
MS1GP Presentation Speaker Notes March 11, 2023

Matthew Drury

• TODO

1



MS1GP Presentation Speaker Notes March 11, 2023

Ben Brook

• TODO

2



MS1GP Presentation Speaker Notes March 11, 2023

Oliver Dixon

• To start, we need to define some more theory (not much!). Follow the slide
prompts for construction of the general monoidal category with a base category
of C0.

• We need these natural transformations to induce certain properties on the bi-
functor ⊗, and it may not possess these natively. In other words, these diagrams
must commute [show the CDs very briefly].

• We sometimes omit the natural transformations from the tuple, as their partic-
ulars are seldom of especial importance.

• Monoids are objects in a monoidal categories together with two objects. [Em-
phasise the importance of µ having a domain of M ×M , as it is integral for the
monad application is Haskell.]

• Again, these diagrams must commute [show very briefly].

• There’s not much to say about functional programming in its most general sense
besides the stipulation that functions cannot induce side-effects ; they must only
work with the data they are given, and return an explicit transformation of
that data. We’re beginning to understand why strong type systems, as those in
functional languages, interface so nicely with Category Theory!

• We have already seen endofunctors in MD’s section, so considering the category
of such objects should not be difficult. We’ve also seen natural transformations,
although bifunctors have not yet been (explicitly) mentioned.

• Introduce Haskell as the “canonical” functional language, whose purity facili-
tates these direct connexions with Category Theory. Consider Endo (Hask),
which is semantically consistent, since monoidal categories (such as Hask) re-
quire a base category, the product of which its bifunctor can use as its domain.

• Reiterate the notion of a shared mutable state, and explain how weaving through
imperative-like sequential call structures is possible with monads, due to the
category product being used to encode the function parameter and current
context.

⊗ : Hask×Hask → Hask

This is the core idea of enabling stateful computation. We will not have time
to discuss the λ-calculus in detail, unfortunately, but its theory (developed by
Alonzo Church, Alan Turing’s supervisor at Cambridge!) does form the basis
of much of functional paradigms, even in their modern forms.

• Take questions.

3


