCODE_QUIT:
29 ret = −1;
30 break;
31 case KEYCODE_INFO:
32 print_info (rs);
33 break;
34 }
35

36 if (rs−>locking)
37 break;
38

39 switch (key) {
40 case KEYCODE_DEFAULT:
41 if (rs−>verbosity)
42 puts ("Reverted to " \
43 "defaults.");
44 ret = 1;
45 break;
46 case KEYCODE_SWITCH:
47 rs−>type = !rs−>type;
48 rs−>program = program_list
49 [rs−>type];
50 glUseProgram (rs−>program);
51 if (rs−>verbosity) {
52 stdputs ("Switched the " \
53 "fractal " \
54 "to a ");
55 stdputs ((rs−>type ==
56 FRAC_MANDELBROT)
57 ? "Mandelbrot"
58 : "Julia");
59 puts (" Set.");
60 }
61 set_rotation_matrix (rs, 0);
62 ret = 1;
63 break;
64 case KEYCODE_SAVEIMG:
65 puts (parse_export_status (
66 image_export (
67 disp_inf−>win_width,
68 disp_inf−>win_height,
69 rs−>out_dir)));
70 break;
71 default:
72 keycode_handle_gen (key, rs);
73 }
74 }
75

76 free (ev);
77 return ret;
78 }

Source-Code Listing 36: The blocking event loop, used to await key-presses or window-invalidation
as an indicator for the renderer being required to re-draw the screen with the new values. If this
function cannot handle the incoming key-code itself, it is passed to the general keycode handle gen

function, which may further pass the code to additional key-handling functions.

15th March, 2020 Release Copy Page 57

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* reset_render_state: sets the initial values when conferring with the
2 * OpenGL shaders program */
3

4 static void reset_render_state (struct render_state * rs,
5 struct render_state * is)
6 {
7 if (rs != is) {
8 rs−>max_iterations = is−>max_iterations;
9 rs−>centre_x = is−>centre_x;
10 rs−>centre_y = is−>centre_y;
11 rs−>seed_x = is−>seed_x;
12 rs−>seed_y = is−>seed_y;
13 rs−>scale = is−>scale;
14 rs−>degree = is−>degree;
15 rs−>angle = is−>angle;
16 }
17

18 set_uniform1i (rs−>program, "max_iterations", rs−>max_iterations);
19 set_uniform1f (rs−>program, "scale", rs−>scale);
20 set_uniform2f (rs−>program, "centre", rs−>centre_x, rs−>centre_y);
21 set_uniform1i (rs−>program, "degree", rs−>degree);
22 set_uniform2f (rs−>program, "seed", rs−>seed_x, rs−>seed_y);
23 set_rotation_matrix (rs, is−>angle);
24 }
25

Source-Code Listing 37: Resetting a render state back to defaults, whether the defaults originate
from the System Stock, or a custom configuration file.

1 /* set_uniform* wrapper functions: these functions act as a less horrendous
2 * interface to the glUniform* functions. If they fail, it is silent, as such a
3 * failure would not be fatal but would be very visually−apparent. */
4

5 static inline void set_uniform1f (GLuint program, const GLchar * property,
6 GLfloat val)
7 {
8 GLint addr = glGetUniformLocation (program, property);
9 if (addr != −1)
10 glUniform1f (addr, val);
11 }
12

13 static inline void set_uniform1i (GLuint program, const GLchar * property,
14 GLfloat val)
15 {
16 GLint addr = glGetUniformLocation (program, property);
17 if (addr != −1)
18 glUniform1i (addr, val);
19 }
20

21 static inline void set_uniform2f (GLuint program, const GLchar * property,
22 GLfloat val_1, GLfloat val_2)
23 {
24 GLint addr = glGetUniformLocation (program, property);
25 if (addr != −1)
26 glUniform2f (addr, val_1, val_2);
27 }
28

Source-Code Listing 38: The set uniform wrappers, used as a safe and robust interface to the GPU
uniform variables.

6.6.9 Julia Set-Specific Key-Handling: keycode handle julia

To ensure conciseness of the general key-code handler, the keycode handle julia function, listed
in Source-Code Listing 40, is called when the general handler does not recognise the action being
passed; as this is not referring to user data, it can be assumed it is valid to some extent.

Though small, the function operates identically to the general key-code handler, sending its
output to the verbose reporter if necessary.

6.6.10 Ensuring the Health of the Render State: degree change

As previously mentioned in Source-Code Listing 29, the degree must not become a value which
the renderer cannot handle; namely, this is -1, 0, or +1. Because of this, the degree change function,
listed in Source-Code Listing 41, manages direct access to the degree variable in the GLSL Shaders.

15th March, 2020 Release Copy Page 58

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* keycode_handle_gen: confers with the OpenGL program to handle certain
2 * key−presses. Application controls, such as quitting or displaying
3 * information, should already have been handled. */
4

5 static void keycode_handle_gen (xcb_keycode_t key, struct render_state * rs)
6 {
7 union verbose_data delta, new_val;
8

9 switch (key) {
10 case KEYCODE_INCITER:
11 delta.i = ITERATION_STEP;
12 rs−>max_iterations += delta.i;
13 set_uniform1i (rs−>program, "max_iterations",
14 rs−>max_iterations);
15 new_val.i = rs−>max_iterations;
16 break;
17 case KEYCODE_DECITER:
18 delta.i = −ITERATION_STEP;
19 rs−>max_iterations += delta.i;
20 set_uniform1i (rs−>program, "max_iterations",
21 rs−>max_iterations);
22 new_val.i = rs−>max_iterations;
23 break;
24 case KEYCODE_ZOOMIN:
25 delta.f = SCALE_STEP;
26 rs−>scale *= delta.f;
27 set_uniform1f (rs−>program, "scale", rs−>scale);
28 new_val.f = rs−>scale;
29 break;
30 case KEYCODE_ZOOMOUT:
31 delta.f = 1/SCALE_STEP;
32 rs−>scale *= delta.f;
33 set_uniform1f (rs−>program, "scale", rs−>scale);
34 new_val.f = rs−>scale;
35 break;
36 case KEYCODE_LEFT:
37 delta.f = rs−>scale * MOVEMENT_STEP;
38 rs−>centre_x += cos (rs−>angle * DEGRAD_MULTIPLIER) *
39 delta.f;
40 rs−>centre_y += sin (rs−>angle * DEGRAD_MULTIPLIER) *
41 delta.f;
42 set_uniform2f (rs−>program, "centre", rs−>centre_x,
43 rs−>centre_y);
44 new_val.f = rs−>centre_x;
45 break;
46 case KEYCODE_RIGHT:
47 delta.f = − (rs−>scale * MOVEMENT_STEP);
48 rs−>centre_x += cos (rs−>angle * DEGRAD_MULTIPLIER) *
49 delta.f;
50 rs−>centre_y += sin (rs−>angle * DEGRAD_MULTIPLIER) *
51 delta.f;
52 set_uniform2f (rs−>program, "centre", rs−>centre_x,
53 rs−>centre_y);
54 new_val.f = rs−>centre_x;
55 break;
56 case KEYCODE_UP:
57 delta.f = − (rs−>scale * MOVEMENT_STEP);
58 rs−>centre_x −= sin (rs−>angle * DEGRAD_MULTIPLIER) *
59 delta.f;
60 rs−>centre_y += cos (rs−>angle * DEGRAD_MULTIPLIER) *
61 delta.f;
62 set_uniform2f (rs−>program, "centre", rs−>centre_x,
63 rs−>centre_y);
64 new_val.f = rs−>centre_y;
65 break;
66 case KEYCODE_DOWN:
67 delta.f = rs−>scale * MOVEMENT_STEP;
68 rs−>centre_x −= sin (rs−>angle * DEGRAD_MULTIPLIER) *
69 delta.f;
70 rs−>centre_y += cos (rs−>angle * DEGRAD_MULTIPLIER) *
71 delta.f;
72 set_uniform2f (rs−>program, "centre", rs−>centre_x,
73 rs−>centre_y);
74 new_val.f = rs−>centre_y;
75 break;
76 case KEYCODE_INCDEG:
77 delta.i = degree_change (& (rs−>degree), 1);
78 set_uniform1i (rs−>program, "degree", rs−>degree);

Source-Code Listing 39: Handling key-codes on an individual basis, setting appropriate auxiliary
functions to parse and report the interaction. Many of the modifications are made with respect to
the current zoom level: this is to prevent the renderer making huge jumps when the user attempts
to pan into a highly zoomed fractal. This file is truncated due to space limitations. For the
full listing, see the Appendices.

15th March, 2020 Release Copy Page 59

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* keycode_handle_julia: handles keycodes specific to the management of the
2 * Julia Set. */
3

4 static void keycode_handle_julia (struct render_state * rs, xcb_keycode_t key)
5 {
6 union verbose_data delta, new_val;
7 delta.f = 0.0; /* G.C.C., oh my goodness */
8

9 switch (key) {
10 case KEYCODE_SEED_L:
11 delta.f = rs−>scale * MOVEMENT_STEP;
12 rs−>seed_x += delta.f;
13 new_val.f = rs−>seed_x;
14 break;
15 case KEYCODE_SEED_R:
16 delta.f = − (rs−>scale * MOVEMENT_STEP);
17 rs−>seed_x += delta.f;
18 new_val.f = rs−>seed_x;
19 break;
20 case KEYCODE_SEED_D:
21 delta.f = rs−>scale * MOVEMENT_STEP;
22 rs−>seed_y += delta.f;
23 new_val.f = rs−>seed_y;
24 break;
25 case KEYCODE_SEED_U:
26 delta.f = − (rs−>scale * MOVEMENT_STEP);
27 rs−>seed_y += delta.f;
28 new_val.f = rs−>seed_y;
29 break;
30 case KEYCODE_DEFAULT:
31 rs−>seed_x = SEED_X_DEFAULT;
32 rs−>seed_y = SEED_Y_DEFAULT;
33 break;
34 }
35

36 set_uniform2f (rs−>program, "seed", rs−>seed_x, rs−>seed_y);
37 if (rs−>verbosity)
38 verbose_report (key, delta, new_val);
39 }
40

Source-Code Listing 40: A Julia-specific key-code handler function, acting as a complement to
keycode handle gen, detailed in Source-Code Listing 39.

1 /* degree_change: ensures the degree change does not go to a disallowed value
2 * which causes peculiar (or a complete absence of) rendering: −1, 0, 1. */
3

4 static GLint degree_change (GLint * dest, int direction)
5 {
6 GLint new_val = *dest + (direction * DEGREE_STEP);
7

8 if (direction != −1 && direction != 1) {
9 *dest = DEGREE_DEFAULT;

10 return DEGREE_DEFAULT;
11 }
12

13 switch (new_val) {
14 case −1:
15 case 0:
16 case 1:
17 new_val = direction * DEGREE_DEFAULT;
18 break;
19 }
20

21 *dest = new_val;
22 return new_val;
23 }
24

Source-Code Listing 41: Manages the direct editing of the degree variable, ensuring it does not
enter a state which disables the renderer.

6.6.11 Extra-Verbose Reporting: verbose report

If the -v or --verbose options were passed as command-line arguments, every interactive action
is logged to the standard output device. A union is utilised in order to pass the various data-types
to a common reporting function: verbose report, listed in Source-Code Listing 42. This allows the
source code to remain concise while retaining its accuracy and clientele-appeasement factor.

15th March, 2020 Release Copy Page 60

Stage III: Technical Solution furakutaru Oliver Dixon

1 union verbose_data {
2 GLint i;
3 GLfloat f;
4 };
5

6 /* verbose_report: in the event of requested verbosity, print every action to
7 * stdout */
8

9 static void verbose_report (enum keycodes action, union verbose_data delta,
10 union verbose_data new_data)
11 {
12 int is_int = 0;
13

14 switch (action) {
15 case KEYCODE_LEFT: stdputs ("Pan left of"); break;
16 case KEYCODE_DOWN: stdputs ("Pan downwards of"); break;
17 case KEYCODE_UP: stdputs ("Pan upwards of"); break;
18 case KEYCODE_RIGHT: stdputs ("Pan right of"); break;
19 case KEYCODE_ZOOMIN: stdputs ("Scale−up by x"); break;
20 case KEYCODE_ZOOMOUT: stdputs ("Scale−down by x"); break;
21 case KEYCODE_INCITER: stdputs ("Increased iterations by");
22 is_int = 1;
23 break;
24 case KEYCODE_DECITER: stdputs ("Decreased iterations by");
25 is_int = 1;
26 break;
27 case KEYCODE_INCDEG: stdputs ("Increased the degree by");
28 is_int = 1;
29 break;
30 case KEYCODE_DECDEG: stdputs ("Decreased the degree by");
31 is_int = 1;
32 break;
33 case KEYCODE_SEED_L: stdputs ("Moved the seed left by");
34 break;
35 case KEYCODE_SEED_D: stdputs ("Moved the seed downwards " \
36 "by");
37 break;
38 case KEYCODE_SEED_U: stdputs ("Moved the seed upwards by");
39 break;
40 case KEYCODE_SEED_R: stdputs ("Moved the seed right by");
41 break;
42 case KEYCODE_SWITCH:
43 return;
44 case KEYCODE_ROTLEFT:
45 case KEYCODE_ROTRGHT:
46 stdputs ("Rotated by");
47 is_int = 1;
48 break;
49 default:
50 return;
51 }
52

53 if (is_int) {
54 printf (" %d. The new value is %d.\n", (GLint) delta.i,
55 (GLint) new_data.i);
56 } else {
57 printf (" %f. The new value is %f.\n", (GLfloat) delta.f,
58 (GLfloat) new_data.f);
59 }
60 }
61

Source-Code Listing 42: A union is being used to transport the data from the key-code handler:
non-integer and non-float values are expected to self-report.

6.6.12 Printing Information On-Request: print info

The print info function, listed in Source-Code Listing 43, outputs all the information regarding
the current render to the standard output device in a human-readable and formatted form. If the
requested information regards a Julia Set, the seed co-ordinates are included in the report.

6.6.13 The Render Update: update

update confers with OpenGL, informing the subsystem that a new frame needs to be rendered.
By this point, it is expected that all new values should have been placed onto the GPU using a
set uniform wrapper, or similar. This function is listed in Source-Code Listing 44.

The viewpoint is set, the arena cleared, and the Vertex and Fragment Shaders are invoked to
write the new pixels to the buffer. As furakutaru uses double-buffering, it is then necessary to swap
the virtual buffer with its hardware counterpart, usually representing a display.

15th March, 2020 Release Copy Page 61

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* print_info: prints the information out to stdout regarding the current render
2 * state. */
3

4 static void print_info (struct render_state * rs)
5 {
6 printf ("[%s]\nCentre Position: (%f, %f)\nZoom: %f\nDegree: %d\n" \
7 "Maximum Iterations: %d\nAngle: %d degrees\n",
8 (rs−>type == FRAC_MANDELBROT) ? "Mandelbrot Set" :
9 "Julia Set", rs−>centre_x, rs−>centre_y, rs−>scale,
10 rs−>degree, rs−>max_iterations, rs−>angle);
11

12 if (rs−>type == FRAC_JULIA)
13 printf ("Seed Position: (%f, %f)\n", rs−>seed_x,
14 rs−>seed_y);
15 }
16

Source-Code Listing 43: Prints the information regarding the current fractal to the standard output.
Like everything in furakutaru, this exchange is done via a text channel.

1 /* update: updates the screen. This should only be called from a blocking loop;
2 * fractals do not mandate constant updates! */
3

4 static void update (struct x_disp_inf * disp_inf, struct x_fb_inf * fb_inf)
5 {
6 glViewport (0, 0, disp_inf−>win_width, disp_inf−>win_height);
7 glClearColor (0.0f, 0.0f, 0.0f, 1.0f);
8 glClear (GL_COLOR_BUFFER_BIT);
9 glDrawArrays (GL_TRIANGLE_STRIP, 0, 4);
10 glXSwapBuffers (disp_inf−>disp, fb_inf−>glx_draw);
11 }
12

Source-Code Listing 44: The update function, despite its short length, invokes the OpenGL system
to draw the arrays (the Fragment Shaders) to the screen.

6.7 Saving, Importing, and Exporting Fractals

It was stated during the Analysis section, that furakutaru must have the ability to save and
import fractals, using a CSV file as the method of saving. It is also a requirement, specified by the
client, that the System must have the ability to export a fractal to a non-furakutaru-specific file, for
easy sharing and post-processing.

This section describes the functions within furakutaru which enable the various methods of long-
term storage.

6.7.1 The Common Status Interface for Long-Term Storage Actions with
Related Parsers: export status and parse export status

As with the other sectors of furakutaru, a Common Status Interface, with a complementary
parser, has been created to handle errors specifically regarding the save-import-export actions. The
parser, parse export status, found in Source-Code Listing 45, returns a human-readable string for
the various status codes in the export status enumerator.

6.7.2 Exporting an image as a furakutaru CSV: csv export

The csv export function, listed in Source-Code Listing 46, is the primary export function,
providing the user the ability to save an interactive fractal in a particular state. Using a furakutaru-
specific syntax, this can then be re-loaded into the System at a later date to its exact state.

This function returns EXPORT S EXPORT OK on success, or a EXPORT S error-code on failure. The
command-line argument out-dir is respected, such that the output file will reside in the specified
directory. If the user does not specify an output directory, the location of the executable is assumed8.

6.7.3 Constructing a Pseudo-Random Path: construct export path

In order to gain the greatest potential of finding a suitable file to which the CSV can be saved,
furakutaru includes the construct export path function, used to create append a psuedo-random
integer to a prefix, and add a suffix extension: .tga or .csv.

8On some systems, this is the current working directory, which is often distinct to the executable path.

15th March, 2020 Release Copy Page 62

Stage III: Technical Solution furakutaru Oliver Dixon

1 enum export_status {
2 EXPORT_S_IMGEXP_OK = 2,
3 EXPORT_S_IMPORT_OK = 1,
4 EXPORT_S_EXPORT_OK = 0,
5 EXPORT_S_FOPEN = −1,
6 EXPORT_S_WRITE_NOTHING = −2,
7 EXPORT_S_WRITE_INCOMPLETE = −3,
8 EXPORT_S_NO_CONTENDERS = −4,
9 EXPORT_S_READ = −5,

10 EXPORT_S_SYNTAX = −6,
11 EXPORT_S_READ_TOOLONG = −7,
12 EXPORT_S_READ_TOOSHORT = −8,
13 EXPORT_S_IMG_OPENGL = −10
14 };
15

16 /* [exposed] parse_export_status: returns a human−readable string of an
17 * export_status code. */
18

19 const char * parse_export_status (enum export_status status)
20 {
21 switch (status) {
22 case EXPORT_S_IMGEXP_OK:
23 return "Image exported successfully";
24 case EXPORT_S_IMPORT_OK:
25 return "Imported successfully";
26 case EXPORT_S_EXPORT_OK:
27 return "Exported successfully";
28 case EXPORT_S_NO_CONTENDERS:
29 return "Could not find any plausible contenders to " \
30 "which to write the information.";
31 case EXPORT_S_FOPEN:
32 return "Could not open the file; do you have write " \
33 "access to the current/specified directory?";
34 case EXPORT_S_WRITE_NOTHING:
35 return "Nothing could be written.";
36 case EXPORT_S_WRITE_INCOMPLETE:
37 return "Only some of the file could be written.";
38 case EXPORT_S_READ:
39 return "Could not read the C.S.V. file.";
40 case EXPORT_S_READ_TOOLONG:
41 return "The given file was too long to be a valid " \
42 "fractal configuration.";
43 case EXPORT_S_SYNTAX:
44 return "A syntax error was found; the file was not " \
45 "loaded.";
46 case EXPORT_S_READ_TOOSHORT:
47 return "The C.S.V. file ended unexpectedly; the " \
48 "file was not loaded.";
49 case EXPORT_S_IMG_OPENGL:
50 return "OpenGL could not provide the pixels.";
51 default:
52 return "Unknown status";
53 }
54 }
55

Source-Code Listing 45: The Common Status Interface for the save-import-export functionality.

This function uses the lightweight access built-in UNIX function to check the existence of a
file. In the extremely unlikely event that the random number has already been used, the function
will continue to attempt to find a suitable path. If, after ATTEMPT LIMIT, such a path has not been
found, it is assumed there is a systemic issue with the file-system or base directory, and the function
quits with a failure code.

construct export path is listed in Source-Code Listing 47.

6.7.4 Saving a Render to an Image File: image export

The function image export, detailed in Source-Code Listing 48, writes to a fully compliant TGA
file—a universal and simple image format which renders itself as completely manageable without
the use of extraneous third-party libraries.

image export finds an appropriate file to which it can write, and uses the in-built glReadPixels

function to take the pixels from the current rendering context and place them into a buffer, allocated
on the stack. The appropriate header, followed by the pixel data-stream, is written into the file.

This function conforms to the Common Error Interface for the save-import-export functions,
returning EXPORT S IMGEXP OK on success, and another descriptive code on failure.

15th March, 2020 Release Copy Page 63

Stage III: Technical Solution furakutaru Oliver Dixon

1 /* [exposed] csv_export: puts the current render state into a C.S.V.\ file,
2 * respecting the rs.out_dir attribute. Returns EXPORT_S_EXPORT_OK on success,
3 * otherwise failure. */
4

5 enum export_status csv_export (struct render_state * rs)
6 {
7 char path [PATH_MAX + 1], buf [BUF_SZ];
8 FILE * fp = NULL;
9 size_t len = 0;
10

11 if (construct_export_path (path, rs−>out_dir, "csv") == −1)
12 return EXPORT_S_NO_CONTENDERS;
13

14 if ((fp = fopen (path, "a")) == NULL)
15 return EXPORT_S_FOPEN;
16

17 fputs ("Writing the C.S.V. data to ", stdout);
18 puts (path);
19

20 /* max iterations, scale, seed X, seed Y, degree, centre X, centre Y,
21 * type (’m’ or ’j’), rotation */
22

23 len = snprintf (buf, BUF_SZ − 1, "%d,%f,%f,%f,%d,%f,%f,%c,%d",
24 rs−>max_iterations, rs−>scale, rs−>seed_x, rs−>seed_y,
25 rs−>degree, rs−>centre_x, rs−>centre_y, (rs−>type ==
26 FRAC_MANDELBROT) ? ’m’ : ’j’, rs−>angle);
27 buf [len] = ’\0’;
28

29 if (fwrite (buf, sizeof (char), len, fp) < len) {
30 fclose (fp);
31 return (!len) ? EXPORT_S_WRITE_NOTHING :
32 EXPORT_S_WRITE_INCOMPLETE;
33 }
34

35 fclose (fp);
36 return EXPORT_S_EXPORT_OK;
37 }
38

Source-Code Listing 46: The CSV export functionality, enabling a user to output a fractal to a
format which can later be read and re-created by furakutaru. In rare cases, the entire file cannot
be written, such a full file-system. In this case, EXPORT S WRITE INCOMPLETE is output. If none of
the file could be written out EXPORT S WRITE NOTHING is returned; this is uniform across all export
functions.

1 #define ATTEMPT_LIMIT (64)
2

3 /* construct_export_path: constructs a path, using the base and extension. A
4 * pseudorandom number is appended to file name. Returns −1 if a suitable
5 * file−name could not be found in ATTEMPT_LIMIT attempts, or zero on success.
6 * */
7

8 static int construct_export_path (char output [PATH_MAX + 1],
9 const char * base, const char * ext)

10 {
11 static int seeded;
12 int attempts = 0;
13

14 if (!seeded) {
15 srand (time (NULL));
16 seeded = 1;
17 }
18

19 do {
20 /* find a filename which does not already exist */
21 if (attempts++ > ATTEMPT_LIMIT)
22 return −1;
23

24 output [snprintf (output, PATH_MAX, "%s/fura_%d.%s",
25 (base) ? base : "./", rand (), ext)]
26 = ’\0’;
27 } while (access (output, F_OK) == 0);
28

29 return 0;
30 }
31

Source-Code Listing 47: A function used to find a suitable path to which an export file can be saved.
Unless there is a systemic issue with the base directory, this function uses a random number, seeded
with the current time, to find an acceptable file.

15th March, 2020 Release Copy Page 64

Stage III: Technical Solution furakutaru Oliver Dixon

1 #define BIT_DEPTH (24)
2

3 /* [exposed] image_export: writes a full T.G.A.\ image file out containing the
4 * current OpenGL render state */
5

6 enum export_status image_export (GLsizei width, GLsizei height,
7 const char * out_dir)
8 {
9 size_t img_sz = width * height * (BIT_DEPTH >> 3), bytes = 0;

10 GLubyte buf [img_sz];
11 short hdr [] = { 0, 2, 0, 0, 0, 0, width, height, BIT_DEPTH };
12 char path [PATH_MAX + 1];
13 FILE * fp = NULL;
14

15 if (construct_export_path (path, out_dir, "tga") == −1)
16 return EXPORT_S_NO_CONTENDERS;
17

18 fputs ("Exporting image to ", stdout);
19 puts (path);
20

21 if ((fp = fopen (path, "a")) == NULL)
22 return EXPORT_S_FOPEN;
23

24 /* request the pixels from OpenGL */
25 glReadPixels (0, 0, width, height, GL_BGR, GL_UNSIGNED_BYTE, buf);
26 if (glGetError () != GL_NO_ERROR) {
27 fclose (fp);
28 return EXPORT_S_IMG_OPENGL;
29 }
30

31 /* write out the header and pixel data */
32 if ((bytes = fwrite (&hdr, 1, sizeof (hdr), fp)) <
33 sizeof (hdr) ||
34 (bytes = fwrite (buf, sizeof (GLubyte), img_sz, fp)) <
35 sizeof (GLubyte) * img_sz) {
36 fclose (fp);
37 return (!bytes) ? EXPORT_S_WRITE_NOTHING :
38 EXPORT_S_WRITE_INCOMPLETE;
39 }
40

41 fclose (fp);
42 return EXPORT_S_IMGEXP_OK;
43 }
44

Source-Code Listing 48: Saves the current OpenGL render to a TGA file using the built-in OpenGL
commands to gain direct read-access to the hardware buffer.

6.7.5 Importing a Render from a furakutaru-Specific CSV: import csv

Provided a user has a valid furakutaru CSV file, the client mandated that this could be imported
into the System at any time with full interactive and normal function. The import csv, listed in
Source-Code Listing 49, is capable of loading, parsing, and setting the initial state to a pre-existing
file.

This function loads the file at the specified path into a buffer, and uses the standard strtok

function to split the buffer on the delimiting character: a comma. Like the other functions in
this category, the Common Status Interface is used, returning EXPORT S IMPORT OK on success, and
another error code on failure.

6.7.6 Loading a File into the CSV Buffer: load csv buffer

load csv buffer, listed in Source-Code Listing 50, loads the CSV file into a fixed buffer, of size
BUF SZ characters. Although fixed, any furakutaru CSV file will fit comfortably into this range. If
the CSV file does exceed this range, the System becomes aware it is not a valid file, and can bail out
before performing any expensive read/write operations; if this is the case EXPORT S READ TOOLONG

is returned.

On success, this function returns EXPORT S IMPORT OK, and an error-code on failure.

6.7.7 Parsing the CSV Buffer: import subprocessor

Providing the buffer is successfully populated with the contents of a CSV file, the function
import subprocessor, found in Source-Code Listing 51, uses a method similar to the argument-
processors, in which a switch-case statement and function pointers are used to deal with many
distinct cases in a concise fashio many distinct cases in a concise fashion.

15th March, 2020 Release Copy Page 65

Stage III: Technical Solution furakutaru Oliver Dixon

1 #define BUF_SZ (128)
2

3 /* [exposed] csv_import: imports the C.S.V.\ file into ’rs’, reporting the
4 * appropriate export_status on completion or error. */
5

6 enum export_status csv_import (const char * path, struct render_state * rs)
7 {
8 char buf [BUF_SZ], * token = NULL;
9 const char delim [] = ",";

10 enum export_status status = EXPORT_S_IMPORT_OK;
11 enum parse_field field = FIELD_UNKNOWN;
12

13 if ((status = load_csv_buffer (path, buf))
14 != EXPORT_S_IMPORT_OK)
15 return status;
16

17 token = strtok (buf, delim);
18

19 while (token) {
20 field++;
21 if ((status = import_subprocessor (token, rs, field))
22 != EXPORT_S_IMPORT_OK)
23 return status;
24

25 token = strtok (NULL, delim);
26 }
27

28 degree_sanitise (& (rs−>degree));
29 return (field + 1 != FIELD_LAST) ? EXPORT_S_READ_TOOSHORT :
30 EXPORT_S_IMPORT_OK;
31 }
32

Source-Code Listing 49: Importing a furakutaru CSV file to the renderer.

1 /* load_csv_buffer: loads the C.S.V.\ file, with a maximum size of BUF_SZ − 1,
2 * into the buffer ’buf’. Returns EXPORT_S_IMPORT_OK on success, otherwise an
3 * error. */
4

5 static enum export_status load_csv_buffer (const char * path,
6 char buf [BUF_SZ])
7 {

8 unsigned long len = 0, bytes = 0;
9 FILE * fp = NULL;

10

11 if ((fp = fopen (path, "r")) == NULL)

12 return EXPORT_S_FOPEN;

13

14 fseek (fp, 0, SEEK_END);

15 len = ftell (fp);

16 fseek (fp, 0, SEEK_SET);

17

18 if (len >= BUF_SZ) {

19 fclose (fp);

20 return EXPORT_S_READ_TOOLONG;

21 }

22

23 if ((bytes = fread (buf, sizeof (char), len, fp)) < len) {
24 fclose (fp);

25 return EXPORT_S_READ;

26 }

27

28 buf [bytes] = ’\0’;

29 fclose (fp);

30 return EXPORT_S_IMPORT_OK;

31 }

32

Source-Code Listing 50: Loading a file into a fixed buffer of BUF SZ characters.

Using the same parser-helper functions as seen in Source-Code Listing 29, the sub-processor
ensures the syntax and values in the provided file are as-expected, according to the furakutaru
CSV syntax. An enumerator is also used to group the expected types—the order appearing in the
sequentially defined enumerator are the order which they expected to appear in the file; this allows
a parent function to increment the action counter and await FIELD LAST.

This function conforms to the Common Status Interface for the save-import-export functions,
however does not differentiate between particular points-of-failure when serving the error-code.
EXPORT S SYNTAX indicates a failure, and EXPORT S IMPORT OK marks a success.

15th March, 2020 Release Copy Page 66

Stage III: Technical Solution furakutaru Oliver Dixon

1 enum parse_field {
2 FIELD_UNKNOWN = 0,
3 FIELD_ITERATIONS = 1,
4 FIELD_SCALE = 2,
5 FIELD_SEED_X = 3,
6 FIELD_SEED_Y = 4,
7 FIELD_DEGREE = 5,
8 FIELD_CENTRE_X = 6,
9 FIELD_CENTRE_Y = 7,
10 FIELD_TYPE = 8,
11 FIELD_ROTATE = 9,
12 FIELD_LAST = 10
13 };
14

15

16 /* import_subprocessor: deals with the C.S.V.−parsing on a per−field basis.
17 * Returns the appropriate export_status code: EXPORT_S_IMPORT_OK on success. */
18

19 static enum export_status import_subprocessor (const char * str,
20 struct render_state * rs, enum parse_field field)
21 {
22 int (*setter) (void *, const char *) = NULL;
23 void * val_ptr = NULL;
24

25 switch (field) {
26 case FIELD_ITERATIONS:
27 val_ptr = & (rs−>max_iterations);
28 setter = set_int;
29 break;
30 case FIELD_SCALE:
31 val_ptr = & (rs−>scale);
32 setter = set_float;
33 break;
34 case FIELD_SEED_X:
35 val_ptr = & (rs−>seed_x);
36 setter = set_float;
37 break;
38 case FIELD_SEED_Y:
39 val_ptr = & (rs−>seed_y);
40 setter = set_float;
41 break;
42 case FIELD_DEGREE:
43 val_ptr = & (rs−>degree);
44 setter = set_int;
45 break;
46 case FIELD_CENTRE_X:
47 val_ptr = & (rs−>centre_x);
48 setter = set_float;
49 break;
50 case FIELD_CENTRE_Y:
51 val_ptr = & (rs−>centre_y);
52 setter = set_float;
53 break;
54 case FIELD_ROTATE:
55 val_ptr = & (rs−>angle);
56 setter = set_int;
57 break;
58 case FIELD_TYPE:
59 switch (*str) {
60 case ’m’:
61 rs−>type = FRAC_MANDELBROT;
62 return EXPORT_S_IMPORT_OK;
63 case ’j’:
64 rs−>type = FRAC_JULIA;
65 return EXPORT_S_IMPORT_OK;
66 default:
67 return EXPORT_S_SYNTAX;
68 }
69 default:
70 /* appease compilers; should never happen */
71 return EXPORT_S_SYNTAX;
72 }
73

74 return (setter (val_ptr, str) == 0) ? EXPORT_S_IMPORT_OK :
75 EXPORT_S_SYNTAX;
76 }
77

Source-Code Listing 51: Using a sub-processor model to parse the arguments on a case-by-case basis,
assigning the correct helper function and reporting the success.

15th March, 2020 Release Copy Page 67

Stage III: Technical Solution furakutaru Oliver Dixon

Appendix D

Source Code Listing
In the public version of this report, the comprehensive source code listing has been omitted. If

you would like an archive of the sources, please contact me at od641@york.ac.uk. The same applies
to the presentation video, as described in the following Testing and Appraisal section.

15th March, 2020 Release Copy Page 68

mailto:od641@york.ac.uk

Stage IV

Testing and Appraisal

Release Copy Page 69

Stage IV: Testing and Appraisal furakutaru Oliver Dixon

Section 7

System Testing under Normal Conditions
Outlined in the Analysis section and its respective appendices, furakutaru has a multitude of

strictly defined goals, achieved using a client-led questionnaire. The following section iterates the
goals, presenting proofs-of-completion in the form of screenshots and on-line video.

The on-line video can be found at the following F.T.P. address. The video presents all interactive
elements of furakutaru, such as rotating, panning, and zooming.

[URL Redacted]

For an optimal viewing experience, it is recommended that this video is either streamed
with VLC, using the invocation “vlc [URL Redacted]”, or downloaded to the local machine.
A version can also be requested by sending e-mail to [E-Mail Redacted].

7.1 Rendering of the Mandelbrot Set to an Arbitrary Degree

The first goal concerned the rendering of the basic Mandelbrot Set, to an arbitrary integer degree.
Figure 7.1 presents a command-line invocation of furakutaru, in which a Mandelbrot Set of the fifth
degree is being rendered. As discussed in the Analysis, the specified degree p generates a render
with a rotational symmetry of p − 1, as is confirmed here.

Figure 7.1: A command-line invocation of the furakutaru System with the following arguments:
--type mandelbrot --degree 5. A shorter equivalent of the command-line arguments, also recog-
nised by the System, is -t mandelbrot -d 5.

15th March, 2020 Release Copy Page 70

Stage IV: Testing and Appraisal furakutaru Oliver Dixon

7.2 Rendering of the Julia Set to an Arbitrary Degree and
Seed

It is also a requirement of the System to possess the functionality to render the Julia Set. Like
the Mandelbrot Set, it must have a variable degree, but also a variable seed. Figure 7.2 presents a
Julia Set of the third degree, with a seed of (−0.22, 0.858), equivalent to −

11

50
+ 22

25
i in the notation

of Complex Analysis.

Figure 7.2: The Julia Set of the third degree, rendered with the command-line invocation --type

julia --degree 3 --cx -0.22 --cy 0.858. Although shortened equivalents do not exist for the
--cx and --cy options, the argument line could be abbreviated to -t julia -d 3 --cx -0.22

--cy 0.858. The usage of defensive programming throughout the furakutaru code-base disables
ambiguities that could arise during the processing of arguments, such as throwing errors on double-
definitions, e.g. if a user was the invoke the System with an argument line such as -t mandelbrot

-t julia.

7.3 Exporting and Important a Fractal to Permanent Stor-
age as Comma-Separated Values

As requested by the client, and shown in the Technical Solution, furakutaru should be able to
export fractal configurations to a CSV file, which it can later re-load as normal fractals. Figure 7.3
shows a user interactively exporting the current render, and Figure 7.4 shows the user re-loading
the fractal, from the generated file, using the --config/-f command-line arguments.

Should the --assumeconfig option have been passed on the command-line in Figure 7.4, the
provided configuration would have been assumed as the defaults. The command-line arguments
--outdir/-o could also be specific in Figure 7.3 in order to specify a base directory. This is useful
in installations, in which the location executable of the is usually in a directory which is write-
inaccessible to non-root users, such as /usr/bin.

15th March, 2020 Release Copy Page 71

Stage IV: Testing and Appraisal furakutaru Oliver Dixon

Figure 7.3: A user exporting a heavily zoomed Julia Set, using the interactive key-bind. The
construct export path function, as shown in the Design and Technical Implementation sections,
was used to generate a random path to which the file could be written.

7.4 Exporting a Fractal as a TGA Image

The exporting feature concerns creating a TGA image file from the current render. As an
extremely simple, yet universal, format, furakutaru achieves this functionality by writing out a
simple header, consisting largely of the dimensions and a file signature, followed by outputting the
pixel data stream, using the built-in OpenGL function glGetPixels.

Figure 7.5 presents the user using the built-in key-bind to save the current render to a file in
the current directory. This feature follows the same rationale as the CSV-exporter, such that the
--outdir/-o command-line options are respected. The exported image is also shown.

7.5 Loading a Custom Colour Profile

furakutaru also offers the capability to import an externally defined colour profile. Stored in the
PPM format, it is expected to be a one-dimensional image, optimally 256 pixels wide. If a pixel does
not diverge, it is coloured as the first pixel to the left of the image. Because of this, it is important
that users creating their own colour palettes do not select an obnoxiously annoying colour gradient
to cover the first sector of the texture, as it will be the majority-colour on most initial renders.

Figure 7.6 displays this feature with a blank, pink, and rainbow-coloured texture, created using
the G.N.U. Image Manipulation Program.

7.6 Providing an On-Demand Information-Dump

In the interests of user-friendliness, the user, at any time, can use a key-bind to dump information
regarding the current render to the standard output device. For Julia Sets, this dump also includes
the current seed. The behaviour is shown in Figure 7.7.

15th March, 2020 Release Copy Page 72

Stage IV: Testing and Appraisal furakutaru Oliver Dixon

Figure 7.4: A user importing the fractal-configuration which was exported in Figure 7.3.

Figure 7.5: The System exhibiting its ability to export the current render as a raster TGA image
file, using the same construct export path as shown in Figure 7.3.

15th March, 2020 Release Copy Page 73

Stage IV: Testing and Appraisal furakutaru Oliver Dixon

Figure 7.6: Displays the custom selection of a colour profile using the --colour/-c command-line
argument. This particular render shows an unmodified Julia Set.

Figure 7.7: An information-dump for a zoomed Mandelbrot Set rotated −45 degrees.

15th March, 2020 Release Copy Page 74

Stage IV: Testing and Appraisal furakutaru Oliver Dixon

Section 8

System Testing under Erroneous
Conditions

As the furakutaru System primarily relies upon interactive, keyboard-based input, it is impossible
for any user-invoked errors to occur during execution, as the System only responds to keys to which
it has an appropriate reaction. The vast majority of errors are as follows:

• Initialisation. The initialisation stages, wherein the System established a connection with X
and OpenGL through XCB and glX respectively, hold a reasonable margin of error, as they
will fail on headless systems, or those without a somewhat-modern graphics card;

• Parsing of the Configuration Files. A corrupted CSV being loaded will cause the System
to report an error and refuse to load. This is possible only if the storage medium becomes
corrupted file-system-wide, or a user manually edits the file without proper knowledge of the
internal format;

• Loading of the Auxiliary Files. A non-existent or otherwise-inaccessible GLSL shader or
colour file causes furakutaru to report an error and quit. These are both critical pieces of data,
for drawing and colouring the fractal respectively. The colour PPM loader also throws an error
if the provided image is not one-dimensional, i.e. has a height greater than a single pixel.

This section explores the behaviour of furakutaru under the above conditions, ensuring it does
not exhibit undefined or erroneous behaviour, and thus deals with each error graciously, reporting
the appropriate error string. Only a handful of the potential errors are explored here, as the majority
of errors are impossible to artificially reproduce on a modern system, or are very similar to other
errors already tested.

8.1 Memory-Management

Although not an explicit requirement as defined by the client, the first test queries the ability
of furakutaru to correctly manage memory, ensuring clean-up at all stages, including a non-gracious
exit. Figure 8.1 displays the output from a simple run of the Valgrind, Memcheck memory-checker,
using the options --show-leak-kinds=all --leak-check=full --suppressions=valgrind.supp

-s to trace1 potential memory leaks throughout a run of furakutaru.
Making use of the suppressions file, found in the Technical Implementation section, the Leak

Summary of Memcheck indicates that furakutaru has passed this test.

8.2 Initialisation

8.2.1 No Valid X Display

For this test, a headless server is emulated by redefining the DISPLAY shell variable to an empty
value2. On a non-robust system, the client application would report a segmentation fault upon
attempting to access a display which does not exist.

Expected furakutaru behaviour uses the standard error-reporting system, in which the error-code
STATUS XDISP is raised by an initialisation function, and the appropriate human-readable string is
printed to the standard error device by the respective code-parsing function.

Figure 8.2 presents a headless simulation. furakutaru has passed this test.

1Although Valgrind reports the excessive value of 221,189,510 bytes allocated, it should be recalled that this is an

accumulated sum, taken throughout the entire execution of the System. The actual memory footprint of furakutaru

is far less than 210MiB, and at its peak, uses approximately 0.06003189 MiB of R.A.M.
2The DISPLAY variable is used by the X server to inform clients of the preferred X display. On the vast majority

of systems, this is set to :0, as most desktop users do not use more than one display.

15th March, 2020 Release Copy Page 75

Stage IV: Testing and Appraisal furakutaru Oliver Dixon

==24217== Memcheck, a memory error detector

==24217== Copyright (C) 2002-2017, and GNU GPL’d, by Julian Seward et al.

==24217== Using Valgrind-3.15.0 and LibVEX; rerun with -h for copyright info

==24217== Command: bin/fura

==24217==

==24217==

==24217== HEAP SUMMARY:

==24217== in use at exit: 100,426 bytes in 483 blocks

==24217== total heap usage: 8,520 allocs, 8,037 frees, 221,189,510 bytes allocated

==24217==

==24217== LEAK SUMMARY:

==24217== definitely lost: 0 bytes in 0 blocks

==24217== indirectly lost: 0 bytes in 0 blocks

==24217== possibly lost: 0 bytes in 0 blocks

==24217== still reachable: 0 bytes in 0 blocks

==24217== suppressed: 100,426 bytes in 483 blocks

==24217==

==24217== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 5 from 5)

--24217--

--24217-- used_suppression: 23 <dlopen-fp> valgrind.supp:2 suppressed: 99,828 bytes in 43

blocks

--24217-- used_suppression: 37 <nvidia-fp> valgrind.supp:27 suppressed: 60,136 bytes in

189 blocks

--24217-- used_suppression: 29 <dlinit-fp> valgrind.supp:10 suppressed: 21,016 bytes in

155 blocks

--24217-- used_suppression: 67 <nvidia-glx-fp> valgrind.supp:17 suppressed: 1,100 bytes in

95 blocks

--24217-- used_suppression: 1 <xextcreate-fp> valgrind.supp:36 suppressed: 24 bytes in 1

blocks

==24217==

==24217== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 5 from 5)

Figure 8.1: furakutaru running under a Valgrind virtual machine, used to track memory errors.

$ export DISPLAY=""

$./furakutaru

XCB initialisation error -1: could not open X display

[process exited with EXIT FAILURE]

Figure 8.2: A headless simulation, in which furakutaru reports the expected error message and quits
graciously.

8.2.2 OpenGL is Unsupported by the X Server

In the case of an extremely old or minimalistic system, the X server may exist and be accessible
via XCB, but lack OpenGL support. The OpenGL feature test, shown in Figure 8.3, shows the
output of furakutaru on an EeePC 1000 32-bit mini-notebook running Gentoo Linux. Although its
Intel Atom N270 is capable of running a minimalistic X server, no aspects of hardware-acceleration,
and thus OpenGL, are possible on this setup.

$./furakutaru

OpenGL initialisation error -8: OpenGL is not supported by the current X server

[process exited with EXIT FAILURE]

Figure 8.3: A test of the System on a configuration which has an active X instance with XCB
bindings, but does not support the OpenGL subsystem and/or glX.

The furakutaru System has passed this test.

15th March, 2020 Release Copy Page 76

Stage IV: Testing and Appraisal furakutaru Oliver Dixon

8.2.3 A GLSL Shader Could not be Compiled

If a Shader file is corrupted, furakutaru should refuse to load, while showing both a furakutaru
error, in addition to a compilation-trace provided by OpenGL. The following test ensures that the
System is able to graciously deal with erroneous Shader files, verifying that such a script does not
cause the System to crash, leak memory, or invoke undefined behaviour.

Figure 8.4 inspects the behaviour of furakutaru when a variable declaration has been removed
from a Shader.

$./furakutaru

0(71) : error C1503: undefined variable "frag colour"

Shader initialisation error -14: the shader could not be compiled

[process exited with EXIT FAILURE]

Figure 8.4: The behaviour of furakutaru when passed an erroneous Shader program.

As expected, the System correctly reports the error to the standard error device, and exits with
the appropriate code. furakutaru has passed this test.

8.2.4 The GLSL Version is Unsupported

furakutaru mainly targets modern systems, as requested by the Client. Thus, some older video
cards and processors may be incapable of meeting the requirements which are explicitly defined with
the #version string, seen at the top of each Shader auxiliary file. If this is the case, furakutaru
should exhibit similar behaviour to other OpenGL-initialisation errors, reporting a human-readable
string to the standard error device, and quit graciously with a failure-indicating status code.

Figure 8.5 presents the behaviour of the System on hardware which does not meet the aforemen-
tioned standards.

$./furakutaru

0(7) : error C0201: unsupported version 500

[process exited with EXIT FAILURE]

Figure 8.5: The System attempting to load a GLSL Shader which defines a requirement for a version
which is not supported by the OpenGL subsystem.

furakutaru has passed this test, as the expected behaviour is followed, and the returned code is
appropriate.

8.3 File System Restrictions

The following tests inspect the behaviour of furakutaru when the file-system disallows access to
certain files to which the System is attempting to write/read. For these tests, two directories have
been created on a UNIX system: /noread and /nowrite, with the permission strings drw--w--w-

and drwxr-xr-x, both under the ownership of root:root.

8.3.1 Attempting to Write to a Forbidden Directory

For this test, furakutaru is invoked with the --outdir/-o option, instructing the base directory
to be the forbidden /nowrite directory. Upon loading, the System was told to first save a CSV
configuration, followed by a TGA export. The expected behaviour is that the System refuses to write
to the directory, as files in /nowrite cannot be opened, although the directory itself can be read and
explored. furakutaru should not quit, nor should there be any effect on the current render, however
an error should be sent to the standard error device, and the operation halted. This behaviour is
transcribed in Figure 8.6.

As the System presented the expected reaction, furakutaru has passed this test.

15th March, 2020 Release Copy Page 77

Stage IV: Testing and Appraisal furakutaru Oliver Dixon

$./furakutaru --outdir /nowrite

Writing the CSV data to /nowrite/fura 1076436437.csv

Could not open the file; do you have write-access to the specified directory?

Exporting image to /nowrite/fura 1270594253.tga

Could not open the file; do you have write-access to the specified directory?

Figure 8.6: The furakutaru System attempting to output various files to a directory on which it does
have write-access.

8.3.2 Attempting to Load a Configuration from a Forbidden Directory

The directory /noread is used here to observe furakutaru’s behaviour when provided with a
fractal configuration at a path which cannot be accessed by the current user under which the System
is being executed. Figure 8.7 shows the behaviour of the System when invoked with the --config/-f

command-line argument, instructing a load from the /noread directory.

$./furakutaru --config /noread/cfg.csv

Importing /noread/cfg.csv

Could not open the file; do you have read-access to the specified directory

[process exited with EXIT FAILURE]

Figure 8.7: furakutaru attempting to load a fractal configuration from a path on which it does not
have read-access.

As furakutaru correctly detected, reported, and exited graciously from this error, the System has
passed this test.

8.4 Argument-Processing Errors

The wide range of arguments provided by furakutaru can be intimidating for an ill-informed
first-time user of the System, especially if they lack a familiarity or basic understanding of the
command-line. Although furakutaru offers a --help/-h option for outputting a comprehensive
guide to the command-line options, it remains integral that arguments are verified for their validity,
both in value and context, in the interests of ensuring and preserving a stable render-state.

The following sections explore the behaviour of furakutaru when provided with erroneous ar-
guments by malicious or uneducated users. The expected behaviour for all these tests generally
conforms to the process of reporting the error, performing any appropriate clean-up3, and quitting
immediately. furakutaru should always call a fatal error on erroneous arguments, and not ignore
them while printing a mere ‘warning’.

8.4.1 An Argument Double-Definition

In order to prevent argument-lines containing conflicting arguments, such as --type mandelbrot

--type julia, arguments may only be defined once, even if they do not conflict. Figure 8.8 shows
the response of furakutaru in this situation, in which --type is defined twice.

$./furakutaru --type julia --type mandelbrot --cx 0.2

Argument error: "--type", Argument was doubly defined (-5)

[process exited with EXIT FAILURE]

Figure 8.8: An invocation of the System with a doubly defined --type argument. Execution is
halted immediately once the second --type is encountered by the argument-processor.

The furakutaru System has passed this test.

3By design, the argument-processor is called as early as possible. This enables the System to do as little clean-up

as possible, should the arguments contain an error, as no OpenGL or X Windows connections have been established.

15th March, 2020 Release Copy Page 78

Stage IV: Testing and Appraisal furakutaru Oliver Dixon

8.4.2 Missing Operands

The majority of arguments require a following operand, the notable exceptions being --help/-h,
--verbose/-v, --lock/-l, and --assumeconfig. If any other argument is listed as the final argu-
ment in the string, furakutaru can immediately detect that there cannot be another operand. If the
argument is followed by another argument, the latter is interpreted as an operand and will cause an
error in the operand-parsing stage.

Figure 8.9 shows this behaviour, such that the only argument passed indicates the specification
of the Centre X co-ordinate, despite it being the sole argument.

$./furakutaru --cx

Argument error: "--cx", Expected succeeding argument (-1)

[process exited with EXIT FAILURE]

Figure 8.9: The System responding to an erroneous invocation, in which the --cx argument is
provided with no succeeding operand.

As the System exhibited the expected report-clean-exit process, furakutaru has passed this test.

8.4.3 Invalid Operands

In the case that an operand has been provided, the argument sub-processor must proceed to
parse the operand into its expected form, as indicated by the nature of its preceding argument op-
code. Figure 8.10 provides an example of such a situation, in which the --iteration/-i, usually
intended to specify the maximum iterations, is provided a floating-point number. As the expected
operand data-type is an unsigned integer, the System should refuse the argument-line and exit with
the appropriate status-code.

$./furakutaru --iteration 10.5

Argument error: "--iteration", Argument operand was invalid (-2)

[process exited with EXIT FAILURE]

Figure 8.10: furakutaru reporting an erroneous operand, in which a floating-point was given in-place
of an integer.

The System accurately reported the appropriate error, and has thus passed this test.

8.4.4 Unrecognised Argument/Op-Code

If the System encounters an unknown string in the argument-line and is not expecting an operand,
it must raise the issue of an Unrecognised Argument. In this case, the System should not ignore
and continue, but request a fatal exit from the caller. Figure 8.11 presents this behaviour, when the
foreign --ewb argument is provided. furakutaru should also inform the user of which argument was
undefined, as a long argument-line could cause confusion when a nondescript error is reported.

$./furakutaru --ewb

Argument error: "--ewb", Unrecognised argument

[process exited with EXIT FAILURE]

Figure 8.11: The furakutaru System handling an unknown argument, --ewb.

As furakutaru accurately described the error, the System has passed this test.

This concludes the manual error-testing of furakutaru, in which the System successfully passed
each test to which it was subjected, correctly providing descriptive errors, comprehensive clean-up,
and indicative status-codes.

15th March, 2020 Release Copy Page 79

Stage IV: Testing and Appraisal furakutaru Oliver Dixon

Section 9

Appraisal and Client-Feedback
Referencing the goals outlined in the Analysis section, furakutaru has met its targets entirely.

Whilst some of the nice-to-have features, such as an interactive colour editor, were omitted, their
inclusion was not specified by the client, and their absence does not hinder the application or
its defined objectives. The following verbatim text details the Client’s response to the presented
product, in which the feedback is aggregated via a response-led questionnaire.

Considering the overwhelmingly positive feedback provided by the Client, this project is consid-
ered a success.

(Q.) On the 11th July, 2019, the goals and objectives for the ’furakutaru’

System were defined. Reviewing our e-mail exchange, do you believe that

these objectives were met to an acceptable standard ?

(A.) "Yes. Through my usage of ’furakutaru’ to date, I am incredibly satisfied

with the Product. The defined goals were met in their entirety, in

addition to some complementary features which enable easier usage of

the System, such as a comprehensive and well-documented command-line

interface."

(Q.) Do you find the System easy to use, and do you believe that your students

will share your opinion?

(A.) "My extensive use-sessions of ’furakutaru’ are delightfully easy to use,

partly due to its simplicity, but also its well-documented nature with

human-readable errors and detailed fractal-information reports. I am

sure that the students which are familiar with the command-line, of

whom are plentiful, will have no issues interacting with the System

after a few minutes of training, however I feel as though some of the

lesser students may have short-lived issues grasping the concept of

command-line arguments. Thankfully, the majority of ’furakutaru’ is

interactive, and the skillful design mandates no knowledge of

command-line arguments for basic operation."

(Q.) Are there any features which could be added in order to make the System

easier to use or be of greater use?

(A.) "My only qualm with the System is its inability to export images as

anything other than T.G.A. Although it is recognised as a common image

format and is thus interpretable by the majority of image viewers,

students may prefer their exports in more universal formats such as

P.N.G. or J.P.E.G. However, I also realise that the inclusion of such

functionality may compromise the lightweight-nature of System, as the

complex compression methods of the P.N.G. and J.P.E.G. formats seems,

from my experience, to be a complicated and timely operation."

(Q.) Finally, did you encounter any issues or difficulties whilst using the

System?

(A.) "Aside from the aforementioned issue regarding the small range of image

formats to which the System can export, I, or any of my

student-volunteers, ran into no issues. Our uniform submission is that

the System entirely satisfies our needs, and we are extraordinarily

pleased with the result. The high-calibre students of [REDACTED] have

expressed their personal gratitude."

15th March, 2020 Release Copy Page 80

Cited Works

The following works have served immensely throughout my research of fractals and subsequent
creation of furakutaru. Texts which proved particularly integral are highlighted in bold.

[Man82] Benoit Mandelbrot. The Fractal Geometry of Nature. Times Books, 1982. isbn: 978-0-
71-671186-5.

[Hut81] John Hutchinson. “Fractals and Self-Similarity”. In: Indiana University Mathematics
Journal (30 1981), p. 2. doi: 10.1512/iumj.1981.30.30055.

[Man80] Benoit Mandelbrot. “Fractal aspects of the iteration of z 7→ λz(1 − z) for complex λ

and z”. In: Fractals and Chaos. Vol. 357. New York, New York, United States: Springer,
1980, p. 40. doi: 10.1007/978-1-4757-4017-2_3.

[Met94] Wolfgang Metzler. “The ‘mystery’ of the quadratic Mandelbrot set”. In: American Jour-
nal of Physics 62.9 (1994), p. 814. doi: 10.1119/1.17465.

[BM81] Robert Brooks and J. Matelski. “The Dynamics of 2-Generator Subgroups of
PSL(2, C)”. In: Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony
Brook Conference. Ed. by Irwin Kra and Bernard Maskit. [These images were darkened
and had compression artefacts removed by the G.N.U. Image Manipulation Program.]
Princeton University Press, 1981, pp. 70, 71. isbn: 978-0-69-108267-7.

[Dou86] Adrien Douady. “Julia Sets and the Mandelbrot Set”. In: The Beauty of Fractals: Images
of Complex Dynamical Systems. Ed. by Heinz-Otto Peitgen and Peter H. Richter. Berlin,
Germany: Springer, 1986, p. 161. isbn: 978-3-642-61719-5. doi: 10.1007/978-3-642-

61717-1_13.

[Lei90] Tan Lei. “Similarity between the Mandelbrot set and Julia sets”. In: Communi-
cations in Mathematical Physics. Vol. 134. Germany: Springer-Verlag, 1990, p. 587. doi:
10.1007/BF02098448.

[Ava09] Stephanie Avalos-Bock. “Fractal Geometry: The Mandelbrot and Julia Sets”. In: Uni-
versity of Chicago, Department of Mathematics (2009), p. 1. url: https://www.math.

uchicago.edu/˜may/VIGRE/VIGRE2009/REUPapers/Avalos-Bock.pdf.

[Fel12] David P. Feldman. Chaos and Fractals: An Elementary Introduction. Oxford University
Press, 2012, pp. 3, 4. isbn: 978-0-19-956644-0.

[Jun02] Wolf Jung. “Homeomorphisms on Edges of the Mandelbrot Set”. PhD thesis. RWTH
Aachen University, 2002, p. 23.

[Sch99] Dierk Schleicher. “On Fibers and Renormalization of Julia Sets and Multibrot Sets”. In:
arXiv Mathematics e-prints (1999), p. 3. arXiv: math/9902156 [math.DS].

[Dev18] Ultra Fractal Developers. Ultra Fractal 6 Manual. [On-line; accessed 1st July 2019]. 2018.
url: https://www.ultrafractal.com/download/uf6-manual.pdf.

[FL02] Andrew Forward and Timothy Lethbridge. “The Relevance of Software Documentation,
Tools and Technologies: A Survey”. In: Proceedings of the 2002 ACM Symposium on
Document Engineering. DocEng ’02. New York, New York, United States: Association for
Computing Machinery, 2002, p. 29. isbn: 1-58113-594-7. doi: 10.1145/585058.585065.

[Nor89] Alan Norton. “Julia sets in the quaternions”. In: Computers & Graphics 13.2 (1989),
p. 273. issn: 0097-8493. doi: 10.1016/0097-8493(89)90071-X.

[War14] Brian Ward. How Linux Works: What Every Superuser Should Know. No Starch Press,
2014, p. 21. isbn: 978-1-59-327088-9.

[Nur+09] Nurzhan Nurseitov et al. “Comparison of JSON and XML data interchange formats: a
case study.” In: Caine 9 (2009), p. 157.

https://doi.org/10.1512/iumj.1981.30.30055
https://doi.org/10.1007/978-1-4757-4017-2_3
https://doi.org/10.1119/1.17465
https://doi.org/10.1007/978-3-642-61717-1_13
https://doi.org/10.1007/978-3-642-61717-1_13
https://doi.org/10.1007/BF02098448
https://www.math.uchicago.edu/~may/VIGRE/VIGRE2009/REUPapers/Avalos-Bock.pdf
https://www.math.uchicago.edu/~may/VIGRE/VIGRE2009/REUPapers/Avalos-Bock.pdf
https://arxiv.org/abs/math/9902156
https://www.ultrafractal.com/download/uf6-manual.pdf
https://doi.org/10.1145/585058.585065
https://doi.org/10.1016/0097-8493(89)90071-X

Cited Works furakutaru Oliver Dixon

[The16] The PPM Developers. Netpbm Colour Image Format. 2016. url: http : / / netpbm .

sourceforge.net/doc/ppm.html.

[Coc00] Alistair Cockburn. Writing effective use cases. Addison-Wesley Professional, 2000, p. 28.
isbn: 978-0-20-170225-5.

[HG00] Loes M. van Herten and Louise J. Gunning-Schepers. “Targets as a tool in health policy:
Part I: lessons learned”. In: Health Policy 53.1 (2000), p. 1. issn: 0168-8510. doi: 10.

1016/S0168-8510(00)00081-6.

[Bul+03] J. M. Bull et al. “Benchmarking Java against C and Fortran for scientific applications”.
In: Concurrency and Computation: Practice and Experience 15.3-5 (2003), p. 427. doi:
10.1002/cpe.658.

[CLM05] Xing Cai, Hans Petter Langtangen, and Halvard Moe. “On the Performance of the
Python Programming Language for Serial and Parallel Scientific Computations”. In:
Scientific Programming 13 (1 2005), p. 31. doi: 10.1155/2005/619804.

[Loy+02] Marc Loy et al. Java Swing. O’Reilly Media, Inc., 2002, p. 3. isbn: 978-1-56-592455-0.

[Lut01] Mark Lutz. Programming Python. O’Reilly Media, Inc., 2001, p. 251. isbn: 978-0-59-
600085-1.

[Mit13] Shaun Mitchell. SDL Game Development. Packt Publishing, 2013, p. 6. isbn: 978-1-84-
969682-1.

[JR93] Eric F. Johnson and Kevin Reichard. Professional Graphics Programming in the X Win-
dow System. 1st ed. M.I.S. Press, 1993, p. 2. isbn: 1-55828-255-6.

[YHL11] Chao-Tung Yang, Chih-Lin Huang, and Cheng-Fang Lin. “Hybrid CUDA, OpenMP, and
MPI parallel programming on multicore GPU clusters”. In: Computer Physics Communi-
cations 182.1 (2011), pp. 266–269. issn: 0010-4655. doi: 10.1016/j.cpc.2010.06.035.

[Dro19] Michael Droettboom. Understanding JSON Schema. [On-line; accessed 4th July 2019].
2019. url: https://json-schema.org/understanding-json-schema/Understanding

JSONSchema.pdf.

[Vas10] Tzvetomir Ivanov Vassilev. “Comparison of Several Parallel API for Cloth Modelling on
Modern GPUs”. In: Proceedings of the 11th International Conference on Computer Sys-
tems and Technologies and Workshop for PhD Students in Computing on International
Conference on Computer Systems and Technologies. CompSysTech ‘10. New York, N.Y.,
U.S.A.: Association for Computing Machinery, 2010, p. 133. isbn: 9781450302432. doi:
10.1145/1839379.1839403.

[ND10] John Nickolls and William J. Dally. “The GPU Computing Era”. In: IEEE Micro 30.2
(2010), p. 56. issn: 0272-1732. doi: 10.1109/MM.2010.41.

[LR98] Linda Lamb and Arnold Robbins. Learning the vi Editor. Sebastopol, California, United
States: O’Reilly Media, Inc., 1998, p. 3. isbn: 978-1-56-592426-0.

[MPT74] Doug McIlroy, E. N. Pinson, and B. A. Tague. “Unix Time-Sharing System: Foreword”.
In: The Bell System Technical Journal (1974), pp. 1902–1903.

[Sal94] Peter H. Salus. A Quarter-Century of UNIX. Reading, Massachusetts, United States:
Addison-Wesley, 1994, p. 52. isbn: 978-0-20-154777-1.

[Dhu+03] Dinakar Dhurjati et al. “Memory Safety without Runtime Checks or Garbage Collec-
tion”. In: Proceedings of the 2003 ACM SIGPLAN Conference on Language, Compiler,
and Tool for Embedded Systems. LCTES ‘03. New York, N.Y., U.S.A.: Association for
Computing Machinery, 2003, pp. 69–80. isbn: 1581136471. doi: 10 . 1145 / 780732 .

780743.

[HH95] Daryl H. Hepting and John C. Hart. “The Escape Buffer: Efficient Computation of
Escape Time for Linear Fractals”. In: Proceedings of Graphics Interface ’95. GI ’95.
Quebec, Quebec, Canada: Canadian Human-Computer Communications Society, 1995,
pp. 204–214. isbn: 0-96-953384-5.

[Liu+15] Miao Liu et al. “Distributional Escape-Time Algorithm Based on Generalized Fractal
Sets in a Cloud Environment”. In: Chinese Journal of Electronics 24.1 (2015), pp. 124–
127. issn: 1022-4653. doi: 10.1049/cje.2015.01.020.

15th March, 2020 Release Copy Page 82

http://netpbm.sourceforge.net/doc/ppm.html
http://netpbm.sourceforge.net/doc/ppm.html
https://doi.org/10.1016/S0168-8510(00)00081-6
https://doi.org/10.1016/S0168-8510(00)00081-6
https://doi.org/10.1002/cpe.658
https://doi.org/10.1155/2005/619804
https://doi.org/10.1016/j.cpc.2010.06.035
https://json-schema.org/understanding-json-schema/UnderstandingJSONSchema.pdf
https://json-schema.org/understanding-json-schema/UnderstandingJSONSchema.pdf
https://doi.org/10.1145/1839379.1839403
https://doi.org/10.1109/MM.2010.41
https://doi.org/10.1145/780732.780743
https://doi.org/10.1145/780732.780743
https://doi.org/10.1049/cje.2015.01.020

Cited Works furakutaru Oliver Dixon

[HPS91] Daryl Hepting, Przemyslaw Prusinkiewicz, and Dietmar Saupe. “Rendering Methods for
Iterated Function Systems”. In: Fractals in the Fundamental and Applied Sciences. Ed.
by Jose Marques Henriques, Luis Filipe Penedo, and Heinz-Otto Peitgen. Amsterdam,
The Netherlands: North-Holland, 1991, pp. 1–39. isbn: 0444887571.

[YH04] Nergiz Yaz and H. Hilmi Hacısalihoğlu. “On Fractal Colouring Algorithms”. In: Dynam-
ical Systems and Applications 5.10 (2004), pp. 706–711.

[Gar+00] Francisco Garcıa et al. “Coloring Dynamical Systems in the Complex Plane”. In: Un-
named Publisher: The University of the Basque Country (0). n.d.

[Kim15] Theodore Kim. “Quaternion Julia Set Shape Optimization”. In: Computer Graphics
Forum 34.5 (2015), pp. 167–176. doi: 10.1111/cgf.12705.

[Bri88] Mark Bridger. “Looking at the Mandelbrot Set”. In: The College Mathematics Journal
19.4 (1988), pp. 353–363. doi: 10.1080/07468342.1988.11973139.

[Fou09] The XOrg Foundation. Basic Graphics Programming with the XCB Library.
[X11 version R. 7.5]. 2009. url: https : / / www . x . org / releases / X11R7 . 5 / doc /

libxcb/tutorial/#colormap.

All images of fractals, aside from [BM81], were generated by myself using Wolfram Mathematica 11
or furakutaru. All post-processing was performed in the GNU Image Manipulation Program (raster)
and Inkscape (vector) on Gentoo Linux.

The CPU, GPU, and Server/Build icons were created by Linector of www.flaticon.com.

15th March, 2020 Release Copy Page 83

https://doi.org/10.1111/cgf.12705
https://doi.org/10.1080/07468342.1988.11973139
https://www.x.org/releases/X11R7.5/doc/libxcb/tutorial/#colormap
https://www.x.org/releases/X11R7.5/doc/libxcb/tutorial/#colormap
www.flaticon.com

	I Analysis
	Introduction to Fractals
	Mathematical Overview: The Mandelbrot Set
	Mathematical Overview: The Julia Set
	The Mathematical and Visual Connection Between the Mandelbrot and Julia Sets
	``Multi-Brot'' and ``Multi-Julia'' Sets

	Rendering Solutions
	Analysis of Current Solution
	Proposed Alternative Solution: furakutaru
	Identification of End-Users
	Requirements of the Software
	Acceptable Limitations of the Software
	Data Sources and Destinations
	Data Volumes
	Data Dictionaries
	Use-Cases
	Objectives
	Potential Solutions

	Appendices
	Syntax Specifications for Configuration Files
	Fractal Configuration Syntax

	E-Mail Correspondence Regarding Objective Approval and Client Questionnaire
	Initial Meeting and Questionnaire
	Conclusive E-Mail

	MIT Licence

	II Design
	Overall System Design
	Overview of the System
	User-Interaction with the System and HCI Rationale
	The Command-Line Interface
	Feedback from the Renderer
	Input Validation and Sanitisation

	Plotting and Colouring Algorithms
	The Mandelbrot Set: The Escape-Time Algorithm
	The Julia Set: The Extended Escape-Time Algorithm
	Methods of Colouring
	Histogram Colouring
	Re-Normalisation and Linear Interpolation

	Noteworthy Auxiliary Algorithms
	PPM Loader
	Pixel-Retrieval
	The Processing of Command-Line Arguments
	Finding Suitable Directories

	III Technical Solution
	CPU Code-Listing and Commentary
	Common Data Structures
	General Initialisation and Clean-Up
	Initialisation Status Codes
	The Initialisation Assistant: init_assistant
	XCB Initialisation: init_xcb
	Find an Appropriate X Screen: find_xcb_screen
	OpenGL Initialisation: init_OpenGL
	Locating an Appropriate Frame-Buffer: find_valid_fb
	Creating the Colour-Mapping: create_colourmap
	Creating the Main Window: create_window
	Binding the XCB Window to an OpenGL Subsystem: init_glx
	Preventing Memory Leaks with Memory-Management: clean_all

	Initialisation of the GLSL Shaders
	Initialising and Linking the Shader Programs: init_shaders
	Loading the Auxiliary Files into a Buffer: populate_buffer
	Compiling the Shader: setup_shader
	Debugging the Compile-Link Procedure: print_gl_log
	Retrieving the Vertex Shader Position: get_vertex_attribute

	Processing the PPM Colour File
	PPM Common Status Codes and Parsers: parse_ppm_error
	Loading the Texture: load_texture
	Loading the Image from the File: load_image
	Parsing the PPM Header Section: read_hdr
	Parsing Assistant and Loading: parse_assist
	Reading Pixel Data: UNPACK_DATA and read_px_data

	Argument-Processing and User-Engagement
	Common Enumerators and Helpers: Bit-by-Bit Management and Common Error Codes
	Common Argument Error Status Code Parser: parse_args_error
	The Primary Argument-Processor: process_args
	The Argument Sub-Processor: arg_subprocessor
	Shared Auxiliary Operand-Parsing Wrapper Functions
	User-Engagement: Greeting
	User-Engagement: Argument Listing

	The General furakutaru Runtime
	Default System Values: set_system_defaults
	Respecting the Input Configuration File: setup_init_vals
	The OS Entry-Point: int main (int argc, char ** argv)
	Controlling the Rotation: set_rotation_matrix
	The Blocking Event Loop: ev_wait
	Reset the Renderer to its Initial State: reset_render_state
	Uniform-Setter Wrapper Functions: 1i, 1f, and 2f
	The Generic Key-Code Handler: keycode_handle_gen
	Julia Set-Specific Key-Handling: keycode_handle_julia
	Ensuring the Health of the Render State: degree_change
	Extra-Verbose Reporting: verbose_report
	Printing Information On-Request: print_info
	The Render Update: update

	Saving, Importing, and Exporting Fractals
	The Common Status Interface for Long-Term Storage Actions with Related Parsers: export_status and parse_export_status
	Exporting an image as a furakutaru CSV: csv_export
	Constructing a Pseudo-Random Path: construct_export_path
	Saving a Render to an Image File: image_export
	Importing a Render from a furakutaru-Specific CSV: import_csv
	Loading a File into the CSV Buffer: load_csv_buffer
	Parsing the CSV Buffer: import_subprocessor

	Appendices
	Source Code Listing

	IV Testing and Appraisal
	System Testing under Normal Conditions
	Rendering of the Mandelbrot Set to an Arbitrary Degree
	Rendering of the Julia Set to an Arbitrary Degree and Seed
	Exporting and Important a Fractal to Permanent Storage as Comma-Separated Values
	Exporting a Fractal as a TGA Image
	Loading a Custom Colour Profile
	Providing an On-Demand Information-Dump

	System Testing under Erroneous Conditions
	Memory-Management
	Initialisation
	No Valid X Display
	OpenGL is Unsupported by the X Server
	A GLSL Shader Could not be Compiled
	The GLSL Version is Unsupported

	File System Restrictions
	Attempting to Write to a Forbidden Directory
	Attempting to Load a Configuration from a Forbidden Directory

	Argument-Processing Errors
	An Argument Double-Definition
	Missing Operands
	Invalid Operands
	Unrecognised Argument/Op-Code

	Appraisal and Client-Feedback

	Cited Works

