
W
ar
n
in
g:

In
co
m
p
le
te

n
ot
es
;
d
o
n
ot

re
d
is
tr
ib
u
te
.
C
h
ec
k
fo
r
G
it
H
u
b
u
p
d
at
es

p
er
io
d
ic
al
ly
. Metric Spaces

Consolidated Lecture Notes

Collated and Typeset by Oliver Dixon

Based on the MAT00051I Lecture Series

University of York

Semester I, 2023/24

Compilation Date 19th December 2023

Author Contact od641@york.ac.uk

Sources Link https://github.com/oliverdixon/l5-notes/tree/master/metric-spaces

Latest Commit Hash 5af8285603a077399bdac641c79dc223aa8de0b8 (master)

York Web Link https://www-users.york.ac.uk/∼od641/l5-notes/metric-spaces.pdf

Document Licence All rights reserved (draft copy)

https://github.com/oliverdixon/l5-notes/
https://www.york.ac.uk/students/studying/manage/programmes/module-catalogue/module/MAT00051I/
mailto: Oliver Dixon <od641@york.ac.uk>
https://github.com/oliverdixon/l5-notes/tree/master/metric-spaces
https://github.com/oliverdixon/l5-notes/commit/5af8285603a077399bdac641c79dc223aa8de0b8
https://www-users.york.ac.uk/~od641/l5-notes/metric-spaces.pdf


DRAFT/UNFINISHED

Structural Information

This document consolidates the content delivered during lectures #1 through #17 of the undergraduate

Metric Spaces module, presented throughout Semester 1 of the 2023/24 academic year at the University

of York. Each lecture introduction is annotated with references to the relevant Panopto lecture recording,

accessible exclusively to UoY-authenticated users, and references to the germane sections in [SV06] and

[OSe07], denoted by the icons , , and respectively. Comments and corrections are warmly

welcomed, and should be directed to the Author via the Author Contact as printed on the title page.
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Metric Spaces: Consolidated Lecture Notes Semester I, 2023/24

Lecture 1: Introduction to Metric Spaces

Lecture One introduces the concept of a metric as a generalisation of

the notion of distance between two points in a set. Three canonical

metrics on RN are presented; these are then generalised further, and

a short proof verifies the compliance of the generalised Euclidean

metric with the relevant axioms.

26th September 2023

TODO

TODO

Definition 1.1 Metric Space

Suppose that X is a set, and d : X ×X → [0,∞) ¢ R. Then, d is a metric on X if and only if

the following properties hold for a, b, c ∈ X:

M1) Positivity. d(a, b) g 0;

M2) Equality. d(a, b) = 0 ⇐⇒ a = b;

M3) Symmetry. d(a, b) = d(b, a);

M4) Triangularity. d(a, b) f d(a, c) + d(b, c) .

The tuple (X, d) is a metric space.

Definition 1.2 Canonical Metrics on RN

We can consider three metrics on RN : d1, d2, and d∞, each of which have a domain of RN ×RN

and a codomain of [0,∞):

d1(x,y) =

N∑

i=1

|xi − yi| (1.1)

d2(x,y) =

[
N∑

i=1

(xi − yi)
2

]1/2
(1.2)

d∞(x,y) = max
1fifN

|xi − yi| (1.3)

Unless otherwise stated, RN is endowed with d2 Euclidean metric. This is consistent with our

current understanding of the real line, which uses the absolute value |x − y| to denote distance

between x, y ∈ R.

Oliver Dixon DRAFT/UNFINISHED Page 1 of 39
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Metric Spaces: Consolidated Lecture Notes Semester I, 2023/24

Example 1.1 Unit Circles in the Three Canonical Spaces

Using the definitions of the canonical metrics equation 1.1, equation 1.2, and equation 1.3 (and a

very loose understanding of a circle) we can draw the unit “circles” generated in R2 under each

of these metrics. For instance, figure 1.3 shows the boundary of the set S2
∞, where

S2
∞ =

{
(x, y) ∈ R2 : d∞(x, y) f 1

}
. (1.4)

x

y

Figure 1.1: Unit Circle in d1

x

y

Figure 1.2: Unit Circle in d2

x

y

Figure 1.3: Unit Circle in

d∞

Theorem 1.1 The Generalised Metric is a Metric

Consider the dp metric, where dp : R
N × RN → [0,∞) is a generalisation of the d2 Euclidean

metric for p ∈ N:

(x,y) 7→
[

N∑

i=1

|xi − yi|p
]1/p

for all x,y ∈ RN . (1.5)

Then, (RN , dp) is a metric space.

Proof. To show that dp is a metric on RN , we must verify that dp is in compliance with the

constraints enumerated in definition 1.1. The positivity, equality, and symmetry axioms are

easy to show, so we will focus on the triangularity property here, proving it by demonstrating a

reduction to Minkowski’s Theorem.

Let ak and bk be such that

dp(x, z) =:

[
N∑

k=1

|ak|p
]1/p

(1.6)

dp(y, z) =:

[
N∑

k=1

|bk|p
]1/p

. (1.7)

Then, note that dp(x,y) (as defined in equation 1.5) can be written in terms of ak and bk, since

Oliver Dixon DRAFT/UNFINISHED Page 2 of 39



Metric Spaces: Consolidated Lecture Notes Semester I, 2023/24

ak = xk − zk and bk = yk − zk for k = 1, . . . , N :

dp(x,y) =

[
N∑

k=1

|ak + bk|p
]1/p

. (1.8)

The triangle inequality, as stated in axiom M4, requires that

[
N∑

k=1

|ak + bk|p
]1/p

f
[

N∑

k=1

|ak|p
]1/p

+

[
N∑

k=1

|bk|p
]1/p

. (1.9)

This inequality is equivalent to the well-known Minkowski’s Theorem; thus, dp satisfies the triangle

inequality over x,y, z ∈ RN .

Lecture 2: Real Analysis Prerequisites

Lecture Two introduces the concept of the supremum and infimum as

properties of any subset of the reals. The sets of bounded and contin-

uous functions are introduced as B([0, 1]) and C([0, 1]) respectively,

and we prove that the “sup-metric” d∞ forms a metric on B([0, 1]).

28th September 2023

TODO

TODO

Definition 2.1 Supremum and Infimum

If S ¢ R is a set, then supS is defined to be the least upper bound of S. This is defined to be the

smallest b ∈ R such that x f b for all x ∈ S. The infimum of S, inf S, is defined analogously as

the greatest lower bound.

R

Lower Bounds of S Upper Bounds of S
Set S

inf S supS

Figure 2.1: S ¢ R and its bounding points on the real line

Definition 2.2 The ℓ∞ Set of Bounded Sequences

Consider RN: the set of all sequences of reals. We cannot work with this entire space, since many

real sequences are unbounded, and the d1 and d2 canonical metrics give rise to non-finite sums.

Therefore, we consider the set ℓ∞ as the set of all bounded real sequences:

X ∈ ℓ∞ ⇐⇒ ∃M > 0 such that |Xn| fM for all n ∈ N. (2.1)

Oliver Dixon DRAFT/UNFINISHED Page 3 of 39
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Then, the infinity metric is defined in terms of the supremum, since a sequence with infinite terms

mightn’t possess a maximum:

d∞(X,Y ) = sup {|Xi − Yi| : i ∈ N} for X,Y ∈ ℓ∞. (2.2)

Definition 2.3 The Set of Bounded Functions

B([0, 1]) is the set of all bounded functions f such that f : [0, 1] → R.

Definition 2.4 The Set of Continuous Functions

C([0, 1]) is the set of all continuous functions f such that f : [0, 1] → R.

Theorem 2.1 The set of bounded functions over [0, 1] with the sup-metric forms a metric space

Consider the d∞ metric on B([0, 1]) defined in terms of the supremum, such that the upper bound

needn’t lie in the set:

d∞ : B([0, 1])×B([0, 1]) → [0,∞) such that (f, g) 7→ sup {|f(t)− g(t)| : t ∈ [0, 1]} . (2.3)

Then, (B([0, 1]), d∞) is a metric space.

Proof. We must verify that d∞ : B([0, 1])×B([0, 1]) → [0,∞) satisfies the metric axioms described

in definition 1.1 for all f, g, h ∈ B([0, 1]).

• Since f − g is a bounded function, there exists an M g 0 for which f(t)− g(t) fM for all

t ∈ [0, 1]. Thus, sup {|f(t)− g(t)| : t ∈ [0, 1]} g 0, and d∞(f, g) g 0 for all f, g ∈ B([0, 1]).

• =⇒ If f = g, then |f(t)− g(t)| = 0 for all t ∈ [0, 1], so d∞(f, g) = sup{0, 0, . . .} = 0.

⇐= Furthermore, if d∞(f, g) = 0, then we know that sup {|f(t)− g(t)| : t ∈ [0, 1]} = 0.

We know that |f(t)− g(t)| g 0, so |f(t)− g(t)| = 0 follows immediately, from which we can

conclude that f(t) = g(t) for all t ∈ [0, 1], hence f = g.

Thus, d∞(f, g) = 0 ⇐⇒ f = g.

• By the symmetry of the standard metric on R, the symmetry of d∞ on B([0, 1]) follows

immediately:

d∞(f, g) = sup {|f(t)− g(t)| : t ∈ [0, 1]} (2.4)

= sup {|g(t)− f(t)| : t ∈ [0, 1]} (2.5)

= d∞(g, f). (2.6)

Oliver Dixon DRAFT/UNFINISHED Page 4 of 39
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• By the triangularity property of the standard metric on R,

d∞(f, g) = sup {|f(t)− g(t)| : t ∈ [0, 1]} (2.7)

= sup {|f(t)− h(t) + h(t)− g(t)| : t ∈ [0, 1]} (2.8)

f sup {|f(t)− h(t)| : t ∈ [0, 1]}+ sup {|h(t)− g(t)| : t ∈ [0, 1]} (2.9)

= d∞(f, h) + d∞(h, g), (2.10)

hence d∞ possesses the property of triangularity on B([0, 1]).

Thus, (B([0, 1]), d∞) is a metric space.

Lecture 3: Norms, Subspaces, and Isometric Maps

Lecture Three opens with a counterexample to challenge a common

misconception. It continues to introduce the concept of norms as

generalisations of the absolute value function, metric subspaces, and

isometric maps, complemented by a simple example.

3rd October 2023

TODO

TODO

Example 3.1 Binary Strings

Despite the examples seen thus far, metric spaces needn’t support an associated arithmetic or

algebraic structure. For instance, let Σ = {0, 1}N be the set of binary strings (sequences of

zeroes and ones). If Ã = (an)
∞
n=1 ∈ Σ and Ã′ = (bn)

∞
n=1 ∈ Σ, consider the distance function

d : Σ× Σ → [0,∞) such that

(Ã, Ã′) 7→




0 if an = bn ∀n ∈ N;

1/min {n : an ̸= bn} otherwise.
. (3.1)

Despite there being no inherent algebraic structure or ordering on Σ, d is a metric that is inversely

proportional with the earliest point at which two given binary strings diverge, thus inducing a

very natural— although unconventional—notion of distance.

This example was adapted from Ben Green’s University of Oxford Metric Spaces and Complex

Analysis Michaelmas 2021 course notes.

Definition 3.1 Norm

A norm is an abstraction of the absolute value. Suppose that V is a normable vector space. Then

|| · || : V → R is such that, for all x,y ∈ V ,

Oliver Dixon DRAFT/UNFINISHED Page 5 of 39
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N1) ||x|| g 0;

N2) ||x|| = 0 ⇐⇒ x = 0;

N3) ||¼x|| = |¼|||x|| for all ¼ ∈ R;

N4) ||x+ y|| f ||x||+ ||y||.

V equipped with || · || is a normed space. Note that any norm can give rise to a metric; such a

metric is sometimes called the metric induced by the norm.

Definition 3.2 Metric Subspace

Suppose that (X, d) and (Y, e) are metric spaces. We say that X is a metric subspace of Y if

X ¦ Y and d is a restriction of e to X ×X.

Definition 3.3 Isometric Map

Suppose that (X, d) and (Y, e) are metric spaces, and that ϕ : X → Y is surjective. Then ϕ is

called an isometric map if and only if e(ϕ(a), ϕ(b)) = d(a, b) for all a, b ∈ X. This will later be

used to define the most rigid definition of “sameness” for metric spaces.

Example 3.2 Complex Isometry

Each (a, b) ∈ R is associated with a unique z = a + ib ∈ C such that ℜ(z) = a and ℑ(z) = b.

Notice that (a, b) 7→ a+ ib is a bijective map from R2 to C, and hence qualifies as an isometry.

Lecture 4: Introduction to the Topology of Metric Spaces

Lecture Four begins an investigation into the topology of a metric

space. In particular, we introduce open and closed balls, interior

points, boundary points, and exterior points, and define open and

closed sets in terms of these concepts. We take an example metric

space and rigorously compute its interior, boundary, and exterior, and

finally show (by example) that considering objects as either subsets

or subspaces can vastly alter their topological properties.

5th October 2023

TODO

TODO
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Definition 4.1 Open and Closed Balls

Suppose that (X, d) is a metric space, and that x0 ∈ X. For every ϵ > 0, we define the open

ball centered at x0 with radius ϵ to be the set B(x0, ϵ) = {x ∈ X : d(x, x0) < ϵ}. Analogously, the

closed ball centered at x0 with radius ϵ is defined to be the set B(x0, ϵ) = {x ∈ X : d(x, x0) f ϵ}.

X

x0 ϵ

Figure 4.1: The open ball B(x0, ϵ) ¢ X

X

x1 ¶

Figure 4.2: The closed ball B(x1, ¶) ¢ X

Definition 4.2 Interior Points

Let A ¢ X. An interior point y ∈ X of A is an element for which B(y, ϵ) ¢ A for some ϵ > 0.

That is, there is an open ball centred at y with radius ϵ that is completely contained within A.

The set of all such points is denoted as Ao, and is called the interior of A.

Definition 4.3 Boundary Points

The element y ∈ X is a boundary point of A if and only if for any ϵ > 0, B(y, ϵ) ∩ A ̸= ∅ and

B(y, ϵ)∩Ac ̸= ∅. That is, any open ball centred at y always intersects with A and its complement

Ac. The set of all such points is denoted as ∂A, and is called the boundary of A.

Definition 4.4 Exterior Points

The element y ∈ X is an exterior point of A if and only if for some ϵ > 0, B(y, ϵ) ¢ Ac. That is,

there exists an open ball centred at y which intersects only with the complement of A; this can

also be interpreted as an interior point of the complement. The set of all such points is denoted

as Ae, and is called the exterior of A.
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Example 4.1 Illustration of Interior, Boundary, and Exterior Points

Consider an ambient space X, and the shaded subset A ¦ X. We can illustrate examples of

points from the interior, boundary, and exterior of A.

x

Figure 4.3: An interior point

x ∈ Ao

y

Figure 4.4: A boundary

point y ∈ ∂A

z

Figure 4.5: An exterior

point z ∈ Ae

Note that the interior, boundary, and exterior are mutually disjoint and can be placed under the

disjoint union operation to form the entire ambient space. This fact is henceforth denoted by

“Ao
∐
∂A
∐
Ae = X” for A ¦ X.

Example 4.2 Finding the interior, boundary, and exterior of a set

Consider (R, d) with A = (0, 1] ¢ R. Intuitively, we can conjecture that Ao = (0, 1), ∂A = {0, 1},
and Ae = R \ (0, 1) = (−∞, 0) ∪ (1,∞), however these claims must be proven rigorously by

(a) showing that the conjectured points do belong to the relevant set, and (b) showing that the

conjectured points are the only elements to belong to the relevant set.

• First consider the interior. Take x ∈ (0, 1). By definition 4.2, we want to show that there is

an ϵ > 0 such that B(x, ϵ) ¢ (0, 1] = A. Set ϵ1 := x, and ϵ2 := 1− x. Given that 0 < x < 1,

we can take an ϵ := min{ϵ1, ϵ2}. Then, since ϵ/2 < ϵ1, ϵ2,

B(x, ϵ/2) = {y ∈ R : d(x, y) < ϵ/2} ¢ A. (4.1)

This proves that (0, 1) ¦ Ao.

We now need to eliminate the remaining candidates in R \ (0, 1) from having possible

membership in Ao. The points x < 0 and x > 1 can be discarded immediately, since

any open ball centred at these points could never lie totally within A, due to their positive

radii ϵ. Finally, we need to show that {0, 1} ̸¢ Ao. Without loss of generality, pick x = 1,

and take an ϵ > 0 to consider the open ball B(x, ϵ). Any such ball would contain a point

that is strictly greater than 1, and hence would contain points outside of A. Thus, x ̸∈ Ao,

and Ao = (0, 1) as claimed.

• Now consider the boundary, as described in definition 4.3. We claim that {0, 1} = ∂A,
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and first demonstrate that {0, 1} ¦ ∂A. Without loss of generality, we show that 0 ∈ ∂A.

Let ϵ > 0, and consider B(0, ϵ) = (−ϵ, ϵ). Clearly, since ϵ > 0, (−ϵ, ϵ) ∩ A ̸= ∅ and

(−ϵ, ϵ) ∩Ac ̸= ∅; thus, 0 is a boundary point.

Now, we show that there are no other boundary points of A in R. We know that R =

Ao
∐
∂A
∐
Ae, hence Ao ∪ ∂A = ∅, thus (0, 1) ̸¢ ∂A. Without loss of generality for x < 0,

consider points x > 1. Therefore, there exists an ϵ > 0 such that x = 1 + ϵ. Considering

B(x, ϵ/2), we can see that B(x, ϵ/2) ¢ Ac, which implies that B(x, ϵ/2) ∩ A = ∅. Thus,

{0, 1} = ∂A.

• Finally, consider the exterior, as described in definition 4.4. Recall that the entire space

can be expressed as a disjoint union, e.g. R = Ao
∐
Ae
∐
∂A. Hence,

Ae = R \ (Ao ∪ ∂A) (4.2)

= R \ [0, 1] (4.3)

= (−∞, 0) ∪ (1,∞), (4.4)

as conjectured.

Definition 4.5 Open, Closed, and Clopen Sets

Let (X, d) be a metric space. A subset A of X is open if and only if A∩∂A = ∅. A subset F of X

is closed if and only if ∂F ¦ F . Note that a set can be both open and closed: typical examples

are the empty set and the entire space; these sets are called clopen.

Ao

Ae

Figure 4.6: An open set A does not contain its

boundary points.

F o

F e

Figure 4.7: A closed set F contains its

boundary points.

Example 4.3 Subset vs. Subspace

Consider (R, d) with A = (0, 1) ∪ (1, 2). If A is considered as a subset if R, then ∂A = {0, 1, 2}.
Hence, A ∩ ∂A = ∅, and A is open by definition 4.5. Further, A is not closed, since ∂A ̸¦ A.

Oliver Dixon DRAFT/UNFINISHED Page 9 of 39



Metric Spaces: Consolidated Lecture Notes Semester I, 2023/24

If A is considered as a subspace of R, then ∂A = ∅, since {0, 1, 2} ̸¦ A, and we cannot consider the

points outside of the subspace when determining its topology. Hence, A is closed. But A∩∂A = ∅,
since ∂A = ∅; thus A is also open, and is ultimately clopen when interpreted as a subspace.

Lecture 5: Results on the Topology of Metric Spaces

Lecture Five proves multiple important theorems: a set is open if

and only if its complement is closed; a set is open if and only if we

can place an open ball around every point and stay inside of the set;

and an open set can be expressed as a union of open balls. We also

introduce the notion of a topology Td as the collection of all open

subsets, and prove theorems related to closure under the familiar

union and intersection set operations.

10th October 2023

TODO

TODO

Theorem 5.1 A subset is open if and only if its complement is closed

Consider a set A ¦ X. Then, A is open if and only if Ac is closed.

Proof. This can be proven by unravelling the definitions of open and closed sets (definition 4.5)

and boundary points (definition 4.3).

=⇒ First, suppose that A is open. If A = ∅, then Ac = X. The entire space is known to be

clopen, and thus closed. If A ̸= ∅, then A ∩ ∂A = ∅, and ∂A ¦ Ac. We can now see a useful

equality by using the fact that (Ac)
c
= A:

∂ (Ac) = {y ∈ X : ∀ϵ > 0B(y, ϵ) ∩Ac ̸= ∅ 'B(x, ϵ) ∩ (Ac)
c ̸= ∅} (5.1)

= {y ∈ X : ∀ϵ > 0B(y, ϵ) ∩Ac ̸= ∅ 'B(x, ϵ) ∩A ̸= ∅} (5.2)

= ∂A. (5.3)

Since ∂A ¦ Ac, and ∂A = ∂ (Ac), we know that ∂ (Ac) ¦ Ac. Hence, Ac is closed.

⇐= Next, assume that Ac is closed, hence ∂ (Ac) ¦ Ac. Given that ∂A = ∂ (Ac), ∂A ¦ Ac.

Since Ac ∩A = ∅, we know that ∂A ∩A = ∅, and thus A is open.

Definition 5.1 The topology of a metric space

The topology of a metric space (X, d) is denoted as Td, and is defined to be the collection of all

open subsets of X. Note that since Td ¦ P(X), for any set X, ∅, X ∈ Td, so Td ̸= ∅.

Oliver Dixon DRAFT/UNFINISHED Page 10 of 39

https://york.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=dbcb156d-d828-454f-929d-b091009bf65b


Metric Spaces: Consolidated Lecture Notes Semester I, 2023/24

Theorem 5.2 Equivalence between openness and the existence of open balls

Let A ¦ X be open. Then, every point of A is an interior point of A. Equivalently, A is open if

and only if there is an open ball around every point in A that resides within A:

∀x ∈ A ∃ϵ > 0 such that B(x, ϵ) ¦ A. (5.4)

Proof. =⇒ First assume that A is open. By def-

inition, A ∩ ∂A = ∅. If A = ∅, then there exists no

points to select, and the universal quantifier cannot se-

lect any points for x. If A ̸= ∅, then there must be at

least one ϵ > 0 such that B(x, ϵ) ¦ A or B(x, ϵ) ¦ Ac

for any x ∈ A. But, since x ∈ A, it is not possi-

ble that B(x, ϵ) is entirely contained within Ac, since

x ∈ B(x, ϵ). Hence, B(x, ϵ) ¦ Ac, as required.

⇐= Next, suppose that ∀x ∈ A ∃ϵ > 0 such that

B(x, ϵ) ¦ A. Take any x ∈ A. Immediately, we can

see that x ̸∈ ∂A, since B(x, ϵ) ∩ Ac = ∅, because

B(x, ϵ) ¦ A. Hence, A is open.

x1x2

x3

Figure 5.1: Every point supports an

open ball

Theorem 5.3 The open ball is open

For any x ∈ X and any ϵ > 0, B(x, ϵ) ∈ Td. Since Td is defined to be a collection of open sets,

this statement is equivalent to the claim that “the open ball is open”.

Proof. Take an x ∈ X and construct the open ball B(x, ϵ), for a fixed ϵ > 0. Take y ∈ B(x, ϵ) and

let ∆ := d(x, y). If x = y, then B(x, ϵ) = B(y, ϵ) ¦ B(x, ϵ), there is nothing to do; therefore, we

assume that x ̸= y, thus ∆ > 0 and 0 < ∆ < ϵ. Let ϵ′ := min {∆, ϵ−∆} and consider B(y, ϵ′/2).
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To show the openness of the open ball, it is

sufficient to show that B(y, ϵ′/2) ¦ B(x, ϵ).

By the triangle inequality on d, for any z ∈
B(y, ϵ′/2),

d(x, z) f d(x, y) + d(y, z) (5.5)

f ∆+ ϵ′/2 (5.6)

= ∆+min {∆, ϵ−∆} /2 (5.7)

f ∆+ (ϵ−∆)/2 (5.8)

< ∆+ ϵ−∆ (5.9)

= ϵ (5.10)

ϵ
x

y
ϵ′

2

[ ∆ = d(x, y) ]

Figure 5.2: Careful construction of B(y, ϵ′/2)

Thus, z ∈ B(x, ϵ) for all z ∈ B(y, ϵ′/2). Therefore, B(y, ϵ′/2) ¦ B(x, ϵ), and open balls are indeed

open.

Theorem 5.4 Elements of the topology are unions of open balls

If A ∈ Td and A ̸= ∅, then A is a union of open balls.

Proof. Suppose that A ̸= ∅ and is open. Take any x ∈ A, and we know by theorem 5.2 that there

exists an ϵ > 0 such that B(x, ϵ) ¦ A. Then, we claim that

A =
⋃

x∈A

B (x, ϵ(x)) ⇐⇒
[
A ¦

⋃

x∈A

B (x, ϵ(x)) ' A §
⋃

x∈A

B (x, ϵ(x))

]

︸ ︷︷ ︸
true by the principle of double-inclusion

. (5.11)

The leftmost conjunctive on the right-hand-side is clearly true: by placing an open ball of strictly

positive radius around every point in A, the entire set will be covered, since x ∈ B(x, ϵ) for any x

and ϵ > 0. The rightmost conjunctive is also true, since each individual ball is wholly contained

within A, and taking the union of all such interior balls cause any elements to “escape” the set in

which they reside. Hence, A is the union of the open balls centered about every point in A.

Theorem 5.5 Any union of open sets is open

Take any (finite, countably infinite, or uncountable) collection of open sets Λ ¦ Td. Then, for

any Λ, ⋃

Ω∈Λ

Ω ∈ Td is open. (5.12)

Proof. Take x ∈ ⋃Ω∈Λ Ω. Thus, there exists an open Ω(x) such that x ∈ Ω(x). By definition 4.5,
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there exists an ϵ > 0 such that B(x, ϵ) ¦ Ω(x). By transitivity, B(x, ϵ) ¦ ⋃
Ω∈Λ Ω, and every

union of open sets is open by theorem 5.4.

Example 5.1 Non-finite open sets are not closed under intersection

Take (R, d) and consider In := (−1/n, 1/n). Under infinite intersection, we calculate the singleton:

∞⋂

n=1

In = {0}. (5.13)

It is known that all singletons are not open—since any B(x, ϵ) with ϵ > 0 would exceed the bounds

of {x}—despite each individual In being open. Thus, the union property shown in theorem 5.5

does not apply with such generality to intersections.

R

I1

I2

I3

I4

I5

0−1 1−1/2 1/2

Figure 5.3: Nested intersections I1 through I5

Theorem 5.6 Any finite intersection of open sets is closed

Take any finite collection of open sets Ω1, . . . ,ΩN ∈ Td. Then,

N⋂

i=1

Ωi ∈ Td is open. (5.14)

Proof. If
⋂N

i=1 Ωi = ∅, then there is nothing further to show, since ∅ is known to be open and thus

a member of all topologies Td. We now assume that the intersection is non-empty, from which we

take an element x. Thus, there exists an ϵi > 0 for which B(x, ϵi) ¦ Ωi. Let ϵ := min {ϵ1, . . . , ϵN};
then, B(x, ϵ) ¦ B(x, ϵi) ¦ Ωi for any choice of i = 1, . . . , N . Therefore,

B(x, ϵ) ∈
N⋂

i=1

Ωi, (5.15)

since B(x, ϵ) is a member of every Ωi. Hence we can place an open ball with positive radius

around any point and stay within the intersection; it is therefore open.
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⋂

Figure 5.4: We consider the intersection of open sets using the smallest open ball B(x, ϵ).

Theorem 5.7 Summary of Td Properties

Let (X, d) be a metric space, and let Td be the topology induced by d. Then,

T1) ∅, X ∈ Td;

T2) For any collection of open sets Λ ¦ Td,
⋃

Ω∈Λ Ω ∈ Td is open (theorem 5.5);

T3) For any finite collection of open sets Ω1, . . . ,ΩN ∈ Td,
⋂N

i=1 Ωi ∈ Td is open (theorem 5.6).

Lecture 6: Closed Sets & Topological Equivalence

Lecture Six continues to cover the topology induced by a metric by

deriving the corresponding properties of closed sets. We introduce the

concept of topological equivalence as weaker method of determining

“sameness” between metric spaces. We finally define the closure of a

set, and prove that the closure is closed.

12th October 2023

TODO

TODO

Theorem 6.1 Summary of Closed Set Properties

We can easily derive a dual of theorem 5.7 for arbitrary and finite collections of closed sets.

F1) For any collection of closed sets F ,

For all F ∈ F , F c ∈ Td︸ ︷︷ ︸
Theorem 5.1

=⇒
⋃

F∈F

(F c) ∈ Td

︸ ︷︷ ︸
Axiom T2

=⇒
⋂

F∈F

F is closed, (6.1)

since
(⋂

F∈F F
)c

=
⋃

F∈F (F c) ∈ Td by De Morgan’s laws.
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F2) Similarly, for any finite collection of closed sets F1, . . . , FN ,

(
N⋃

i=1

Fi

)c

=

N⋂

i=1

F c
i ∈ Td =⇒

N⋃

i=1

Fi is closed. (6.2)

Definition 6.1 Topological Equivalence

Let d and d∗ be metrics on a set X. Then, (X, d) and (X, d∗) are (topologically) equivalent if and

only if Td = Td∗ ; that is, d and d∗ induce the same topologies.

Theorem 6.2 Determining Topological Equivalence

Let X be a set and let d and d∗ be metrics on X. Then, Td = Td∗ if and only if there exists a

scalar ¼ > 0 for which
1

¼
d(x, y) f d∗(x, y) f ¼d(x, y) (6.3)

for all x, y ∈ X.

Example 6.1 R2 is topologically equivalent under the d1, d2, and d∞ metrics

Recall the unit circles S2
1 (figure 1.1), S2

2 (figure 1.2), and S2
∞ (figure 1.3) from example 1.1. We

claim (and give an information demonstration to show) that Td1
= Td2

= Td∞
; that is, d1, d2,

and d∞ are topologically equivalent by definition 6.1.

We first consider the set S2
1 =: Ω in the space

(
R2, d2

)
. Take a point x0 ∈ Ω and construct the

open ball B(x0, ϵ/2) ¦ S2
1 ; such a ball can be created by considering an ϵ := min {ϵ1, ϵ2, ϵ3, ϵ4},

where ϵi for i = 1, 2, 3, 4 are the perpendicular distances from x0 to the boundary of Ω by the d2

metric. Then, Ω ∈ Td2
.

Next, consider S2
2 =: Λ in the space

(
R2, d1

)
. Constructing open balls in d1 around the points in

Λ is easier still, since we only need to consider ‘diamonds’ which lie entirely within the Euclidean

d2 unit circle. By covering the entire set, we can conclude that Λ ∈ Td1
.

Intuitively, we can see that the metrics d1 and d2 induce the same topologies; analogous arguments

apply for establishing the equivalences to d∞.
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x

y

(R2, d2)

ϵ1
ϵ2

ϵ3
ϵ4

x0

Figure 6.1: Considering the d1-defined unit

circle Ω as an open set in the
(
R2, d2

)

space.

x

y
(R2, d1)

x0 x1

x2

Figure 6.2: Considering the d2-defined unit

circle Λ as an open set in the
(
R2, d1

)

space.

Definition 6.2 Closure

Let (X, d) be a metric space and A ¦ X. Then the closure of A, denoted by A, is defined to be

A = A ∪ ∂A.

A

X

A

X

A 7→ A ∪ ∂A = A

Closure Operation on A

Figure 6.3: Encapsulating the boundary of an open set A is the most ‘efficient’ way of

generating a closed set A with the same interior Ao.

Theorem 6.3 The closure is closed

For an open set A ¦ X, the closure A is closed.

Proof. By theorem 5.1, A is closed if and only if
(
A
)c

is open. If
(
A
)c

= ∅, then we are done

since the empty set is known to be open; thus we assume that
(
A
)c ̸= ∅. To prove the openness

of this non-empty set, we consider an arbitrary point x ∈
(
A
)c

and construct an ϵ > 0 such that
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B(x, ϵ) ¦
(
A
)c
.

Since A = A ∪ ∂A, x ̸∈ A and x ̸∈ ∂A. We can use rules from first-order logic combined with De

Morgan’s laws to negate the definition of a boundary point shown in definition 4.3:

x ∈ (∂A)
c
= {y ∈ X : ∀ϵ > 0B(y, ϵ) ∩A ̸= ∅ 'B(y, ϵ) ∩Ac ̸= ∅}c (6.4)

= {y ∈ X : ∀ϵ > 0B(y, ϵ) ∩A = ∅ (B(y, ϵ) ∩Ac = ∅} (6.5)

= {y ∈ X : ∀ϵ > 0B(y, ϵ) ¦ Ac (B(y, ϵ) ¦ A} (6.6)

Since x ̸∈ A, B(x, ϵ) ¦ Ac is the only possibility. We also require that x ̸∈ ∂A, so we need to

show that there is an ϵ > 0 such that B(x, ϵ) ∩ ∂A = ∅. By way of contradiction, suppose that

there exists a y ∈ B(x, ϵ) such that y ∈ ∂A. By definition definition 4.3, for all ¶ > 0,

B(y, ¶) ∩A ̸= ∅ and B(y, ¶) ∩Ac ̸= ∅. (6.7)

If d(x, y) =: ϵ∗ < ϵ, and ϵ̂ := min {ϵ∗, ϵ− ϵ∗}, then B(y, ϵ̂/2) ¦ B(x, ϵ). But B(y, ϵ̂)∩A ̸= ∅. This
is a contradiction: no such y can exist, so

(
A
)c

is open, and A is closed.

XA
x ϵ

y
¶

Figure 6.4: The open ball B(x, ϵ) lies entirely within the complement of the closure of A, within

which B(y, ¶) is nested.

Lecture 7: Limit Points and their Consequences

Lecture Seven demonstrates that a space is closed if and only if

it is equal to its own closure, and moves to introduce the topic of

limit/accumulation/cluster points whilst proving some useful related

properties.

No Recording

TODO

TODO
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Theorem 7.1 Relationships between a closed set and its closure

If A ¦ X is closed, then A = A; if A = A, then A is closed. That is, A is closed if and only if

A = A.

Proof. =⇒ If A = A, then A is closed by theorem 6.3. Thus A is closed.

⇐= If A is closed, then A = A ∪ ∂A by definition 6.2. By definition 4.5, A = ∂A ∪A = A.

Definition 7.1 Limit/Accumulation/Cluster Points

Let (X, d) be a metric space, and A ¦ X. A limit point

y ∈ X of A is an element of X for which

[B(y, ϵ) \ {y}] ∩A ̸= ∅ for all ϵ > 0. (7.1)

The derived set of A is denoted A′, and is defined to be

the set of all limit points of A. Equivalently (in the con-

text of metric spaces, but not the more general topological

spaces), we can say that y ∈ X is a limit point of A if, for

any ϵ > 0, the intersection B(y, ϵ) ∩ A contains infinitely

many points of A. Limit points are sometimes called ac-

cumulation points or cluster points.

X

Figure 7.1: As the open balls

contract ad infinitum, we can still

find non-centroid points of A.

Theorem 7.2 The closure of a set is the union of the base set and its derived set

For a set A ¦ X, A = A ∪A′.

Proof. If A is closed, then the result is immediate: A = A (by theorem 7.1), so A′ ¦ A = A.

Thus, we assume that A is open. If A′ = ∅, then A′ ¦ A, since A has no limit points; therefore,

we also assume that A is non-empty. We will show the equality A = A∪A′ for an open non-empty

set A through the principle of double-inclusion.

=⇒ Without loss of generality, suppose that y is such that y ∈ ∂A and y ̸∈ A. For any choice

of ϵ > 0, we know that B(y, ϵ) ∩ A ̸= ∅. Since y ̸∈ A, there exists a y′ ̸= y ∈ A,B(y, ϵ). This is

consistent with definition 7.1. Thus, y is a limit point, so A′ ¦ A and A ∪A′ ¦ A.

⇐= Given that A is not closed, there exists a y ∈ A′ such that y ̸∈ A. Take ϵ > 0 and note that

B(y, ϵ) ∩ A ̸= ∅ and B(y, ϵ) ∩ Ac ̸= ∅. Thus, by definition 4.3, y is a boundary point. We now
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unravel the definitions:

A is closed ⇐⇒ ∂A ¦ A [Definition 4.5] (7.2)

⇐⇒ Ac is open [Theorem 5.1] (7.3)

⇐⇒ Ac ∩ ∂ (Ac) = ∅ [Definition 4.5] (7.4)

⇐⇒ Ac ∩ ∂A = ∅ [Equations 5.1 to 5.3] (7.5)

⇐⇒ ∀x ∈ Ac, ∃ϵ > 0 s.t. B(x, ϵ) ¦ Ac [Equation 7.3] (7.6)

⇐⇒ A = A (7.7)

⇐⇒ A § A′ (7.8)

Hence, A = A ∪ ∂A = A ∪A′ for any A ¦ X.

Definition 7.2 Topological Interpretation of Closure

Let (X, d) be a metric space, and A ¦ X. Then,

A =
⋂

F∈F

F, (7.9)

where F is the collection of all open supersets of A. This means that A is the smallest closed

superset of A.

Definition 7.3 Density

Let (X, d) be a metric space and A ¦ X. Then A is said to be dense in X if and only if A = X.

Alternatively—but equivalently—for any x ∈ X and any ϵ > 0, there exists an a ∈ A such that

d(x, a) < ϵ.

Lecture 8: Sequences and Convergence

Lecture Eight gives the definition of a sequence in a metric space,

and motivates the study of various properties thereof, such as con-

vergence. Some examples are provided, with familiar concepts from

Real Analysis being recast into the more abstract setting of metric

and topological spaces.

19th October 2023

TODO

TODO
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Definition 8.1 Sequence

A sequence in a metric space (X, d) is an element of XN, where any element x ∈ XN can be

written as a countable set x = {x1, . . . , xn, . . .}, such that xi ∈ X for all i ∈ N. Such a sequence

is denoted

(xn)n∈N
or (xn)

∞
n=1 . (8.1)

Definition 8.2 Convergence of Sequences (by the Metric)

Let (xn)n∈N
be a sequence in (X, d). Then, (xn)n∈N

converges to x ∈ X if and only if

For all ϵ > 0, there exists an N = N(ϵ) such that d(xn, x) < ϵ for all n > N. (8.2)

If this is the case, we write xn → x (as n→ ∞), and the x is the (unique) limit of (xn)n∈N
. If no

such x exists, then (xn)n∈N
is divergent.

(X, d) = (R, d)
x

Figure 8.1: A sequence in (R, d), where d is the standard metric, converging to an x ∈ R. The

zone of convergence (x− ϵ, x+ ϵ) is denoted with parentheses about x.

Definition 8.3 Convergence of Sequences (by the Open Balls)

An equivalent notion of convergence can be expressed in terms of open balls, such that the tail of

the sequence exists in the open ball centered at the limit. Let (xn)n∈N
be a sequence in (X, d).

Then, (xn)n∈N
converges to x ∈ X if and only if

∀ϵ > 0 ∃N > 0 such that xn ∈ B(x, ϵ) for all n > N. (8.3)

That is, for any given ϵ > 0, we must find an index N for the sequence (xn)n∈N after which

all points xi (i > N) exist within the open ball B(x, ϵ). If this holds, then the sequence (xn)

converges to the centre of the open ball x.

x
ϵ X

x1

x2

x3

x4

x5

x6

x7

x8
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Figure 8.2: A sequence converging within the bounds of an arbitrarily sized open ball centred at

the limit. In this example, N = 5, since all sequence points x6, x7, x8, . . . belong to the pictured

open ball.

Definition 8.4 Convergence of Sequences (by the convergence of a real sequence)

We can also use results from Real Analysis to consider the real sequence generated by the distances

between each point in the space and the proposed limit x. For a sequence (xn)n∈N
in a metric

space (X, d),

lim
n→∞

xn = x ⇐⇒ lim
n→∞

d(xn, x) → 0. (8.4)

Theorem 8.1 Convergences of Real-Dimensional Vector Spaces

In Rk with any d1, d2, or d∞ metrics, overall convergence is equivalent to simultaneous component-

wise convergence. That is, for xn ∈ Rk with n ∈ N,

lim
n→∞

xn → x ⇐⇒ lim
n→∞

x
(n)
i → xi for each i ∈ {1, . . . , k} . (8.5)

Note that x = (x1, . . . , xk) denotes a general vector/candidate limit, and xn =
(
x
(n)
1 , . . . , x

(n)
k

)

denotes a k-dimensional vector in the sequence at index n. For this demonstration, we will

consider the specific case of
(
Rk, d∞

)
.

Proof. =⇒ Suppose that xn → x as n→ ∞. We want to show that, for each i ∈ {1, . . . , k}, the
components converge such that x

(n)
i → xi as n→ ∞. Let ϵ > 0 be given. Since limn→∞ xn = x,

there exists an N(ϵ) > 0 such that d∞(xn,x) < ϵ for all n > N . By recalling the mapping

definition of d∞ from definition 1.2, we can derive that

max
1fifk

∣∣∣x(n)i − xi

∣∣∣ < ϵ for all n > N. (8.6)

By the nature of the maximum function, we can generalise this inequality to all choices of i ∈
{1, . . . , k}: ∣∣∣x(n)i − xi

∣∣∣ < ϵ for all n > N for all i ∈ {1, . . . , k} . (8.7)

We can immediately arrive at the desired limit for the real sequence: limn→∞ x
(n)
i = xi for all

i ∈ {1, . . . , k}.

⇐= Now suppose that limn→∞ x
(n)
i = xi for all i ∈ {1, . . . , k}, and let ϵ > 0 be given. Then,
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for any suitable choice of i, there exists an Ni(ϵ) > 0 such that
∣∣∣x(n)i − xi

∣∣∣ < ϵ for all n > Ni.

x1 x
(1)
1 x

(1)
2 x

(1)
3 . . . x

(1)
k

x2 x
(2)
1 x

(2)
2 x

(2)
3 . . . x

(2)
k

x3 x
(3)
1 x

(3)
2 x

(3)
3 . . . x

(3)
k

...
...

...
...

. . .
...

...




N1

...

y N3

y Nk

}

... N2

... Nj

...

Zones of Convergence

Take N := max {N1, . . . , Nk}, such that N is a sufficiently large index to induce convergence on

all component sequences. That is,

max
1fifk

∣∣∣x(n)i − xi

∣∣∣ < ϵ for all n > N. (8.8)

Thus, limn→∞ xni = xi for all i ∈ {1, . . . , k}, as desired.

Example 8.1 Convergence of Continuous Functions

Consider the sequence (fn)
∞
n=1 where fn ∈ C ([0, 1]) and t 7→ tn. We claim the following:

1. In d2, (fn)
∞
n=1 converges to zero;

2. In d∞, (fn)
∞
n=1 diverges.

First consider the sequence under the d2 metric. In general, we know that xn → x as n → ∞ if

and only if d(xn, x) → 0 as n→ ∞. Therefore, we compute d2(fn, 0):

d2(fn, 0) =

[∫ 1

0

|fn(t)|2 dt

]1/2
(8.9)

=

√
1

2n+ 1
(8.10)

Given that limn→∞

√
1/(2n+ 1) = 0, we can conclude that fn → 0 as n→ ∞. Next considering

the sequence under the d∞ metric, recall that, for all n ∈ N,

d∞(fn, 0) = sup {|fn(t)| : t ∈ [0, 1]} = 1. (8.11)

Since 1 does not approach 0, fn ̸→ 0 as n→ ∞. Therefore, we can see, by example, that changing

the metric on a set can vastly alter its convergence properties.
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n
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n = 1
n = 2
n = 3
n = 4

Figure 8.3: The graphs of fn(t) over [0, 1] for n = 1, 2, 3, 4.

Theorem 8.2 Relationship between Mutual Convergence and Topological Equivalence

Suppose that (X, d) and (X, d∗) are topologically equivalent. Then,

(xn)
∞
n=1 → x︸ ︷︷ ︸

Convergence in (X,d)

⇐⇒ (xn)
∞
n=1 → x.︸ ︷︷ ︸

Convergence in (X,d∗)

(8.12)

Proof. Due to the topological equivalence of (X, d) and (X, d∗), and by theorem 6.2, there exists

a scalar ¼ > 0 such that

1

¼
d∗(x, y) f d(x, y) f ¼d∗(x, y) for all x, y ∈ X. (8.13)

=⇒ Suppose that (xn)
∞
n=1 → x as n → ∞. Let ϵ > 0 be given, and set ϵ∗ := ϵ/¼. By

definition 8.2, there exists an N > 0 such that d(xn, x) < ϵ∗ for all n > N . Since (X, d) and

(X, d∗) are topologically equivalent,

1

¼
d∗(xn, x) f d(xn, x) < ϵ∗ =

ϵ

¼
. (8.14)

Since ¼ > 0, we can multiply through by ¼:

d∗(xn, x) f ¼d(xn, x) < ϵ. (8.15)

Thus, d∗(xn, x) < ϵ for all n > N , so (xn)
∞
n=1 → x as n→ ∞ in (X, d∗).

⇐= A near-identical argument applies: derive convergence in (X, d) by assuming convergence

in (X, d∗).
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Lecture 9: Cauchy Sequences & More on Convergence

Lecture Nine proves the uniqueness of limits, and begins to formalise

the Cauchy Condition while introducing its various surprising rela-

tionships to ‘traditional’ convergence. We are also brought to consider

the concept of pointwise convergence over a sequence of functions.

24th October 2023

TODO

TODO

Theorem 9.1 Uniqueness of Limits of Convergent Sequences

Let (X, d) be a metric space, and let (xn)
∞
n=1 be a convergent sequence in (X, d) such that xn → x,

and xn → y, as n→ ∞. Then, x = y.

Proof. Assume, by way of contradiction, that x ̸= y. Thus, d(x, y) =: ϵ < 0. Set ¶ := ϵ/2. Given

that xn → x as n → ∞ there exists an N(¶) > 0 such that d(xn, x) < ¶ = ϵ/2 for all n > N , by

definition 8.2. Due to the purported simultaneous convergence to y, there also exists an Ñ(¶) > 0

such that d(xn, y) < ¶ = ϵ/2 for all n > Ñ .

Thus,

d(xn, x) < ¶ =
ϵ

2
and d(xn, y) < ¶ =

ϵ

2
(9.1)

for all n > M , where M := max
{
N, Ñ

}
. By the triangle inequality,

d(x, y) f d(x, xn) + d(xn, y) (9.2)

< ¶ + ¶ (9.3)

= ϵ for all n > M. (9.4)

Given that ϵ was defined to be equal to d(x, y), this is a contradiction. Therefore, x = y, and the

limits are unique.

x y

B(x, ϵ/2) B(y, ϵ/2)

X

Figure 9.1: Given the required sequence convergences, we cannot have distinct limits.
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Example 9.1 Abstract Infinite Series

We are often concerned with expressions of the form

S∞ =
∞∑

n=1

xn, (9.5)

where S∞ is defined to be the limit of the sequence generated by the partial sums

Sk =

k∑

n=1

xn (9.6)

as k approaches infinity. If a metric space (X, d) supports an algebra with a suitable notion of

‘addition’, this idea can be generalised to a more abstract setting.

Definition 9.1 Pointwise Convergence

Let (fn)
∞
n=1 be a sequence of functions f : X → Y . The function f is the pointwise limit of the

function sequence if and only if

lim
n→∞

fn(x0) = f(x0) for any x0 ∈ X. (9.7)

This equivalence allows us to study convergence in an arbitrary metric space by examining con-

vergence in the codomain Y .

Definition 9.2 The Sequential Characterisation of Continuity

Let f : X → Y be a function from (X, d) to (Y, d∗). Then, f is continuous at x0 ∈ X if and only

if f(xn) converges to f(x0) whenever the sequence generated by xn converges to x0.

The function f is continuous if and only if f is continuous at every point x0 ∈ X.

Definition 9.3 Cauchy Sequence

Let (xn)
∞
n=1 be a sequence. Then, (xn)

∞
n=1 is a Cauchy sequence if and only if, for any ϵ > 0,

there exists an N > 0 such that

d(xn, xm) < ϵ for all n,m > N (9.8)

The terms of Cauchy sequences grow arbitrarily close, and Cauchy sequences need not be conver-

gent.
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Example 9.2 The Cauchy condition does not imply convergence

Take any sequence of rationals pn/qn for which (pn/qn)
2 → 2 as n→ ∞. Note the following:

• (pn/qn)
∞
n=1 is Cauchy;

• There is no x ∈ Q such that limn→∞ (pn/qn) = x, since
√
2 ̸∈ Q.

These facts lead to the well-known result regarding the incompleteness of the rationals.

Theorem 9.2 Convergence implies Cauchy

Let (X, d) be a metric space and let (xn)
∞
n=1 be a convergent sequence such that limn→∞ xn = x.

Then, (xn)
∞
x=1 is Cauchy.

Proof. Let ϵ > 0 be given, and set ¶ := ϵ/2. Given that (xn)
∞
n=1 is convergent, there exists an

N(¶) > 0 such that d(xn, x) < ¶ for all n > N , according to definition 8.2. By the triangle

inequality, for all n,m > N ,

d(xn, xm) f d(xn, x) + d(x, xm) (9.9)

< ¶ + ¶ = ϵ (9.10)

This is precisely the criterion for the Cauchy property on (xn)
∞
n=1 by definition 9.3.

This result, combined with the counterexample shown in example 9.2, demonstrates that while

convergence implies Cauchy, Cauchy does not necessarily imply convergence.

Lecture 10: Results on Cauchy Sequences, Subsequences, and

Completeness

Lecture Ten establishes more useful relationships between the proper-

ties of a Cauchy sequence and a convergent sequences, and introduces

the concept of subsequences. The property of completeness is finally

defined, along with a statement of the Completion Theorem.

26th October 2023

TODO

TODO
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Example 10.1 The Harmonic Series Sequence is not Convergent

Consider (R, d) and the Harmonic series
∑∞

n=1(1/n). Define a sequence (SN )
∞
N=1, such that

SN :=

N∑

n=1

1

n
. (10.1)

We claim that (SN )
∞
N=1 is not convergent; this can be shown by considering the contrapositive

of the statement given by theorem 9.2: “not Cauchy” implies “not convergent”. Consider the

difference between S(2N) and SN :

S(2N) − SN =

(
1

2N
+

1

2N − 1
+ . . .+

1

N + 1
+

1

N
+

1

N − 1
+ . . .+ 1

)
−

(
1

N
+

1

N − 1
+ . . .+ 1

) (10.2)

g N

2N
=

1

2
(10.3)

By definition 9.3, given an ϵ > 0, we need to find K > 0 such that

|SM − SN | < ϵ for all M,N > K. (10.4)

Given equations 10.2 to 10.3, if M := 2N , then |SM − SN | > ϵ, and the Cauchy condition does

not hold. By the initial statement, the sequence is therefore not convergent.

Definition 10.1 Subsequence

Given a metric space (X, d) containing a sequence (xn)
∞
n=1, a subsequence of (xn)

∞
n=1 is a sequence

of elements xn1
, xn2

, . . . , xnk
, . . . such that n1 < n2 < . . . < nk < . . .. Intuitively, we are

generating a subsequence by selecting elements from an ‘ambient sequence’ while preserving the

order of indices.

X
x1

x3

x6

x7

x2

x4

x5 x8

Figure 10.1: An ambient sequence (red and blue points) generated by xn over n = 1, . . . , 8, and

a subsequence (blue points only) xnk
with k = 2, 4, 5, 8.
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Theorem 10.1 Convergence in Subsequences

If (xn)
∞
n=1 is a sequence in (X, d) such that limn→∞ xn = x, then any subsequence of (xn)

∞
n=1

shares the limit. The converse also holds; this induces a useful contraposition test for non-

convergence: if any subsequence is not convergent, then the ambient sequence is neither conver-

gent.

Example 10.2 Determining Divergence by Testing Subsequences

Consider he sequence generated by xn := (±x)n in R. Then consider the subsequences generated

by extracting terms at even and odd indices and examine their respective limits:

n1 = 1, n2 = 3, n3 = 5, . . . 7→ (−1,−1,−1, . . .) → −1 (as n→ ∞) (10.5)

n1 = 2, n2 = 4, n3 = 6, . . . 7→ (1, 1, 1, . . .) → 1 (as n→ ∞) (10.6)

By the contraposition test described by theorem 10.1, we can see immediately that (xn)
∞
n=1

diverges, given that its subsequences do not converge to a consistent limit.

Definition 10.2 Completeness

Let (X, d) be a metric space. Then, X is complete if and only if any Cauchy sequence converges

to a point in X. We may assume that (R, d) is complete.

If a sequence is Cauchy, and its resident metric space is complete, then the sequence is convergent.

To show that a space is not complete, we must find a Cauchy sequence in the space which does

not converge to another point in the space.

Cauchy
Complete

Figure 10.2: Pluto, the Greek God of Convergence, brandishing his topological bident

Theorem 10.2 The Completion Theorem

Let (X, d) be a metric space. There is a metric space (X∗, d∗) and an isometry È : X → X∗ such

that the following properties hold:

• X∗ is complete (c.f. definition 10.2); and
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• È(X) is dense in X∗ (c.f. definition 7.3).

X∗ is called a completion of X; all completions of X are isometric to X∗.

Proof. Proof sketch:

1. If X is already complete, we can set X∗ := X and È(x) := x and finish. Therefore, we

assume that X is not complete.

2. Collate the set of all Cauchy sequences in X, and denote the set as G(X). This set is

trivially nonempty: for the degenerate case of a singleton X = {x}, we can extract the

Cauchy sequence (x, x, . . .).

3. Define an equivalence relation ∼ on G(X) such that

(xn) ∼ (yn) ⇐⇒ lim
n→∞

d (xn, yn) = 0 for all sequences in G(X). (10.7)

4. Construct the set of all equivalence classes under the ∼ relation: the quotient set G(X) /∼.

5. Extend the metric d on X to the metric d∗ on X∗ by defining a map d̃ : G(X) /∼ → R such

that

([(xn)] , [(yn)]) 7→ lim
n→∞

d (xn, yn) ∈ R. (10.8)

6. Define the isometry map È : X → X∗ such that

x 7→ [(x)∞n=1] ∈ G(X) /∼ where [(x)∞n=1] = (x, x, . . .), (10.9)

and prove that È is an isometry.

7. Show that È(X) = G(X) /∼ = X∗, thereby confirming density.

8. Show that any Cauchy sequence in G(X) /∼ converges to a common limit in the same

quotient set, and prove uniqueness.

The detailed proof is completed in Section 1.5 of [SV06].

Theorem 10.3 A real-valued vector space is complete under the sup-metric

The space
(
Rk, d∞

)
where k g 2 is complete.

Proof. By definition 10.2, and in the same vein as theorem 10.2, we take an arbitrary Cauchy

sequence (xn)
∞
n=1 from

(
Rk, d∞

)
, and let ϵ > 0 be given. Since (xn)

∞
n=1 is Cauchy, there exists
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an N(ϵ) > 0 such that, for all n,m > N ,

d∞ (xn,xm) = max
1fifk

{∣∣∣x(n)i − x
(m)
i

∣∣∣
}

[Definition 1.2] (10.10)

< ϵ [Definition 9.3] (10.11)

Given that R is axiomatised to be complete, each real subsequence converges to a real limit. Since

we know the limit to exist, we can construct a candidate limit x to be the component-wise limits,

as pictured below.

x1

(
x
(1)
1 , x

(2)
1 , . . . , x

(k)
1

)

x2

(
x
(1)
2 , x

(2)
2 , . . . , x

(k)
2

)

...
y y . . .

y

x
(

x1, x2, . . . , xk

) }
N(ϵ)

After the index N , xn and xm are sufficiently close by the d∞ metric; that is, x ∈ Rk is composed

of the component-wise limits of xi for i ∈ N. We can use theorem 8.1 to show that the candidate

limit x is valid, given that the coordinate sequences converge component-wise (by construction

of x).

Thus, any arbitrary Cauchy sequence (xn)
∞
n=1 ∈

(
Rk
)N

converges to x ∈ Rk, so
(
Rk, d∞

)
is

complete by definition 10.2.

Lecture 11: Generalising Continuity

Lecture Eleven introduces a general form of continuity according to

the ϵ–¶ definition and hence motivates five superficially different, al-

beit equivalent, notions of a continuous map in terms of highly ab-

stract open and closed sets. The sets of bounded and continuous

functions are revisited with greater care, and an example helps to

illustrate B(X,Y ) with the d∞ metric.

7th November 2023

TODO

TODO

Definition 11.1 Inverse Image (Traditional Interpretation)

Consider f : X → Y , and let A ¦ Y . Then, the inverse image of A is defined as

f−1(A) := {x ∈ X : f(x) ∈ A} . (11.1)
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Definition 11.2 Inverse Image (Fibreoptic Interpretation)

Following from definition 11.1, we can define a fibre of y to be the inverse image of the singleton

set {y} ¦ Y , denoted Fy:

Fy := {x ∈ X : f(x) = y} . (11.2)

Then, the inverse image of A is the union over all fibres of the singletons in A:

f−1(A) =
⋃

y∈A

Fy. (11.3)

Definition 11.3 Continuity on the Real Line

A function f : R → R is continuous if and only if, for all ϵ > 0 there exists a ¶(ϵ) > 0 such that

|x− x0| < ¶ =⇒ |f(x)− f(x0)| < ϵ. (11.4)

This is the least abstract, yet formally correct, definition of continuity, as it applies only to the

set of real numbers. Over the next set of definitions, we define increasingly abstract—albeit

equivalent—notions of continuity in a metric space.

Definition 11.4 Continuity in an Abstract Metric Space

Let (X, d) and (Y, d̃) be metric spaces. The function f : X → Y is continuous at x0 ∈ X if any of

the following equivalent definitions holds:

1. (Analytic Definition) For any ϵ > 0, there exists a ¶ > 0 such that d̃ (f (x) , f (x0)) < ϵ

whenever d (x, x0) < ¶.

2. (Open Ball Definition) For any ϵ > 0, there exists a ¶ > 0 such that f (B (x0, ¶)) ¦
B (f (x0, ϵ)). See figure 11.1.

3. (Open Set with Ball Definition) For any open set V ¦ Y with f (x0) ∈ V , there exists

a ball B ¦ X such that x0 ∈ B and f(B) ¦ V .

4. (Purely Topological Definition) For any open set V ¦ Y with f (x0) ∈ V , there exists

an open set U ¦ X with x0 ∈ U and f(U) ¦ V .

5. (Sequence Definition) For any sequence (xn)
∞
n=1 with limn→∞ xn = x0, the sequence

generated by f (xn) is such that limn→∞ f (xn) = f (x0).

To prove the equivalence between these definitions, we need to demonstrate the following cycle

of implications:

#1 =⇒ #2 =⇒ #3 =⇒ #4 =⇒ #5 =⇒ #1. (11.5)
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In particular, we will show that #4 =⇒ #5 (theorem 11.1), followed by #5 =⇒ #1 (theo-

rem 11.2). The equivalences of statements #1 through #4 can be trivially established through

previously established results on the connexions between open balls and open sets, such as those

enumerated throughout lecture 5.

X

Y

f−1 : Y → X

f : X → Y

¶ ϵ

x0 f (x0)

Figure 11.1: An open ball B (x0, ¶) ¦ X with two open balls in Y such that

f (B (x0, ¶)) ¦ B (f (x0) , ϵ) ¦ Y , marked by dotted, dashed, and solid paths respectively.

Theorem 11.1 The sequential statement of continuity follows from the topological definition

Let x0 ∈ X and let (xn)
∞
n=1 be a sequence in X such that limn→∞ xn = x0. If, for any open set

V ¦ Y with f (x0) ∈ V , there exists an open set U ¦ X with x0 ∈ U and f(U) ¦ V , then the

sequence generated by f (xn) is such that limn→∞ f (xn) = f (x0).

Proof. Take an arbitrary open set V ¦ Y with f (x0) ∈ V ; thus, there exists an open set U ¦ X

such that x0 ∈ U and f(U) ¦ V . Given that U is open, there exists an open ball by theorem 5.2:

∃ϵ > 0 such that B (x0, ϵ) ¦ U . As (xn)
∞
n=1 tends to x0, we can find an index point N > 0 such

that d (xn, x0) < ϵ for all n > N (by definition 8.2).

Thus, f (xn) ∈ f(U) ¦ V for all n > N . Given that V was chosen arbitrarily, any sequence

generated by f (xn) must converge to f (x0).

Theorem 11.2 The analytical statement of continuity follows from the sequential definition

For any sequence (xn)
∞
n=1 such that limn→∞ xn = x0, if the sequence (f (xn))

∞
n=1 is such that

limn→∞ f (xn) = f (x0), then given an ϵ > 0, there exists a ¶ > 0 such that d (f(x), f (x0)) < ϵ

whenever d̃ (x, x0).

Proof. We will prove this using contraposition (modus tollens); the argument is visualised below
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with the premise P and conclusion Q, to argue that ¬Q =⇒ ¬P .

For an arbitrary sequence (xn)
∞
n=1 such

that xn → x0 as n → ∞, the sequence

f (xn) → f (x0) as n→ ∞.

︸ ︷︷ ︸
Premise P

=⇒
For any ϵ > 0, there exists a ¶ > 0

such that d (f(x), f (x0)) < ϵ whenever

d̃ (x, x0).

︸ ︷︷ ︸
Conclusion Q

⇐
⇒

There exists some ϵ > 0 such that, for

all ¶ > 0, d̃ (f(x), f (x0)) g ϵ for some

x ∈ X with d (x, x0) < ¶.

︸ ︷︷ ︸
Negated Conclusion ¬Q

=⇒
There exists a sequence (xn)

∞
n=1 such

that xn → x0 as n → ∞, but f (xn) ̸→
f (x0).

︸ ︷︷ ︸
Negated Premise ¬P

We will assume ¬Q and derive ¬P . For each n ∈ N, define the set

An :=

{
x′ ∈ X : d (x′, x0) <

1

n
' d̃ (f (x′) , f (x0)) g ϵ

}
. (11.6)

By the assumption of ¬Q, An is non-empty for all n ∈ N. Thus, for each n, pick an element

xn ∈ An and note that limn→∞ xn = x0, but limn→∞ d̃ (f (xn) , f (x0)) g ϵ, so the sequence

generated by f (xn) does not converge to f (x0). Hence, P does not hold, as required.

Lecture 12: Applications of Continuity

Lecture Twelve reframes much of the theoretical discussion around

continuity into a more applied context, in which the equivalent defini-

tions of a continuous map are considered in bounded and continuous

function spaces. Some remarks are made in the realm of closed sets,

particularly with regard to the concept of global continuity, where we

have previously focussed on manipulations with open sets to show

local continuity.

9th November 2023

TODO

TODO

Definition 12.1 Global continuity (by way of local continuity)

Let f : X → Y . Then, f is globally continuous if and only if it is (locally) continuous, by

definition 11.4, at every point x0 ∈ X.
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Definition 12.2 Global continuity (topological perspective)

If V ¦ Y is open, then f is globally continuous if and only if f−1(V ) ¦ X is also open; this is

justified formally by theorem 12.3. We can eventually restate this definition in terms of a closed

set F ¦ Y , justified by justified by theorem 12.4:

f is globally continuous ⇐⇒ V ∈ Te =⇒ f−1(V ) ∈ Td (12.1)

⇐⇒ f−1(F ) is closed. (12.2)

(X, d) (Y, e)

f−1 : Y → X

f : X → Y
V ∈ Te

f−1(V ) ∈ Td

Figure 12.1: Considering the membership of the pre-image of V under f in the topology of the

domain space, versus membership in the topology of the codomain space, can reveal f to be a

globally continuous map.

Example 12.1 Global continuity in the plane

Consider f : R2 → R such that (x, y) 7→ x2 + ey and a curve Γ such that

Γ :=
{
(x, y) ∈ R2 : f(x, y) = 1

}
. (12.3)

0 0.2 0.4 0.6 0.8 1 0

0.5

1

2

x
y

f
(x
,y
)

−0.5 0.5

−1

−0.5

x
y

Figure 12.2: The mesh z = f(x, y) with the level set Γ.
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By definition 12.2 it is easy to verify that Γ is closed in R2: given that f is globally continuous,

and given that {1} is closed—as are all singletons—its inverse image is also closed. Since Γ =

f−1 ({1}), Γ is closed.

Theorem 12.1 Constant functions are globally continuous

Let f : X → Y be such that x 7→ k, where k is fixed. Then, f is continuous.

Proof. The singleton {k} is known to be closed, and the entire domain space f−1 ({k}) = X is

known to be clopen, and thus closed. Hence, by definition 12.2, f is continuous.

Theorem 12.2 Continuity is preserved under function composition

Let f : X → Y and g : Y → Z be a pair of continuous functions. Then, g ◦ f : X → Z is also

continuous.

Proof. Let V ¦ Z be open. Given that f and g are continuous, g−1(V ) ¦ Y and f−1
(
g−1(V )

)
¦

X are open in their respective spaces, by definition 12.2. It is known from set theory that

(g ◦ f)−1
(V ) = f−1

(
g−1(V )

)
, (12.4)

and hence the composition is continuous. It follows immediately that g ◦ f is continuous.

Example 12.2 Continuous Composition of Non-Continuous Constituents

Consider the pair of functions f and g from R to [−1, 1] such that

f(t) :=




1 if t g 0;

−1 otherwise.
(12.5)

g(t) := 0 for all t ∈ R. (12.6)

f is clearly non-continuous. Despite that, (g ◦ f)(t) = 0 for all t ∈ R, which is continuous.

Therefore, continuity on a composition does not generally imply continuity on the individual

components.

Theorem 12.3 Global continuity is equivalent to open pre-images

Let f : X → Y . Then, f is globally continuous if and only if, for any open set V ¦ Y , f−1(V ) is

open in X.
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Proof. =⇒ (Using fibres.) Suppose that f : X → Y is globally continuous, and consider an

open set V ¦ Y . If V = ∅, then f−1(V ) = ∅, and we are done, since the empty set is open.

Assuming that V ̸= ∅, take y ∈ V , and note the multiple possibilities for the nature of y:

• If y ̸∈ f(X), then Fy = ∅, and we are done.

• If y ∈ f(X), then Fy ̸= ∅; that is, there exists an x ∈ X such that f(x) = y. Given that

V is open and f is continuous, by theorem 5.2, there exists an open ball B ¦ X such that

x ∈ B and f(B) ¢ V . Take the union over all such balls to acquire the entire inverse image

of V in X:

f−1(V ) =
⋃

y∈V
Fy ̸=∅

Fy =
⋃

x∈f−1(V )

Bx (12.7)

By theorem 5.5 with theorem 5.3, f−1(V ) is a union of open balls, and is therefore open, as

required. (This is an example of an open cover.)

⇐= (Using epsilon–deltas.) Conversely, suppose that f−1(V ) ¦ X is open for all open sets

V ¦ V . Take an x ∈ X, and note that B (f(x), ϵ) is open in Y , and f−1 (B (f(x), ϵ)) is open in X.

Since x ∈ f−1 (B (f(x), ϵ)), there exists a ¶(ϵ) > 0 such that B(x, ¶) ¦ f−1 (B (f(x), ϵ)). Hence,

f is continuous at x. Given that x ∈ X was chosen arbitrarily, f is globally continuous.

y1

x2 y2

f−1 (By2
) By2

(X, d) (Y, e)

f−1 : Y → X

f : X → Y
V ∈ Te

f−1(V ) ∈ Td

Figure 12.3: Mapping V with open balls in Y , and their respective pre-images in X.

Theorem 12.4 Global continuity is equivalent to closed pre-images

Let f : X → Y . Then, f is globally continuous if and only if, for any closed set F ¦ Y , f−1(F )

is closed in X.

Proof. Recall from theorem 12.3 that the property of global continuity on f is equivalent to the

openness of V ¦ Y implying the openness of f−1(V ) ¦ X.

=⇒ Suppose that F ¦ Y is closed. By theorem 5.1, F c is closed, and by standard results from
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set theory, for a globally continuous f ,

F c is closed =⇒ f−1 (F c) is open (12.8)

=⇒ f−1(F ) is closed. (12.9)

⇐= Suppose that V is open, so V c is closed. As above, f−1 (V c) is closed, and f−1(V ) is

open.

Lecture 13: The Contraction Mapping Theorem

Lecture Thirteen introduces the concepts of Lipschitz constants, Lip-

schitz functions, (strict) contractions, and the Contraction Mapping

Theorem. It also restates the existence of the spaces of bounded and

continuous function, and considers a stronger notion of continuity

induced by the d∞ metric. Note: this lecture was unusually short.

14th November 2023

TODO

TODO

Definition 13.1 The space of continuous bounded functions

The entire space of all continuous functions from (X, d) to (Y, e) can be difficult to handle. From

definition 2.3, we can consider B(X,Y ) to be set of all bounded functions f : X → Y : there exists

an open ball B ¦ Y such that f(X) ¦ B. Now consider the set of continuous bounded functions

from X to Y , denoted C(X,Y ), such that

C(X,Y ) = B(X,Y ) ∩ C(X,Y ). (13.1)

We will normally impose the d∞ metric on this space, such that

d∞(f, g) = sup {e (f(x), g(x)) : x ∈ X} (13.2)

for all f, g ∈ C(X,Y ).

Definition 13.2 Uniform Convergence

Let (fn)
∞
n=1 be a sequence of functions from (C(X,K), d∞), where K is a field (R or C). The

sequence (fn)
∞
n=1 is uniformly convergent on X with a limit f : X → K if and only if, for every

ϵ > 0, there exists an N > 0 such that

d∞ (fn, f) for all n > N. (13.3)

The central point of this definition is that we are using the d∞ metric, sometimes called the

uniform metric, to measure distances between continuous functions from X to K and hence
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classify convergence properties.

Definition 13.3 Fixed Points

A point x ∈ X is called a fixed point of the mapping T : X → X if T (x) = x.

Definition 13.4 Lipschitz Function and Lipschitz Constants

Suppose that (X, d) and (Y, e) are metric spaces, and that f : X → Y . If there exists a k > 0

such that

e (f(a), f(b)) f kd(a, b) for all a, b ∈ X, (13.4)

then f is called a Lipschitz function on X with a Lipschitz constant of k.

Definition 13.5 Contractions

A strict contraction, henceforth called a contraction, is a Lipschitz function for which the Lipschitz

constant k is such that 0 < k < 1. In such cases, the Lipschitz constant of the contraction map

is sometimes called the contraction factor.

Theorem 13.1 The Contraction Mapping Theorem

Let (X, d) be a complete metric space and consider a contraction f : X → X. Then,

• f has a unique fixed point y ∈ X; and

• for any x0 ∈ X, the sequence (xn)
∞
n=1 converges to y, where xn = f (xn−1) for n g 1.

This result is due to Stefan Banacha, and is often called the Banach Fixed Point Theorem.

Proof. TODO: see lecture XIV.

a1892–1945; responsible for the discovery of Functional Analysis
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